449 lines
18 KiB
Rust
449 lines
18 KiB
Rust
//! Logic and data structures related to impl specialization, explained in
|
|
//! greater detail below.
|
|
//!
|
|
//! At the moment, this implementation support only the simple "chain" rule:
|
|
//! If any two impls overlap, one must be a strict subset of the other.
|
|
//!
|
|
//! See the [rustc guide] for a bit more detail on how specialization
|
|
//! fits together with the rest of the trait machinery.
|
|
//!
|
|
//! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/specialization.html
|
|
|
|
pub mod specialization_graph;
|
|
|
|
use crate::hir::def_id::DefId;
|
|
use crate::infer::{InferCtxt, InferOk};
|
|
use crate::lint;
|
|
use crate::traits::{self, coherence, FutureCompatOverlapErrorKind, ObligationCause, TraitEngine};
|
|
use rustc_data_structures::fx::FxHashSet;
|
|
use syntax_pos::DUMMY_SP;
|
|
use crate::traits::select::IntercrateAmbiguityCause;
|
|
use crate::ty::{self, TyCtxt, TypeFoldable};
|
|
use crate::ty::subst::{Subst, InternalSubsts, SubstsRef};
|
|
|
|
use super::{SelectionContext, FulfillmentContext};
|
|
use super::util::impl_trait_ref_and_oblig;
|
|
|
|
use rustc_error_codes::*;
|
|
|
|
/// Information pertinent to an overlapping impl error.
|
|
#[derive(Debug)]
|
|
pub struct OverlapError {
|
|
pub with_impl: DefId,
|
|
pub trait_desc: String,
|
|
pub self_desc: Option<String>,
|
|
pub intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>,
|
|
pub involves_placeholder: bool,
|
|
}
|
|
|
|
/// Given a subst for the requested impl, translate it to a subst
|
|
/// appropriate for the actual item definition (whether it be in that impl,
|
|
/// a parent impl, or the trait).
|
|
///
|
|
/// When we have selected one impl, but are actually using item definitions from
|
|
/// a parent impl providing a default, we need a way to translate between the
|
|
/// type parameters of the two impls. Here the `source_impl` is the one we've
|
|
/// selected, and `source_substs` is a substitution of its generics.
|
|
/// And `target_node` is the impl/trait we're actually going to get the
|
|
/// definition from. The resulting substitution will map from `target_node`'s
|
|
/// generics to `source_impl`'s generics as instantiated by `source_subst`.
|
|
///
|
|
/// For example, consider the following scenario:
|
|
///
|
|
/// ```rust
|
|
/// trait Foo { ... }
|
|
/// impl<T, U> Foo for (T, U) { ... } // target impl
|
|
/// impl<V> Foo for (V, V) { ... } // source impl
|
|
/// ```
|
|
///
|
|
/// Suppose we have selected "source impl" with `V` instantiated with `u32`.
|
|
/// This function will produce a substitution with `T` and `U` both mapping to `u32`.
|
|
///
|
|
/// where-clauses add some trickiness here, because they can be used to "define"
|
|
/// an argument indirectly:
|
|
///
|
|
/// ```rust
|
|
/// impl<'a, I, T: 'a> Iterator for Cloned<I>
|
|
/// where I: Iterator<Item = &'a T>, T: Clone
|
|
/// ```
|
|
///
|
|
/// In a case like this, the substitution for `T` is determined indirectly,
|
|
/// through associated type projection. We deal with such cases by using
|
|
/// *fulfillment* to relate the two impls, requiring that all projections are
|
|
/// resolved.
|
|
pub fn translate_substs<'a, 'tcx>(
|
|
infcx: &InferCtxt<'a, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
source_impl: DefId,
|
|
source_substs: SubstsRef<'tcx>,
|
|
target_node: specialization_graph::Node,
|
|
) -> SubstsRef<'tcx> {
|
|
debug!("translate_substs({:?}, {:?}, {:?}, {:?})",
|
|
param_env, source_impl, source_substs, target_node);
|
|
let source_trait_ref = infcx.tcx
|
|
.impl_trait_ref(source_impl)
|
|
.unwrap()
|
|
.subst(infcx.tcx, &source_substs);
|
|
|
|
// translate the Self and Param parts of the substitution, since those
|
|
// vary across impls
|
|
let target_substs = match target_node {
|
|
specialization_graph::Node::Impl(target_impl) => {
|
|
// no need to translate if we're targeting the impl we started with
|
|
if source_impl == target_impl {
|
|
return source_substs;
|
|
}
|
|
|
|
fulfill_implication(infcx, param_env, source_trait_ref, target_impl)
|
|
.unwrap_or_else(|_|
|
|
bug!("When translating substitutions for specialization, the expected \
|
|
specialization failed to hold")
|
|
)
|
|
}
|
|
specialization_graph::Node::Trait(..) => source_trait_ref.substs,
|
|
};
|
|
|
|
// directly inherent the method generics, since those do not vary across impls
|
|
source_substs.rebase_onto(infcx.tcx, source_impl, target_substs)
|
|
}
|
|
|
|
/// Given a selected impl described by `impl_data`, returns the
|
|
/// definition and substitutions for the method with the name `name`
|
|
/// the kind `kind`, and trait method substitutions `substs`, in
|
|
/// that impl, a less specialized impl, or the trait default,
|
|
/// whichever applies.
|
|
pub fn find_associated_item<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
item: &ty::AssocItem,
|
|
substs: SubstsRef<'tcx>,
|
|
impl_data: &super::VtableImplData<'tcx, ()>,
|
|
) -> (DefId, SubstsRef<'tcx>) {
|
|
debug!("find_associated_item({:?}, {:?}, {:?}, {:?})",
|
|
param_env, item, substs, impl_data);
|
|
assert!(!substs.needs_infer());
|
|
|
|
let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap();
|
|
let trait_def = tcx.trait_def(trait_def_id);
|
|
|
|
let ancestors = trait_def.ancestors(tcx, impl_data.impl_def_id);
|
|
match ancestors.leaf_def(tcx, item.ident, item.kind) {
|
|
Some(node_item) => {
|
|
let substs = tcx.infer_ctxt().enter(|infcx| {
|
|
let param_env = param_env.with_reveal_all();
|
|
let substs = substs.rebase_onto(tcx, trait_def_id, impl_data.substs);
|
|
let substs = translate_substs(&infcx, param_env, impl_data.impl_def_id,
|
|
substs, node_item.node);
|
|
infcx.tcx.erase_regions(&substs)
|
|
});
|
|
(node_item.item.def_id, substs)
|
|
}
|
|
None => bug!("{:?} not found in {:?}", item, impl_data.impl_def_id)
|
|
}
|
|
}
|
|
|
|
/// Is `impl1` a specialization of `impl2`?
|
|
///
|
|
/// Specialization is determined by the sets of types to which the impls apply;
|
|
/// `impl1` specializes `impl2` if it applies to a subset of the types `impl2` applies
|
|
/// to.
|
|
pub(super) fn specializes(
|
|
tcx: TyCtxt<'_>,
|
|
(impl1_def_id, impl2_def_id): (DefId, DefId),
|
|
) -> bool {
|
|
debug!("specializes({:?}, {:?})", impl1_def_id, impl2_def_id);
|
|
|
|
// The feature gate should prevent introducing new specializations, but not
|
|
// taking advantage of upstream ones.
|
|
if !tcx.features().specialization &&
|
|
(impl1_def_id.is_local() || impl2_def_id.is_local()) {
|
|
return false;
|
|
}
|
|
|
|
// We determine whether there's a subset relationship by:
|
|
//
|
|
// - skolemizing impl1,
|
|
// - assuming the where clauses for impl1,
|
|
// - instantiating impl2 with fresh inference variables,
|
|
// - unifying,
|
|
// - attempting to prove the where clauses for impl2
|
|
//
|
|
// The last three steps are encapsulated in `fulfill_implication`.
|
|
//
|
|
// See RFC 1210 for more details and justification.
|
|
|
|
// Currently we do not allow e.g., a negative impl to specialize a positive one
|
|
if tcx.impl_polarity(impl1_def_id) != tcx.impl_polarity(impl2_def_id) {
|
|
return false;
|
|
}
|
|
|
|
// create a parameter environment corresponding to a (placeholder) instantiation of impl1
|
|
let penv = tcx.param_env(impl1_def_id);
|
|
let impl1_trait_ref = tcx.impl_trait_ref(impl1_def_id).unwrap();
|
|
|
|
// Create a infcx, taking the predicates of impl1 as assumptions:
|
|
tcx.infer_ctxt().enter(|infcx| {
|
|
// Normalize the trait reference. The WF rules ought to ensure
|
|
// that this always succeeds.
|
|
let impl1_trait_ref =
|
|
match traits::fully_normalize(&infcx,
|
|
FulfillmentContext::new(),
|
|
ObligationCause::dummy(),
|
|
penv,
|
|
&impl1_trait_ref) {
|
|
Ok(impl1_trait_ref) => impl1_trait_ref,
|
|
Err(err) => {
|
|
bug!("failed to fully normalize {:?}: {:?}", impl1_trait_ref, err);
|
|
}
|
|
};
|
|
|
|
// Attempt to prove that impl2 applies, given all of the above.
|
|
fulfill_implication(&infcx, penv, impl1_trait_ref, impl2_def_id).is_ok()
|
|
})
|
|
}
|
|
|
|
/// Attempt to fulfill all obligations of `target_impl` after unification with
|
|
/// `source_trait_ref`. If successful, returns a substitution for *all* the
|
|
/// generics of `target_impl`, including both those needed to unify with
|
|
/// `source_trait_ref` and those whose identity is determined via a where
|
|
/// clause in the impl.
|
|
fn fulfill_implication<'a, 'tcx>(
|
|
infcx: &InferCtxt<'a, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
source_trait_ref: ty::TraitRef<'tcx>,
|
|
target_impl: DefId,
|
|
) -> Result<SubstsRef<'tcx>, ()> {
|
|
debug!("fulfill_implication({:?}, trait_ref={:?} |- {:?} applies)",
|
|
param_env, source_trait_ref, target_impl);
|
|
|
|
let selcx = &mut SelectionContext::new(&infcx);
|
|
let target_substs = infcx.fresh_substs_for_item(DUMMY_SP, target_impl);
|
|
let (target_trait_ref, mut obligations) = impl_trait_ref_and_oblig(selcx,
|
|
param_env,
|
|
target_impl,
|
|
target_substs);
|
|
debug!("fulfill_implication: target_trait_ref={:?}, obligations={:?}",
|
|
target_trait_ref, obligations);
|
|
|
|
// do the impls unify? If not, no specialization.
|
|
match infcx.at(&ObligationCause::dummy(), param_env)
|
|
.eq(source_trait_ref, target_trait_ref) {
|
|
Ok(InferOk { obligations: o, .. }) => {
|
|
obligations.extend(o);
|
|
}
|
|
Err(_) => {
|
|
debug!("fulfill_implication: {:?} does not unify with {:?}",
|
|
source_trait_ref,
|
|
target_trait_ref);
|
|
return Err(());
|
|
}
|
|
}
|
|
|
|
// attempt to prove all of the predicates for impl2 given those for impl1
|
|
// (which are packed up in penv)
|
|
|
|
infcx.save_and_restore_in_snapshot_flag(|infcx| {
|
|
// If we came from `translate_substs`, we already know that the
|
|
// predicates for our impl hold (after all, we know that a more
|
|
// specialized impl holds, so our impl must hold too), and
|
|
// we only want to process the projections to determine the
|
|
// the types in our substs using RFC 447, so we can safely
|
|
// ignore region obligations, which allows us to avoid threading
|
|
// a node-id to assign them with.
|
|
//
|
|
// If we came from specialization graph construction, then
|
|
// we already make a mockery out of the region system, so
|
|
// why not ignore them a bit earlier?
|
|
let mut fulfill_cx = FulfillmentContext::new_ignoring_regions();
|
|
for oblig in obligations.into_iter() {
|
|
fulfill_cx.register_predicate_obligation(&infcx, oblig);
|
|
}
|
|
match fulfill_cx.select_all_or_error(infcx) {
|
|
Err(errors) => {
|
|
// no dice!
|
|
debug!("fulfill_implication: for impls on {:?} and {:?}, \
|
|
could not fulfill: {:?} given {:?}",
|
|
source_trait_ref,
|
|
target_trait_ref,
|
|
errors,
|
|
param_env.caller_bounds);
|
|
Err(())
|
|
}
|
|
|
|
Ok(()) => {
|
|
debug!("fulfill_implication: an impl for {:?} specializes {:?}",
|
|
source_trait_ref,
|
|
target_trait_ref);
|
|
|
|
// Now resolve the *substitution* we built for the target earlier, replacing
|
|
// the inference variables inside with whatever we got from fulfillment.
|
|
Ok(infcx.resolve_vars_if_possible(&target_substs))
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
// Query provider for `specialization_graph_of`.
|
|
pub(super) fn specialization_graph_provider(
|
|
tcx: TyCtxt<'_>,
|
|
trait_id: DefId,
|
|
) -> &specialization_graph::Graph {
|
|
let mut sg = specialization_graph::Graph::new();
|
|
|
|
let mut trait_impls = tcx.all_impls(trait_id);
|
|
|
|
// The coherence checking implementation seems to rely on impls being
|
|
// iterated over (roughly) in definition order, so we are sorting by
|
|
// negated `CrateNum` (so remote definitions are visited first) and then
|
|
// by a flattened version of the `DefIndex`.
|
|
trait_impls.sort_unstable_by_key(|def_id| {
|
|
(-(def_id.krate.as_u32() as i64), def_id.index.index())
|
|
});
|
|
|
|
for impl_def_id in trait_impls {
|
|
if impl_def_id.is_local() {
|
|
// This is where impl overlap checking happens:
|
|
let insert_result = sg.insert(tcx, impl_def_id);
|
|
// Report error if there was one.
|
|
let (overlap, used_to_be_allowed) = match insert_result {
|
|
Err(overlap) => (Some(overlap), None),
|
|
Ok(Some(overlap)) => (Some(overlap.error), Some(overlap.kind)),
|
|
Ok(None) => (None, None)
|
|
};
|
|
|
|
if let Some(overlap) = overlap {
|
|
let msg = format!("conflicting implementations of trait `{}`{}:{}",
|
|
overlap.trait_desc,
|
|
overlap.self_desc.clone().map_or(
|
|
String::new(), |ty| {
|
|
format!(" for type `{}`", ty)
|
|
}),
|
|
match used_to_be_allowed {
|
|
Some(FutureCompatOverlapErrorKind::Issue33140) => " (E0119)",
|
|
_ => "",
|
|
}
|
|
);
|
|
let impl_span = tcx.sess.source_map().def_span(
|
|
tcx.span_of_impl(impl_def_id).unwrap()
|
|
);
|
|
let mut err = match used_to_be_allowed {
|
|
Some(FutureCompatOverlapErrorKind::Issue43355) | None =>
|
|
struct_span_err!(tcx.sess,
|
|
impl_span,
|
|
E0119,
|
|
"{}",
|
|
msg),
|
|
Some(kind) => {
|
|
let lint = match kind {
|
|
FutureCompatOverlapErrorKind::Issue43355 =>
|
|
unreachable!("converted to hard error above"),
|
|
FutureCompatOverlapErrorKind::Issue33140 =>
|
|
lint::builtin::ORDER_DEPENDENT_TRAIT_OBJECTS,
|
|
};
|
|
tcx.struct_span_lint_hir(
|
|
lint,
|
|
tcx.hir().as_local_hir_id(impl_def_id).unwrap(),
|
|
impl_span,
|
|
&msg)
|
|
}
|
|
};
|
|
|
|
match tcx.span_of_impl(overlap.with_impl) {
|
|
Ok(span) => {
|
|
err.span_label(tcx.sess.source_map().def_span(span),
|
|
"first implementation here".to_string());
|
|
err.span_label(impl_span,
|
|
format!("conflicting implementation{}",
|
|
overlap.self_desc
|
|
.map_or(String::new(),
|
|
|ty| format!(" for `{}`", ty))));
|
|
}
|
|
Err(cname) => {
|
|
let msg = match to_pretty_impl_header(tcx, overlap.with_impl) {
|
|
Some(s) => format!(
|
|
"conflicting implementation in crate `{}`:\n- {}", cname, s),
|
|
None => format!("conflicting implementation in crate `{}`", cname),
|
|
};
|
|
err.note(&msg);
|
|
}
|
|
}
|
|
|
|
for cause in &overlap.intercrate_ambiguity_causes {
|
|
cause.add_intercrate_ambiguity_hint(&mut err);
|
|
}
|
|
|
|
if overlap.involves_placeholder {
|
|
coherence::add_placeholder_note(&mut err);
|
|
}
|
|
|
|
err.emit();
|
|
}
|
|
} else {
|
|
let parent = tcx.impl_parent(impl_def_id).unwrap_or(trait_id);
|
|
sg.record_impl_from_cstore(tcx, parent, impl_def_id)
|
|
}
|
|
}
|
|
|
|
tcx.arena.alloc(sg)
|
|
}
|
|
|
|
/// Recovers the "impl X for Y" signature from `impl_def_id` and returns it as a
|
|
/// string.
|
|
fn to_pretty_impl_header(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Option<String> {
|
|
use std::fmt::Write;
|
|
|
|
let trait_ref = if let Some(tr) = tcx.impl_trait_ref(impl_def_id) {
|
|
tr
|
|
} else {
|
|
return None;
|
|
};
|
|
|
|
let mut w = "impl".to_owned();
|
|
|
|
let substs = InternalSubsts::identity_for_item(tcx, impl_def_id);
|
|
|
|
// FIXME: Currently only handles ?Sized.
|
|
// Needs to support ?Move and ?DynSized when they are implemented.
|
|
let mut types_without_default_bounds = FxHashSet::default();
|
|
let sized_trait = tcx.lang_items().sized_trait();
|
|
|
|
if !substs.is_noop() {
|
|
types_without_default_bounds.extend(substs.types());
|
|
w.push('<');
|
|
w.push_str(&substs.iter()
|
|
.map(|k| k.to_string())
|
|
.filter(|k| k != "'_")
|
|
.collect::<Vec<_>>().join(", "));
|
|
w.push('>');
|
|
}
|
|
|
|
write!(w, " {} for {}", trait_ref.print_only_trait_path(), tcx.type_of(impl_def_id)).unwrap();
|
|
|
|
// The predicates will contain default bounds like `T: Sized`. We need to
|
|
// remove these bounds, and add `T: ?Sized` to any untouched type parameters.
|
|
let predicates = tcx.predicates_of(impl_def_id).predicates;
|
|
let mut pretty_predicates = Vec::with_capacity(
|
|
predicates.len() + types_without_default_bounds.len());
|
|
|
|
for (p, _) in predicates {
|
|
if let Some(poly_trait_ref) = p.to_opt_poly_trait_ref() {
|
|
if Some(poly_trait_ref.def_id()) == sized_trait {
|
|
types_without_default_bounds.remove(poly_trait_ref.self_ty());
|
|
continue;
|
|
}
|
|
}
|
|
pretty_predicates.push(p.to_string());
|
|
}
|
|
|
|
pretty_predicates.extend(
|
|
types_without_default_bounds.iter().map(|ty| format!("{}: ?Sized", ty))
|
|
);
|
|
|
|
if !pretty_predicates.is_empty() {
|
|
write!(w, "\n where {}", pretty_predicates.join(", ")).unwrap();
|
|
}
|
|
|
|
w.push(';');
|
|
Some(w)
|
|
}
|