99a77798d3
The `PrettyPrinter` changes formatting of array size and integer constants based on `-Zverbose`, so its implementation cannot be used in legacy symbol mangling.
470 lines
16 KiB
Rust
470 lines
16 KiB
Rust
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
|
|
use rustc_hir::def_id::CrateNum;
|
|
use rustc_hir::definitions::{DefPathData, DisambiguatedDefPathData};
|
|
use rustc_middle::mir::interpret::{ConstValue, Scalar};
|
|
use rustc_middle::ty::print::{PrettyPrinter, Print, Printer};
|
|
use rustc_middle::ty::subst::{GenericArg, GenericArgKind};
|
|
use rustc_middle::ty::{self, Instance, Ty, TyCtxt, TypeFoldable};
|
|
use rustc_middle::util::common::record_time;
|
|
use rustc_query_system::ich::NodeIdHashingMode;
|
|
|
|
use tracing::debug;
|
|
|
|
use std::fmt::{self, Write};
|
|
use std::mem::{self, discriminant};
|
|
|
|
pub(super) fn mangle<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
instance: Instance<'tcx>,
|
|
instantiating_crate: Option<CrateNum>,
|
|
) -> String {
|
|
let def_id = instance.def_id();
|
|
|
|
// We want to compute the "type" of this item. Unfortunately, some
|
|
// kinds of items (e.g., closures) don't have an entry in the
|
|
// item-type array. So walk back up the find the closest parent
|
|
// that DOES have an entry.
|
|
let mut ty_def_id = def_id;
|
|
let instance_ty;
|
|
loop {
|
|
let key = tcx.def_key(ty_def_id);
|
|
match key.disambiguated_data.data {
|
|
DefPathData::TypeNs(_) | DefPathData::ValueNs(_) => {
|
|
instance_ty = tcx.type_of(ty_def_id);
|
|
break;
|
|
}
|
|
_ => {
|
|
// if we're making a symbol for something, there ought
|
|
// to be a value or type-def or something in there
|
|
// *somewhere*
|
|
ty_def_id.index = key.parent.unwrap_or_else(|| {
|
|
bug!(
|
|
"finding type for {:?}, encountered def-id {:?} with no \
|
|
parent",
|
|
def_id,
|
|
ty_def_id
|
|
);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Erase regions because they may not be deterministic when hashed
|
|
// and should not matter anyhow.
|
|
let instance_ty = tcx.erase_regions(instance_ty);
|
|
|
|
let hash = get_symbol_hash(tcx, instance, instance_ty, instantiating_crate);
|
|
|
|
let mut printer = SymbolPrinter { tcx, path: SymbolPath::new(), keep_within_component: false };
|
|
printer
|
|
.print_def_path(
|
|
def_id,
|
|
if let ty::InstanceDef::DropGlue(_, _) = instance.def {
|
|
// Add the name of the dropped type to the symbol name
|
|
&*instance.substs
|
|
} else {
|
|
&[]
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
if let ty::InstanceDef::VtableShim(..) = instance.def {
|
|
let _ = printer.write_str("{{vtable-shim}}");
|
|
}
|
|
|
|
if let ty::InstanceDef::ReifyShim(..) = instance.def {
|
|
let _ = printer.write_str("{{reify-shim}}");
|
|
}
|
|
|
|
printer.path.finish(hash)
|
|
}
|
|
|
|
fn get_symbol_hash<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
|
|
// instance this name will be for
|
|
instance: Instance<'tcx>,
|
|
|
|
// type of the item, without any generic
|
|
// parameters substituted; this is
|
|
// included in the hash as a kind of
|
|
// safeguard.
|
|
item_type: Ty<'tcx>,
|
|
|
|
instantiating_crate: Option<CrateNum>,
|
|
) -> u64 {
|
|
let def_id = instance.def_id();
|
|
let substs = instance.substs;
|
|
debug!("get_symbol_hash(def_id={:?}, parameters={:?})", def_id, substs);
|
|
|
|
let mut hasher = StableHasher::new();
|
|
let mut hcx = tcx.create_stable_hashing_context();
|
|
|
|
record_time(&tcx.sess.perf_stats.symbol_hash_time, || {
|
|
// the main symbol name is not necessarily unique; hash in the
|
|
// compiler's internal def-path, guaranteeing each symbol has a
|
|
// truly unique path
|
|
tcx.def_path_hash(def_id).hash_stable(&mut hcx, &mut hasher);
|
|
|
|
// Include the main item-type. Note that, in this case, the
|
|
// assertions about `needs_subst` may not hold, but this item-type
|
|
// ought to be the same for every reference anyway.
|
|
assert!(!item_type.has_erasable_regions());
|
|
hcx.while_hashing_spans(false, |hcx| {
|
|
hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| {
|
|
item_type.hash_stable(hcx, &mut hasher);
|
|
|
|
// If this is a function, we hash the signature as well.
|
|
// This is not *strictly* needed, but it may help in some
|
|
// situations, see the `run-make/a-b-a-linker-guard` test.
|
|
if let ty::FnDef(..) = item_type.kind() {
|
|
item_type.fn_sig(tcx).hash_stable(hcx, &mut hasher);
|
|
}
|
|
|
|
// also include any type parameters (for generic items)
|
|
substs.hash_stable(hcx, &mut hasher);
|
|
|
|
if let Some(instantiating_crate) = instantiating_crate {
|
|
tcx.def_path_hash(instantiating_crate.as_def_id())
|
|
.stable_crate_id()
|
|
.hash_stable(hcx, &mut hasher);
|
|
}
|
|
|
|
// We want to avoid accidental collision between different types of instances.
|
|
// Especially, `VtableShim`s and `ReifyShim`s may overlap with their original
|
|
// instances without this.
|
|
discriminant(&instance.def).hash_stable(hcx, &mut hasher);
|
|
});
|
|
});
|
|
});
|
|
|
|
// 64 bits should be enough to avoid collisions.
|
|
hasher.finish::<u64>()
|
|
}
|
|
|
|
// Follow C++ namespace-mangling style, see
|
|
// https://en.wikipedia.org/wiki/Name_mangling for more info.
|
|
//
|
|
// It turns out that on macOS you can actually have arbitrary symbols in
|
|
// function names (at least when given to LLVM), but this is not possible
|
|
// when using unix's linker. Perhaps one day when we just use a linker from LLVM
|
|
// we won't need to do this name mangling. The problem with name mangling is
|
|
// that it seriously limits the available characters. For example we can't
|
|
// have things like &T in symbol names when one would theoretically
|
|
// want them for things like impls of traits on that type.
|
|
//
|
|
// To be able to work on all platforms and get *some* reasonable output, we
|
|
// use C++ name-mangling.
|
|
#[derive(Debug)]
|
|
struct SymbolPath {
|
|
result: String,
|
|
temp_buf: String,
|
|
}
|
|
|
|
impl SymbolPath {
|
|
fn new() -> Self {
|
|
let mut result =
|
|
SymbolPath { result: String::with_capacity(64), temp_buf: String::with_capacity(16) };
|
|
result.result.push_str("_ZN"); // _Z == Begin name-sequence, N == nested
|
|
result
|
|
}
|
|
|
|
fn finalize_pending_component(&mut self) {
|
|
if !self.temp_buf.is_empty() {
|
|
let _ = write!(self.result, "{}{}", self.temp_buf.len(), self.temp_buf);
|
|
self.temp_buf.clear();
|
|
}
|
|
}
|
|
|
|
fn finish(mut self, hash: u64) -> String {
|
|
self.finalize_pending_component();
|
|
// E = end name-sequence
|
|
let _ = write!(self.result, "17h{:016x}E", hash);
|
|
self.result
|
|
}
|
|
}
|
|
|
|
struct SymbolPrinter<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
path: SymbolPath,
|
|
|
|
// When `true`, `finalize_pending_component` isn't used.
|
|
// This is needed when recursing into `path_qualified`,
|
|
// or `path_generic_args`, as any nested paths are
|
|
// logically within one component.
|
|
keep_within_component: bool,
|
|
}
|
|
|
|
// HACK(eddyb) this relies on using the `fmt` interface to get
|
|
// `PrettyPrinter` aka pretty printing of e.g. types in paths,
|
|
// symbol names should have their own printing machinery.
|
|
|
|
impl<'tcx> Printer<'tcx> for &mut SymbolPrinter<'tcx> {
|
|
type Error = fmt::Error;
|
|
|
|
type Path = Self;
|
|
type Region = Self;
|
|
type Type = Self;
|
|
type DynExistential = Self;
|
|
type Const = Self;
|
|
|
|
fn tcx(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn print_region(self, _region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
|
|
Ok(self)
|
|
}
|
|
|
|
fn print_type(mut self, ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
|
|
match *ty.kind() {
|
|
// Print all nominal types as paths (unlike `pretty_print_type`).
|
|
ty::FnDef(def_id, substs)
|
|
| ty::Opaque(def_id, substs)
|
|
| ty::Projection(ty::ProjectionTy { item_def_id: def_id, substs })
|
|
| ty::Closure(def_id, substs)
|
|
| ty::Generator(def_id, substs, _) => self.print_def_path(def_id, substs),
|
|
|
|
// The `pretty_print_type` formatting of array size depends on
|
|
// -Zverbose flag, so we cannot reuse it here.
|
|
ty::Array(ty, size) => {
|
|
self.write_str("[")?;
|
|
self = self.print_type(ty)?;
|
|
self.write_str("; ")?;
|
|
if let Some(size) = size.val().try_to_bits(self.tcx().data_layout.pointer_size) {
|
|
write!(self, "{}", size)?
|
|
} else if let ty::ConstKind::Param(param) = size.val() {
|
|
self = param.print(self)?
|
|
} else {
|
|
self.write_str("_")?
|
|
}
|
|
self.write_str("]")?;
|
|
Ok(self)
|
|
}
|
|
|
|
_ => self.pretty_print_type(ty),
|
|
}
|
|
}
|
|
|
|
fn print_dyn_existential(
|
|
mut self,
|
|
predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
|
|
) -> Result<Self::DynExistential, Self::Error> {
|
|
let mut first = true;
|
|
for p in predicates {
|
|
if !first {
|
|
write!(self, "+")?;
|
|
}
|
|
first = false;
|
|
self = p.print(self)?;
|
|
}
|
|
Ok(self)
|
|
}
|
|
|
|
fn print_const(self, ct: ty::Const<'tcx>) -> Result<Self::Const, Self::Error> {
|
|
// only print integers
|
|
match (ct.val(), ct.ty().kind()) {
|
|
(
|
|
ty::ConstKind::Value(ConstValue::Scalar(Scalar::Int(scalar))),
|
|
ty::Int(_) | ty::Uint(_),
|
|
) => {
|
|
// The `pretty_print_const` formatting depends on -Zverbose
|
|
// flag, so we cannot reuse it here.
|
|
let signed = matches!(ct.ty().kind(), ty::Int(_));
|
|
write!(
|
|
self,
|
|
"{:#?}",
|
|
ty::ConstInt::new(scalar, signed, ct.ty().is_ptr_sized_integral())
|
|
)?;
|
|
}
|
|
_ => self.write_str("_")?,
|
|
}
|
|
Ok(self)
|
|
}
|
|
|
|
fn path_crate(self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
|
|
self.write_str(self.tcx.crate_name(cnum).as_str())?;
|
|
Ok(self)
|
|
}
|
|
fn path_qualified(
|
|
self,
|
|
self_ty: Ty<'tcx>,
|
|
trait_ref: Option<ty::TraitRef<'tcx>>,
|
|
) -> Result<Self::Path, Self::Error> {
|
|
// Similar to `pretty_path_qualified`, but for the other
|
|
// types that are printed as paths (see `print_type` above).
|
|
match self_ty.kind() {
|
|
ty::FnDef(..)
|
|
| ty::Opaque(..)
|
|
| ty::Projection(_)
|
|
| ty::Closure(..)
|
|
| ty::Generator(..)
|
|
if trait_ref.is_none() =>
|
|
{
|
|
self.print_type(self_ty)
|
|
}
|
|
|
|
_ => self.pretty_path_qualified(self_ty, trait_ref),
|
|
}
|
|
}
|
|
|
|
fn path_append_impl(
|
|
self,
|
|
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
|
|
_disambiguated_data: &DisambiguatedDefPathData,
|
|
self_ty: Ty<'tcx>,
|
|
trait_ref: Option<ty::TraitRef<'tcx>>,
|
|
) -> Result<Self::Path, Self::Error> {
|
|
self.pretty_path_append_impl(
|
|
|mut cx| {
|
|
cx = print_prefix(cx)?;
|
|
|
|
if cx.keep_within_component {
|
|
// HACK(eddyb) print the path similarly to how `FmtPrinter` prints it.
|
|
cx.write_str("::")?;
|
|
} else {
|
|
cx.path.finalize_pending_component();
|
|
}
|
|
|
|
Ok(cx)
|
|
},
|
|
self_ty,
|
|
trait_ref,
|
|
)
|
|
}
|
|
fn path_append(
|
|
mut self,
|
|
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
|
|
disambiguated_data: &DisambiguatedDefPathData,
|
|
) -> Result<Self::Path, Self::Error> {
|
|
self = print_prefix(self)?;
|
|
|
|
// Skip `::{{extern}}` blocks and `::{{constructor}}` on tuple/unit structs.
|
|
if let DefPathData::ForeignMod | DefPathData::Ctor = disambiguated_data.data {
|
|
return Ok(self);
|
|
}
|
|
|
|
if self.keep_within_component {
|
|
// HACK(eddyb) print the path similarly to how `FmtPrinter` prints it.
|
|
self.write_str("::")?;
|
|
} else {
|
|
self.path.finalize_pending_component();
|
|
}
|
|
|
|
write!(self, "{}", disambiguated_data.data)?;
|
|
|
|
Ok(self)
|
|
}
|
|
fn path_generic_args(
|
|
mut self,
|
|
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
|
|
args: &[GenericArg<'tcx>],
|
|
) -> Result<Self::Path, Self::Error> {
|
|
self = print_prefix(self)?;
|
|
|
|
let args =
|
|
args.iter().cloned().filter(|arg| !matches!(arg.unpack(), GenericArgKind::Lifetime(_)));
|
|
|
|
if args.clone().next().is_some() {
|
|
self.generic_delimiters(|cx| cx.comma_sep(args))
|
|
} else {
|
|
Ok(self)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> PrettyPrinter<'tcx> for &mut SymbolPrinter<'tcx> {
|
|
fn should_print_region(&self, _region: ty::Region<'_>) -> bool {
|
|
false
|
|
}
|
|
fn comma_sep<T>(mut self, mut elems: impl Iterator<Item = T>) -> Result<Self, Self::Error>
|
|
where
|
|
T: Print<'tcx, Self, Output = Self, Error = Self::Error>,
|
|
{
|
|
if let Some(first) = elems.next() {
|
|
self = first.print(self)?;
|
|
for elem in elems {
|
|
self.write_str(",")?;
|
|
self = elem.print(self)?;
|
|
}
|
|
}
|
|
Ok(self)
|
|
}
|
|
|
|
fn generic_delimiters(
|
|
mut self,
|
|
f: impl FnOnce(Self) -> Result<Self, Self::Error>,
|
|
) -> Result<Self, Self::Error> {
|
|
write!(self, "<")?;
|
|
|
|
let kept_within_component = mem::replace(&mut self.keep_within_component, true);
|
|
self = f(self)?;
|
|
self.keep_within_component = kept_within_component;
|
|
|
|
write!(self, ">")?;
|
|
|
|
Ok(self)
|
|
}
|
|
}
|
|
|
|
impl fmt::Write for SymbolPrinter<'_> {
|
|
fn write_str(&mut self, s: &str) -> fmt::Result {
|
|
// Name sanitation. LLVM will happily accept identifiers with weird names, but
|
|
// gas doesn't!
|
|
// gas accepts the following characters in symbols: a-z, A-Z, 0-9, ., _, $
|
|
// NVPTX assembly has more strict naming rules than gas, so additionally, dots
|
|
// are replaced with '$' there.
|
|
|
|
for c in s.chars() {
|
|
if self.path.temp_buf.is_empty() {
|
|
match c {
|
|
'a'..='z' | 'A'..='Z' | '_' => {}
|
|
_ => {
|
|
// Underscore-qualify anything that didn't start as an ident.
|
|
self.path.temp_buf.push('_');
|
|
}
|
|
}
|
|
}
|
|
match c {
|
|
// Escape these with $ sequences
|
|
'@' => self.path.temp_buf.push_str("$SP$"),
|
|
'*' => self.path.temp_buf.push_str("$BP$"),
|
|
'&' => self.path.temp_buf.push_str("$RF$"),
|
|
'<' => self.path.temp_buf.push_str("$LT$"),
|
|
'>' => self.path.temp_buf.push_str("$GT$"),
|
|
'(' => self.path.temp_buf.push_str("$LP$"),
|
|
')' => self.path.temp_buf.push_str("$RP$"),
|
|
',' => self.path.temp_buf.push_str("$C$"),
|
|
|
|
'-' | ':' | '.' if self.tcx.has_strict_asm_symbol_naming() => {
|
|
// NVPTX doesn't support these characters in symbol names.
|
|
self.path.temp_buf.push('$')
|
|
}
|
|
|
|
// '.' doesn't occur in types and functions, so reuse it
|
|
// for ':' and '-'
|
|
'-' | ':' => self.path.temp_buf.push('.'),
|
|
|
|
// Avoid crashing LLVM in certain (LTO-related) situations, see #60925.
|
|
'm' if self.path.temp_buf.ends_with(".llv") => self.path.temp_buf.push_str("$u6d$"),
|
|
|
|
// These are legal symbols
|
|
'a'..='z' | 'A'..='Z' | '0'..='9' | '_' | '.' | '$' => self.path.temp_buf.push(c),
|
|
|
|
_ => {
|
|
self.path.temp_buf.push('$');
|
|
for c in c.escape_unicode().skip(1) {
|
|
match c {
|
|
'{' => {}
|
|
'}' => self.path.temp_buf.push('$'),
|
|
c => self.path.temp_buf.push(c),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|