rust/crates/hir_ty/src/utils.rs
Florian Diebold 4ed5fe1554 Fix assoc type shorthand from method bounds
In code like this:
```rust
impl<T> Option<T> {
    fn as_deref(&self) -> T::Target where T: Deref {}
}
```

when trying to resolve the associated type `T::Target`, we were only
looking at the bounds on the impl (where the type parameter is defined),
but the method can add additional bounds that can also be used to refer
to associated types. Hence, when resolving such an associated type, it's
not enough to just know the type parameter T, we also need to know
exactly where we are currently.

This fixes #11364 (beta apparently switched some bounds around).
2022-02-03 13:15:02 +01:00

306 lines
11 KiB
Rust

//! Helper functions for working with def, which don't need to be a separate
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
use std::iter;
use base_db::CrateId;
use chalk_ir::{fold::Shift, BoundVar, DebruijnIndex};
use hir_def::{
db::DefDatabase,
generics::{
GenericParams, TypeParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget,
},
intern::Interned,
path::Path,
resolver::{HasResolver, TypeNs},
type_ref::{TraitBoundModifier, TypeRef},
GenericDefId, ItemContainerId, Lookup, TraitId, TypeAliasId, TypeParamId,
};
use hir_expand::name::{name, Name};
use rustc_hash::FxHashSet;
use smallvec::{smallvec, SmallVec};
use syntax::SmolStr;
use crate::{
db::HirDatabase, ChalkTraitId, Interner, Substitution, TraitRef, TraitRefExt, TyKind,
WhereClause,
};
pub(crate) fn fn_traits(db: &dyn DefDatabase, krate: CrateId) -> impl Iterator<Item = TraitId> {
[
db.lang_item(krate, SmolStr::new_inline("fn")),
db.lang_item(krate, SmolStr::new_inline("fn_mut")),
db.lang_item(krate, SmolStr::new_inline("fn_once")),
]
.into_iter()
.flatten()
.flat_map(|it| it.as_trait())
}
fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> {
let resolver = trait_.resolver(db);
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
let generic_params = db.generic_params(trait_.into());
let trait_self = generic_params.find_trait_self_param();
generic_params
.where_predicates
.iter()
.filter_map(|pred| match pred {
WherePredicate::ForLifetime { target, bound, .. }
| WherePredicate::TypeBound { target, bound } => match target {
WherePredicateTypeTarget::TypeRef(type_ref) => match &**type_ref {
TypeRef::Path(p) if p == &Path::from(name![Self]) => bound.as_path(),
_ => None,
},
WherePredicateTypeTarget::TypeParam(local_id) if Some(*local_id) == trait_self => {
bound.as_path()
}
_ => None,
},
WherePredicate::Lifetime { .. } => None,
})
.filter_map(|(path, bound_modifier)| match bound_modifier {
TraitBoundModifier::None => Some(path),
TraitBoundModifier::Maybe => None,
})
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) {
Some(TypeNs::TraitId(t)) => Some(t),
_ => None,
})
.collect()
}
fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec<TraitRef> {
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
let generic_params = db.generic_params(trait_ref.hir_trait_id().into());
let trait_self = match generic_params.find_trait_self_param() {
Some(p) => TypeParamId { parent: trait_ref.hir_trait_id().into(), local_id: p },
None => return Vec::new(),
};
db.generic_predicates_for_param(trait_self.parent, trait_self, None)
.iter()
.filter_map(|pred| {
pred.as_ref().filter_map(|pred| match pred.skip_binders() {
// FIXME: how to correctly handle higher-ranked bounds here?
WhereClause::Implemented(tr) => Some(
tr.clone()
.shifted_out_to(Interner, DebruijnIndex::ONE)
.expect("FIXME unexpected higher-ranked trait bound"),
),
_ => None,
})
})
.map(|pred| pred.substitute(Interner, &trait_ref.substitution))
.collect()
}
/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> {
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = smallvec![trait_];
let mut i = 0;
while let Some(&t) = result.get(i) {
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in direct_super_traits(db, t) {
if !result.contains(&tt) {
result.push(tt);
}
}
i += 1;
}
result
}
/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
/// super traits. The original trait ref will be included. So the difference to
/// `all_super_traits` is that we keep track of type parameters; for example if
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
/// `Self: OtherTrait<i32>`.
pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> SuperTraits {
SuperTraits { db, seen: iter::once(trait_ref.trait_id).collect(), stack: vec![trait_ref] }
}
pub(super) struct SuperTraits<'a> {
db: &'a dyn HirDatabase,
stack: Vec<TraitRef>,
seen: FxHashSet<ChalkTraitId>,
}
impl<'a> SuperTraits<'a> {
fn elaborate(&mut self, trait_ref: &TraitRef) {
let mut trait_refs = direct_super_trait_refs(self.db, trait_ref);
trait_refs.retain(|tr| !self.seen.contains(&tr.trait_id));
self.stack.extend(trait_refs);
}
}
impl<'a> Iterator for SuperTraits<'a> {
type Item = TraitRef;
fn next(&mut self) -> Option<Self::Item> {
if let Some(next) = self.stack.pop() {
self.elaborate(&next);
Some(next)
} else {
None
}
}
}
pub(super) fn associated_type_by_name_including_super_traits(
db: &dyn HirDatabase,
trait_ref: TraitRef,
name: &Name,
) -> Option<(TraitRef, TypeAliasId)> {
all_super_trait_refs(db, trait_ref).find_map(|t| {
let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?;
Some((t, assoc_type))
})
}
pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics {
let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def)));
Generics { def, params: db.generic_params(def), parent_generics }
}
#[derive(Debug)]
pub(crate) struct Generics {
def: GenericDefId,
pub(crate) params: Interned<GenericParams>,
parent_generics: Option<Box<Generics>>,
}
impl Generics {
pub(crate) fn iter<'a>(
&'a self,
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
self.parent_generics
.as_ref()
.into_iter()
.flat_map(|it| {
it.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
})
.chain(
self.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: self.def, local_id }, p)),
)
}
pub(crate) fn iter_parent<'a>(
&'a self,
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
self.parent_generics.as_ref().into_iter().flat_map(|it| {
it.params
.types
.iter()
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
})
}
pub(crate) fn len(&self) -> usize {
self.len_split().0
}
/// (total, parents, child)
pub(crate) fn len_split(&self) -> (usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
let child = self.params.types.len();
(parent + child, parent, child)
}
/// (parent total, self param, type param list, impl trait)
pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
let self_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::TraitSelf)
.count();
let list_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::TypeParamList)
.count();
let impl_trait_params = self
.params
.types
.iter()
.filter(|(_, p)| p.provenance == TypeParamProvenance::ArgumentImplTrait)
.count();
(parent, self_params, list_params, impl_trait_params)
}
pub(crate) fn param_idx(&self, param: TypeParamId) -> Option<usize> {
Some(self.find_param(param)?.0)
}
fn find_param(&self, param: TypeParamId) -> Option<(usize, &TypeParamData)> {
if param.parent == self.def {
let (idx, (_local_id, data)) = self
.params
.types
.iter()
.enumerate()
.find(|(_, (idx, _))| *idx == param.local_id)
.unwrap();
let (_total, parent_len, _child) = self.len_split();
Some((parent_len + idx, data))
} else {
self.parent_generics.as_ref().and_then(|g| g.find_param(param))
}
}
/// Returns a Substitution that replaces each parameter by a bound variable.
pub(crate) fn bound_vars_subst(&self, debruijn: DebruijnIndex) -> Substitution {
Substitution::from_iter(
Interner,
self.iter()
.enumerate()
.map(|(idx, _)| TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(Interner)),
)
}
/// Returns a Substitution that replaces each parameter by itself (i.e. `Ty::Param`).
pub(crate) fn type_params_subst(&self, db: &dyn HirDatabase) -> Substitution {
Substitution::from_iter(
Interner,
self.iter().map(|(id, _)| {
TyKind::Placeholder(crate::to_placeholder_idx(db, id)).intern(Interner)
}),
)
}
}
fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option<GenericDefId> {
let container = match def {
GenericDefId::FunctionId(it) => it.lookup(db).container,
GenericDefId::TypeAliasId(it) => it.lookup(db).container,
GenericDefId::ConstId(it) => it.lookup(db).container,
GenericDefId::EnumVariantId(it) => return Some(it.parent.into()),
GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None,
};
match container {
ItemContainerId::ImplId(it) => Some(it.into()),
ItemContainerId::TraitId(it) => Some(it.into()),
ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => None,
}
}