2018-11-19 17:18:36 +13:00

1225 lines
45 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/")]
#![feature(custom_attribute)]
#![feature(nll)]
#![allow(unused_attributes)]
#![recursion_limit="256"]
#[macro_use]
extern crate rustc;
#[macro_use]
extern crate log;
extern crate rustc_data_structures;
extern crate rustc_codegen_utils;
extern crate rustc_serialize;
extern crate rustc_target;
extern crate rustc_typeck;
#[macro_use]
extern crate syntax;
extern crate syntax_pos;
extern crate rls_data;
extern crate rls_span;
mod json_dumper;
mod dump_visitor;
#[macro_use]
mod span_utils;
mod sig;
use rustc::hir;
use rustc::hir::def::Def as HirDef;
use rustc::hir::Node;
use rustc::hir::def_id::{DefId, LOCAL_CRATE};
use rustc::middle::cstore::ExternCrate;
use rustc::session::config::{CrateType, Input, OutputType};
use rustc::ty::{self, TyCtxt};
use rustc_typeck::hir_ty_to_ty;
use rustc_codegen_utils::link::{filename_for_metadata, out_filename};
use std::cell::Cell;
use std::default::Default;
use std::env;
use std::fs::File;
use std::path::{Path, PathBuf};
use syntax::ast::{self, Attribute, DUMMY_NODE_ID, NodeId, PatKind};
use syntax::source_map::Spanned;
use syntax::parse::lexer::comments::strip_doc_comment_decoration;
use syntax::print::pprust;
use syntax::visit::{self, Visitor};
use syntax::print::pprust::{arg_to_string, ty_to_string};
use syntax::source_map::MacroAttribute;
use syntax_pos::*;
use json_dumper::JsonDumper;
use dump_visitor::DumpVisitor;
use span_utils::SpanUtils;
use rls_data::{Def, DefKind, ExternalCrateData, GlobalCrateId, MacroRef, Ref, RefKind, Relation,
RelationKind, SpanData, Impl, ImplKind};
use rls_data::config::Config;
pub struct SaveContext<'l, 'tcx: 'l> {
tcx: TyCtxt<'l, 'tcx, 'tcx>,
tables: &'l ty::TypeckTables<'tcx>,
analysis: &'l ty::CrateAnalysis,
span_utils: SpanUtils<'tcx>,
config: Config,
impl_counter: Cell<u32>,
}
#[derive(Debug)]
pub enum Data {
RefData(Ref),
DefData(Def),
RelationData(Relation, Impl),
}
impl<'l, 'tcx: 'l> SaveContext<'l, 'tcx> {
fn span_from_span(&self, span: Span) -> SpanData {
use rls_span::{Column, Row};
let cm = self.tcx.sess.source_map();
let start = cm.lookup_char_pos(span.lo());
let end = cm.lookup_char_pos(span.hi());
SpanData {
file_name: start.file.name.to_string().into(),
byte_start: span.lo().0,
byte_end: span.hi().0,
line_start: Row::new_one_indexed(start.line as u32),
line_end: Row::new_one_indexed(end.line as u32),
column_start: Column::new_one_indexed(start.col.0 as u32 + 1),
column_end: Column::new_one_indexed(end.col.0 as u32 + 1),
}
}
// Returns path to the compilation output (e.g. libfoo-12345678.rmeta)
pub fn compilation_output(&self, crate_name: &str) -> PathBuf {
let sess = &self.tcx.sess;
// Save-analysis is emitted per whole session, not per each crate type
let crate_type = sess.crate_types.borrow()[0];
let outputs = &*self.tcx.output_filenames(LOCAL_CRATE);
if outputs.outputs.contains_key(&OutputType::Metadata) {
filename_for_metadata(sess, crate_name, outputs)
} else if outputs.outputs.should_codegen() {
out_filename(sess, crate_type, outputs, crate_name)
} else {
// Otherwise it's only a DepInfo, in which case we return early and
// not even reach the analysis stage.
unreachable!()
}
}
// List external crates used by the current crate.
pub fn get_external_crates(&self) -> Vec<ExternalCrateData> {
let mut result = Vec::with_capacity(self.tcx.crates().len());
for &n in self.tcx.crates().iter() {
let span = match *self.tcx.extern_crate(n.as_def_id()) {
Some(ExternCrate { span, .. }) => span,
None => {
debug!("Skipping crate {}, no data", n);
continue;
}
};
let lo_loc = self.span_utils.sess.source_map().lookup_char_pos(span.lo());
result.push(ExternalCrateData {
// FIXME: change file_name field to PathBuf in rls-data
// https://github.com/nrc/rls-data/issues/7
file_name: self.span_utils.make_filename_string(&lo_loc.file),
num: n.as_u32(),
id: GlobalCrateId {
name: self.tcx.crate_name(n).to_string(),
disambiguator: self.tcx.crate_disambiguator(n).to_fingerprint().as_value(),
},
});
}
result
}
pub fn get_extern_item_data(&self, item: &ast::ForeignItem) -> Option<Data> {
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
match item.node {
ast::ForeignItemKind::Fn(ref decl, ref generics) => {
filter!(self.span_utils, item.ident.span);
Some(Data::DefData(Def {
kind: DefKind::ForeignFunction,
id: id_from_node_id(item.id, self),
span: self.span_from_span(item.ident.span),
name: item.ident.to_string(),
qualname,
value: make_signature(decl, generics),
parent: None,
children: vec![],
decl_id: None,
docs: self.docs_for_attrs(&item.attrs),
sig: sig::foreign_item_signature(item, self),
attributes: lower_attributes(item.attrs.clone(), self),
}))
}
ast::ForeignItemKind::Static(ref ty, _) => {
filter!(self.span_utils, item.ident.span);
let id = ::id_from_node_id(item.id, self);
let span = self.span_from_span(item.ident.span);
Some(Data::DefData(Def {
kind: DefKind::ForeignStatic,
id,
span,
name: item.ident.to_string(),
qualname,
value: ty_to_string(ty),
parent: None,
children: vec![],
decl_id: None,
docs: self.docs_for_attrs(&item.attrs),
sig: sig::foreign_item_signature(item, self),
attributes: lower_attributes(item.attrs.clone(), self),
}))
}
// FIXME(plietar): needs a new DefKind in rls-data
ast::ForeignItemKind::Ty => None,
ast::ForeignItemKind::Macro(..) => None,
}
}
pub fn get_item_data(&self, item: &ast::Item) -> Option<Data> {
match item.node {
ast::ItemKind::Fn(ref decl, .., ref generics, _) => {
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
filter!(self.span_utils, item.ident.span);
Some(Data::DefData(Def {
kind: DefKind::Function,
id: id_from_node_id(item.id, self),
span: self.span_from_span(item.ident.span),
name: item.ident.to_string(),
qualname,
value: make_signature(decl, generics),
parent: None,
children: vec![],
decl_id: None,
docs: self.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, self),
attributes: lower_attributes(item.attrs.clone(), self),
}))
}
ast::ItemKind::Static(ref typ, ..) => {
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
filter!(self.span_utils, item.ident.span);
let id = id_from_node_id(item.id, self);
let span = self.span_from_span(item.ident.span);
Some(Data::DefData(Def {
kind: DefKind::Static,
id,
span,
name: item.ident.to_string(),
qualname,
value: ty_to_string(&typ),
parent: None,
children: vec![],
decl_id: None,
docs: self.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, self),
attributes: lower_attributes(item.attrs.clone(), self),
}))
}
ast::ItemKind::Const(ref typ, _) => {
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
filter!(self.span_utils, item.ident.span);
let id = id_from_node_id(item.id, self);
let span = self.span_from_span(item.ident.span);
Some(Data::DefData(Def {
kind: DefKind::Const,
id,
span,
name: item.ident.to_string(),
qualname,
value: ty_to_string(typ),
parent: None,
children: vec![],
decl_id: None,
docs: self.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, self),
attributes: lower_attributes(item.attrs.clone(), self),
}))
}
ast::ItemKind::Mod(ref m) => {
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
let cm = self.tcx.sess.source_map();
let filename = cm.span_to_filename(m.inner);
filter!(self.span_utils, item.ident.span);
Some(Data::DefData(Def {
kind: DefKind::Mod,
id: id_from_node_id(item.id, self),
name: item.ident.to_string(),
qualname,
span: self.span_from_span(item.ident.span),
value: filename.to_string(),
parent: None,
children: m.items
.iter()
.map(|i| id_from_node_id(i.id, self))
.collect(),
decl_id: None,
docs: self.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, self),
attributes: lower_attributes(item.attrs.clone(), self),
}))
}
ast::ItemKind::Enum(ref def, _) => {
let name = item.ident.to_string();
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
filter!(self.span_utils, item.ident.span);
let variants_str = def.variants
.iter()
.map(|v| v.node.ident.to_string())
.collect::<Vec<_>>()
.join(", ");
let value = format!("{}::{{{}}}", name, variants_str);
Some(Data::DefData(Def {
kind: DefKind::Enum,
id: id_from_node_id(item.id, self),
span: self.span_from_span(item.ident.span),
name,
qualname,
value,
parent: None,
children: def.variants
.iter()
.map(|v| id_from_node_id(v.node.data.id(), self))
.collect(),
decl_id: None,
docs: self.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, self),
attributes: lower_attributes(item.attrs.clone(), self),
}))
}
ast::ItemKind::Impl(.., ref trait_ref, ref typ, ref impls) => {
if let ast::TyKind::Path(None, ref path) = typ.node {
// Common case impl for a struct or something basic.
if generated_code(path.span) {
return None;
}
let sub_span = path.segments.last().unwrap().ident.span;
filter!(self.span_utils, sub_span);
let impl_id = self.next_impl_id();
let span = self.span_from_span(sub_span);
let type_data = self.lookup_ref_id(typ.id);
type_data.map(|type_data| {
Data::RelationData(Relation {
kind: RelationKind::Impl {
id: impl_id,
},
span: span.clone(),
from: id_from_def_id(type_data),
to: trait_ref
.as_ref()
.and_then(|t| self.lookup_ref_id(t.ref_id))
.map(id_from_def_id)
.unwrap_or_else(|| null_id()),
},
Impl {
id: impl_id,
kind: match *trait_ref {
Some(_) => ImplKind::Direct,
None => ImplKind::Inherent,
},
span: span,
value: String::new(),
parent: None,
children: impls
.iter()
.map(|i| id_from_node_id(i.id, self))
.collect(),
docs: String::new(),
sig: None,
attributes: vec![],
})
})
} else {
None
}
}
_ => {
// FIXME
bug!();
}
}
}
pub fn get_field_data(&self, field: &ast::StructField, scope: NodeId) -> Option<Def> {
if let Some(ident) = field.ident {
let name = ident.to_string();
let qualname = format!("::{}::{}", self.tcx.node_path_str(scope), ident);
filter!(self.span_utils, ident.span);
let def_id = self.tcx.hir.local_def_id(field.id);
let typ = self.tcx.type_of(def_id).to_string();
let id = id_from_node_id(field.id, self);
let span = self.span_from_span(ident.span);
Some(Def {
kind: DefKind::Field,
id,
span,
name,
qualname,
value: typ,
parent: Some(id_from_node_id(scope, self)),
children: vec![],
decl_id: None,
docs: self.docs_for_attrs(&field.attrs),
sig: sig::field_signature(field, self),
attributes: lower_attributes(field.attrs.clone(), self),
})
} else {
None
}
}
// FIXME would be nice to take a MethodItem here, but the ast provides both
// trait and impl flavours, so the caller must do the disassembly.
pub fn get_method_data(&self, id: ast::NodeId, ident: ast::Ident, span: Span) -> Option<Def> {
// The qualname for a method is the trait name or name of the struct in an impl in
// which the method is declared in, followed by the method's name.
let (qualname, parent_scope, decl_id, docs, attributes) =
match self.tcx.impl_of_method(self.tcx.hir.local_def_id(id)) {
Some(impl_id) => match self.tcx.hir.get_if_local(impl_id) {
Some(Node::Item(item)) => match item.node {
hir::ItemKind::Impl(.., ref ty, _) => {
let mut qualname = String::from("<");
qualname.push_str(&self.tcx.hir.node_to_pretty_string(ty.id));
let trait_id = self.tcx.trait_id_of_impl(impl_id);
let mut decl_id = None;
let mut docs = String::new();
let mut attrs = vec![];
if let Some(Node::ImplItem(item)) = self.tcx.hir.find(id) {
docs = self.docs_for_attrs(&item.attrs);
attrs = item.attrs.to_vec();
}
if let Some(def_id) = trait_id {
// A method in a trait impl.
qualname.push_str(" as ");
qualname.push_str(&self.tcx.item_path_str(def_id));
self.tcx
.associated_items(def_id)
.find(|item| item.ident.name == ident.name)
.map(|item| decl_id = Some(item.def_id));
}
qualname.push_str(">");
(qualname, trait_id, decl_id, docs, attrs)
}
_ => {
span_bug!(
span,
"Container {:?} for method {} not an impl?",
impl_id,
id
);
}
},
r => {
span_bug!(
span,
"Container {:?} for method {} is not a node item {:?}",
impl_id,
id,
r
);
}
},
None => match self.tcx.trait_of_item(self.tcx.hir.local_def_id(id)) {
Some(def_id) => {
let mut docs = String::new();
let mut attrs = vec![];
if let Some(Node::TraitItem(item)) = self.tcx.hir.find(id) {
docs = self.docs_for_attrs(&item.attrs);
attrs = item.attrs.to_vec();
}
(
format!("::{}", self.tcx.item_path_str(def_id)),
Some(def_id),
None,
docs,
attrs,
)
}
None => {
debug!("Could not find container for method {} at {:?}", id, span);
// This is not necessarily a bug, if there was a compilation error,
// the tables we need might not exist.
return None;
}
},
};
let qualname = format!("{}::{}", qualname, ident.name);
filter!(self.span_utils, ident.span);
Some(Def {
kind: DefKind::Method,
id: id_from_node_id(id, self),
span: self.span_from_span(ident.span),
name: ident.name.to_string(),
qualname,
// FIXME you get better data here by using the visitor.
value: String::new(),
parent: parent_scope.map(|id| id_from_def_id(id)),
children: vec![],
decl_id: decl_id.map(|id| id_from_def_id(id)),
docs,
sig: None,
attributes: lower_attributes(attributes, self),
})
}
pub fn get_trait_ref_data(&self, trait_ref: &ast::TraitRef) -> Option<Ref> {
self.lookup_ref_id(trait_ref.ref_id).and_then(|def_id| {
let span = trait_ref.path.span;
if generated_code(span) {
return None;
}
let sub_span = trait_ref.path.segments.last().unwrap().ident.span;
filter!(self.span_utils, sub_span);
let span = self.span_from_span(sub_span);
Some(Ref {
kind: RefKind::Type,
span,
ref_id: id_from_def_id(def_id),
})
})
}
pub fn get_expr_data(&self, expr: &ast::Expr) -> Option<Data> {
let hir_node = self.tcx.hir.expect_expr(expr.id);
let ty = self.tables.expr_ty_adjusted_opt(&hir_node);
if ty.is_none() || ty.unwrap().sty == ty::Error {
return None;
}
match expr.node {
ast::ExprKind::Field(ref sub_ex, ident) => {
let hir_node = match self.tcx.hir.find(sub_ex.id) {
Some(Node::Expr(expr)) => expr,
_ => {
debug!(
"Missing or weird node for sub-expression {} in {:?}",
sub_ex.id,
expr
);
return None;
}
};
match self.tables.expr_ty_adjusted(&hir_node).sty {
ty::Adt(def, _) if !def.is_enum() => {
let variant = &def.non_enum_variant();
let index = self.tcx.find_field_index(ident, variant).unwrap();
filter!(self.span_utils, ident.span);
let span = self.span_from_span(ident.span);
return Some(Data::RefData(Ref {
kind: RefKind::Variable,
span,
ref_id: id_from_def_id(variant.fields[index].did),
}));
}
ty::Tuple(..) => None,
_ => {
debug!("Expected struct or union type, found {:?}", ty);
None
}
}
}
ast::ExprKind::Struct(ref path, ..) => {
match self.tables.expr_ty_adjusted(&hir_node).sty {
ty::Adt(def, _) if !def.is_enum() => {
let sub_span = path.segments.last().unwrap().ident.span;
filter!(self.span_utils, sub_span);
let span = self.span_from_span(sub_span);
Some(Data::RefData(Ref {
kind: RefKind::Type,
span,
ref_id: id_from_def_id(def.did),
}))
}
_ => {
// FIXME ty could legitimately be an enum, but then we will fail
// later if we try to look up the fields.
debug!("expected struct or union, found {:?}", ty);
None
}
}
}
ast::ExprKind::MethodCall(ref seg, ..) => {
let expr_hir_id = self.tcx.hir.definitions().node_to_hir_id(expr.id);
let method_id = match self.tables.type_dependent_defs().get(expr_hir_id) {
Some(id) => id.def_id(),
None => {
debug!("Could not resolve method id for {:?}", expr);
return None;
}
};
let (def_id, decl_id) = match self.tcx.associated_item(method_id).container {
ty::ImplContainer(_) => (Some(method_id), None),
ty::TraitContainer(_) => (None, Some(method_id)),
};
let sub_span = seg.ident.span;
filter!(self.span_utils, sub_span);
let span = self.span_from_span(sub_span);
Some(Data::RefData(Ref {
kind: RefKind::Function,
span,
ref_id: def_id
.or(decl_id)
.map(|id| id_from_def_id(id))
.unwrap_or_else(|| null_id()),
}))
}
ast::ExprKind::Path(_, ref path) => {
self.get_path_data(expr.id, path).map(|d| Data::RefData(d))
}
_ => {
// FIXME
bug!();
}
}
}
pub fn get_path_def(&self, id: NodeId) -> HirDef {
match self.tcx.hir.get(id) {
Node::TraitRef(tr) => tr.path.def,
Node::Item(&hir::Item {
node: hir::ItemKind::Use(ref path, _),
..
}) |
Node::Visibility(&Spanned {
node: hir::VisibilityKind::Restricted { ref path, .. }, .. }) => path.def,
Node::PathSegment(seg) => match seg.def {
Some(def) => def,
None => HirDef::Err,
},
Node::Expr(&hir::Expr {
node: hir::ExprKind::Struct(ref qpath, ..),
..
}) |
Node::Expr(&hir::Expr {
node: hir::ExprKind::Path(ref qpath),
..
}) |
Node::Pat(&hir::Pat {
node: hir::PatKind::Path(ref qpath),
..
}) |
Node::Pat(&hir::Pat {
node: hir::PatKind::Struct(ref qpath, ..),
..
}) |
Node::Pat(&hir::Pat {
node: hir::PatKind::TupleStruct(ref qpath, ..),
..
}) => {
let hir_id = self.tcx.hir.node_to_hir_id(id);
self.tables.qpath_def(qpath, hir_id)
}
Node::Binding(&hir::Pat {
node: hir::PatKind::Binding(_, canonical_id, ..),
..
}) => HirDef::Local(canonical_id),
Node::Ty(ty) => if let hir::Ty {
node: hir::TyKind::Path(ref qpath),
..
} = *ty
{
match *qpath {
hir::QPath::Resolved(_, ref path) => path.def,
hir::QPath::TypeRelative(..) => {
let ty = hir_ty_to_ty(self.tcx, ty);
if let ty::Projection(proj) = ty.sty {
return HirDef::AssociatedTy(proj.item_def_id);
}
HirDef::Err
}
}
} else {
HirDef::Err
},
_ => HirDef::Err,
}
}
pub fn get_path_data(&self, id: NodeId, path: &ast::Path) -> Option<Ref> {
path.segments
.last()
.and_then(|seg| {
self.get_path_segment_data(seg)
.or_else(|| self.get_path_segment_data_with_id(seg, id))
})
}
pub fn get_path_segment_data(&self, path_seg: &ast::PathSegment) -> Option<Ref> {
self.get_path_segment_data_with_id(path_seg, path_seg.id)
}
fn get_path_segment_data_with_id(
&self,
path_seg: &ast::PathSegment,
id: NodeId,
) -> Option<Ref> {
// Returns true if the path is function type sugar, e.g., `Fn(A) -> B`.
fn fn_type(seg: &ast::PathSegment) -> bool {
if let Some(ref generic_args) = seg.args {
if let ast::GenericArgs::Parenthesized(_) = **generic_args {
return true;
}
}
false
}
if id == DUMMY_NODE_ID {
return None;
}
let def = self.get_path_def(id);
let span = path_seg.ident.span;
filter!(self.span_utils, span);
let span = self.span_from_span(span);
match def {
HirDef::Upvar(id, ..) | HirDef::Local(id) => {
Some(Ref {
kind: RefKind::Variable,
span,
ref_id: id_from_node_id(id, self),
})
}
HirDef::Static(..) |
HirDef::Const(..) |
HirDef::AssociatedConst(..) |
HirDef::VariantCtor(..) => {
Some(Ref {
kind: RefKind::Variable,
span,
ref_id: id_from_def_id(def.def_id()),
})
}
HirDef::Trait(def_id) if fn_type(path_seg) => {
Some(Ref {
kind: RefKind::Type,
span,
ref_id: id_from_def_id(def_id),
})
}
HirDef::Struct(def_id) |
HirDef::Variant(def_id, ..) |
HirDef::Union(def_id) |
HirDef::Enum(def_id) |
HirDef::TyAlias(def_id) |
HirDef::ForeignTy(def_id) |
HirDef::TraitAlias(def_id) |
HirDef::AssociatedExistential(def_id) |
HirDef::AssociatedTy(def_id) |
HirDef::Trait(def_id) |
HirDef::Existential(def_id) |
HirDef::TyParam(def_id) => {
Some(Ref {
kind: RefKind::Type,
span,
ref_id: id_from_def_id(def_id),
})
}
HirDef::StructCtor(def_id, _) => {
// This is a reference to a tuple struct where the def_id points
// to an invisible constructor function. That is not a very useful
// def, so adjust to point to the tuple struct itself.
let parent_def_id = self.tcx.parent_def_id(def_id).unwrap();
Some(Ref {
kind: RefKind::Type,
span,
ref_id: id_from_def_id(parent_def_id),
})
}
HirDef::Method(decl_id) => {
let def_id = if decl_id.is_local() {
let ti = self.tcx.associated_item(decl_id);
self.tcx
.associated_items(ti.container.id())
.find(|item| item.ident.name == ti.ident.name &&
item.defaultness.has_value())
.map(|item| item.def_id)
} else {
None
};
Some(Ref {
kind: RefKind::Function,
span,
ref_id: id_from_def_id(def_id.unwrap_or(decl_id)),
})
}
HirDef::Fn(def_id) => {
Some(Ref {
kind: RefKind::Function,
span,
ref_id: id_from_def_id(def_id),
})
}
HirDef::Mod(def_id) => {
Some(Ref {
kind: RefKind::Mod,
span,
ref_id: id_from_def_id(def_id),
})
}
HirDef::PrimTy(..) |
HirDef::SelfTy(..) |
HirDef::Label(..) |
HirDef::Macro(..) |
HirDef::ToolMod |
HirDef::NonMacroAttr(..) |
HirDef::SelfCtor(..) |
HirDef::Err => None,
}
}
pub fn get_field_ref_data(
&self,
field_ref: &ast::Field,
variant: &ty::VariantDef,
) -> Option<Ref> {
filter!(self.span_utils, field_ref.ident.span);
self.tcx.find_field_index(field_ref.ident, variant).map(|index| {
let span = self.span_from_span(field_ref.ident.span);
Ref {
kind: RefKind::Variable,
span,
ref_id: id_from_def_id(variant.fields[index].did),
}
})
}
/// Attempt to return MacroRef for any AST node.
///
/// For a given piece of AST defined by the supplied Span and NodeId,
/// returns None if the node is not macro-generated or the span is malformed,
/// else uses the expansion callsite and callee to return some MacroRef.
pub fn get_macro_use_data(&self, span: Span) -> Option<MacroRef> {
if !generated_code(span) {
return None;
}
// Note we take care to use the source callsite/callee, to handle
// nested expansions and ensure we only generate data for source-visible
// macro uses.
let callsite = span.source_callsite();
let callsite_span = self.span_from_span(callsite);
let callee = span.source_callee()?;
let callee_span = callee.def_site?;
// Ignore attribute macros, their spans are usually mangled
if let MacroAttribute(_) = callee.format {
return None;
}
// If the callee is an imported macro from an external crate, need to get
// the source span and name from the session, as their spans are localized
// when read in, and no longer correspond to the source.
if let Some(mac) = self.tcx
.sess
.imported_macro_spans
.borrow()
.get(&callee_span)
{
let &(ref mac_name, mac_span) = mac;
let mac_span = self.span_from_span(mac_span);
return Some(MacroRef {
span: callsite_span,
qualname: mac_name.clone(), // FIXME: generate the real qualname
callee_span: mac_span,
});
}
let callee_span = self.span_from_span(callee_span);
Some(MacroRef {
span: callsite_span,
qualname: callee.format.name().to_string(), // FIXME: generate the real qualname
callee_span,
})
}
fn lookup_ref_id(&self, ref_id: NodeId) -> Option<DefId> {
match self.get_path_def(ref_id) {
HirDef::PrimTy(_) | HirDef::SelfTy(..) | HirDef::Err => None,
def => Some(def.def_id()),
}
}
fn docs_for_attrs(&self, attrs: &[Attribute]) -> String {
let mut result = String::new();
for attr in attrs {
if attr.check_name("doc") {
if let Some(val) = attr.value_str() {
if attr.is_sugared_doc {
result.push_str(&strip_doc_comment_decoration(&val.as_str()));
} else {
result.push_str(&val.as_str());
}
result.push('\n');
} else if let Some(meta_list) = attr.meta_item_list() {
meta_list.into_iter()
.filter(|it| it.check_name("include"))
.filter_map(|it| it.meta_item_list().map(|l| l.to_owned()))
.flat_map(|it| it)
.filter(|meta| meta.check_name("contents"))
.filter_map(|meta| meta.value_str())
.for_each(|val| {
result.push_str(&val.as_str());
result.push('\n');
});
}
}
}
if !self.config.full_docs {
if let Some(index) = result.find("\n\n") {
result.truncate(index);
}
}
result
}
fn next_impl_id(&self) -> u32 {
let next = self.impl_counter.get();
self.impl_counter.set(next + 1);
next
}
}
fn make_signature(decl: &ast::FnDecl, generics: &ast::Generics) -> String {
let mut sig = "fn ".to_owned();
if !generics.params.is_empty() {
sig.push('<');
sig.push_str(&generics
.params
.iter()
.map(|param| param.ident.to_string())
.collect::<Vec<_>>()
.join(", "));
sig.push_str("> ");
}
sig.push('(');
sig.push_str(&decl.inputs
.iter()
.map(arg_to_string)
.collect::<Vec<_>>()
.join(", "));
sig.push(')');
match decl.output {
ast::FunctionRetTy::Default(_) => sig.push_str(" -> ()"),
ast::FunctionRetTy::Ty(ref t) => sig.push_str(&format!(" -> {}", ty_to_string(t))),
}
sig
}
// An AST visitor for collecting paths (e.g., the names of structs) and formal
// variables (idents) from patterns.
struct PathCollector<'l> {
collected_paths: Vec<(NodeId, &'l ast::Path)>,
collected_idents: Vec<(NodeId, ast::Ident, ast::Mutability)>,
}
impl<'l> PathCollector<'l> {
fn new() -> PathCollector<'l> {
PathCollector {
collected_paths: vec![],
collected_idents: vec![],
}
}
}
impl<'l, 'a: 'l> Visitor<'a> for PathCollector<'l> {
fn visit_pat(&mut self, p: &'a ast::Pat) {
match p.node {
PatKind::Struct(ref path, ..) => {
self.collected_paths.push((p.id, path));
}
PatKind::TupleStruct(ref path, ..) | PatKind::Path(_, ref path) => {
self.collected_paths.push((p.id, path));
}
PatKind::Ident(bm, ident, _) => {
debug!(
"PathCollector, visit ident in pat {}: {:?} {:?}",
ident,
p.span,
ident.span
);
let immut = match bm {
// Even if the ref is mut, you can't change the ref, only
// the data pointed at, so showing the initialising expression
// is still worthwhile.
ast::BindingMode::ByRef(_) => ast::Mutability::Immutable,
ast::BindingMode::ByValue(mt) => mt,
};
self.collected_idents
.push((p.id, ident, immut));
}
_ => {}
}
visit::walk_pat(self, p);
}
}
/// Defines what to do with the results of saving the analysis.
pub trait SaveHandler {
fn save<'l, 'tcx>(
&mut self,
save_ctxt: SaveContext<'l, 'tcx>,
krate: &ast::Crate,
cratename: &str,
input: &'l Input,
);
}
/// Dump the save-analysis results to a file.
pub struct DumpHandler<'a> {
odir: Option<&'a Path>,
cratename: String,
}
impl<'a> DumpHandler<'a> {
pub fn new(odir: Option<&'a Path>, cratename: &str) -> DumpHandler<'a> {
DumpHandler {
odir,
cratename: cratename.to_owned(),
}
}
fn output_file(&self, ctx: &SaveContext) -> File {
let sess = &ctx.tcx.sess;
let file_name = match ctx.config.output_file {
Some(ref s) => PathBuf::from(s),
None => {
let mut root_path = match self.odir {
Some(val) => val.join("save-analysis"),
None => PathBuf::from("save-analysis-temp"),
};
if let Err(e) = std::fs::create_dir_all(&root_path) {
error!("Could not create directory {}: {}", root_path.display(), e);
}
let executable = sess.crate_types
.borrow()
.iter()
.any(|ct| *ct == CrateType::Executable);
let mut out_name = if executable {
String::new()
} else {
"lib".to_owned()
};
out_name.push_str(&self.cratename);
out_name.push_str(&sess.opts.cg.extra_filename);
out_name.push_str(".json");
root_path.push(&out_name);
root_path
}
};
info!("Writing output to {}", file_name.display());
let output_file = File::create(&file_name).unwrap_or_else(
|e| sess.fatal(&format!("Could not open {}: {}", file_name.display(), e)),
);
output_file
}
}
impl<'a> SaveHandler for DumpHandler<'a> {
fn save<'l, 'tcx>(
&mut self,
save_ctxt: SaveContext<'l, 'tcx>,
krate: &ast::Crate,
cratename: &str,
input: &'l Input,
) {
let output = &mut self.output_file(&save_ctxt);
let mut dumper = JsonDumper::new(output, save_ctxt.config.clone());
let mut visitor = DumpVisitor::new(save_ctxt, &mut dumper);
visitor.dump_crate_info(cratename, krate);
visitor.dump_compilation_options(input, cratename);
visit::walk_crate(&mut visitor, krate);
}
}
/// Call a callback with the results of save-analysis.
pub struct CallbackHandler<'b> {
pub callback: &'b mut dyn FnMut(&rls_data::Analysis),
}
impl<'b> SaveHandler for CallbackHandler<'b> {
fn save<'l, 'tcx>(
&mut self,
save_ctxt: SaveContext<'l, 'tcx>,
krate: &ast::Crate,
cratename: &str,
input: &'l Input,
) {
// We're using the JsonDumper here because it has the format of the
// save-analysis results that we will pass to the callback. IOW, we are
// using the JsonDumper to collect the save-analysis results, but not
// actually to dump them to a file. This is all a bit convoluted and
// there is certainly a simpler design here trying to get out (FIXME).
let mut dumper = JsonDumper::with_callback(self.callback, save_ctxt.config.clone());
let mut visitor = DumpVisitor::new(save_ctxt, &mut dumper);
visitor.dump_crate_info(cratename, krate);
visitor.dump_compilation_options(input, cratename);
visit::walk_crate(&mut visitor, krate);
}
}
pub fn process_crate<'l, 'tcx, H: SaveHandler>(
tcx: TyCtxt<'l, 'tcx, 'tcx>,
krate: &ast::Crate,
analysis: &'l ty::CrateAnalysis,
cratename: &str,
input: &'l Input,
config: Option<Config>,
mut handler: H,
) {
tcx.dep_graph.with_ignore(|| {
assert!(analysis.glob_map.is_some());
info!("Dumping crate {}", cratename);
let save_ctxt = SaveContext {
tcx,
tables: &ty::TypeckTables::empty(None),
analysis,
span_utils: SpanUtils::new(&tcx.sess),
config: find_config(config),
impl_counter: Cell::new(0),
};
handler.save(save_ctxt, krate, cratename, input)
})
}
fn find_config(supplied: Option<Config>) -> Config {
if let Some(config) = supplied {
return config;
}
match env::var_os("RUST_SAVE_ANALYSIS_CONFIG") {
Some(config_string) => rustc_serialize::json::decode(config_string.to_str().unwrap())
.expect("Could not deserialize save-analysis config"),
None => Config::default(),
}
}
// Utility functions for the module.
// Helper function to escape quotes in a string
fn escape(s: String) -> String {
s.replace("\"", "\"\"")
}
// Helper function to determine if a span came from a
// macro expansion or syntax extension.
fn generated_code(span: Span) -> bool {
span.ctxt() != NO_EXPANSION || span.is_dummy()
}
// DefId::index is a newtype and so the JSON serialisation is ugly. Therefore
// we use our own Id which is the same, but without the newtype.
fn id_from_def_id(id: DefId) -> rls_data::Id {
rls_data::Id {
krate: id.krate.as_u32(),
index: id.index.as_raw_u32(),
}
}
fn id_from_node_id(id: NodeId, scx: &SaveContext) -> rls_data::Id {
let def_id = scx.tcx.hir.opt_local_def_id(id);
def_id.map(|id| id_from_def_id(id)).unwrap_or_else(|| {
// Create a *fake* `DefId` out of a `NodeId` by subtracting the `NodeId`
// out of the maximum u32 value. This will work unless you have *billions*
// of definitions in a single crate (very unlikely to actually happen).
rls_data::Id {
krate: LOCAL_CRATE.as_u32(),
index: !id.as_u32(),
}
})
}
fn null_id() -> rls_data::Id {
rls_data::Id {
krate: u32::max_value(),
index: u32::max_value(),
}
}
fn lower_attributes(attrs: Vec<Attribute>, scx: &SaveContext) -> Vec<rls_data::Attribute> {
attrs.into_iter()
// Only retain real attributes. Doc comments are lowered separately.
.filter(|attr| attr.path != "doc")
.map(|mut attr| {
// Remove the surrounding '#[..]' or '#![..]' of the pretty printed
// attribute. First normalize all inner attribute (#![..]) to outer
// ones (#[..]), then remove the two leading and the one trailing character.
attr.style = ast::AttrStyle::Outer;
let value = pprust::attribute_to_string(&attr);
// This str slicing works correctly, because the leading and trailing characters
// are in the ASCII range and thus exactly one byte each.
let value = value[2..value.len()-1].to_string();
rls_data::Attribute {
value,
span: scx.span_from_span(attr.span),
}
}).collect()
}