267 lines
6.6 KiB
Rust
267 lines
6.6 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
|
|
The `Ord` and `Eq` comparison traits
|
|
|
|
This module contains the definition of both `Ord` and `Eq` which define
|
|
the common interfaces for doing comparison. Both are language items
|
|
that the compiler uses to implement the comparison operators. Rust code
|
|
may implement `Ord` to overload the `<`, `<=`, `>`, and `>=` operators,
|
|
and `Eq` to overload the `==` and `!=` operators.
|
|
|
|
*/
|
|
|
|
/**
|
|
* Trait for values that can be compared for equality and inequality.
|
|
*
|
|
* This trait allows partial equality, where types can be unordered instead of strictly equal or
|
|
* unequal. For example, with the built-in floating-point types `a == b` and `a != b` will both
|
|
* evaluate to false if either `a` or `b` is NaN (cf. IEEE 754-2008 section 5.11).
|
|
*
|
|
* Eventually, this will be implemented by default for types that implement `TotalEq`.
|
|
*/
|
|
#[lang="eq"]
|
|
pub trait Eq {
|
|
fn eq(&self, other: &Self) -> bool;
|
|
fn ne(&self, other: &Self) -> bool;
|
|
}
|
|
|
|
/// Trait for equality comparisons where `a == b` and `a != b` are strict inverses.
|
|
pub trait TotalEq {
|
|
fn equals(&self, other: &Self) -> bool;
|
|
}
|
|
|
|
macro_rules! totaleq_impl(
|
|
($t:ty) => {
|
|
impl TotalEq for $t {
|
|
#[inline(always)]
|
|
fn equals(&self, other: &$t) -> bool { *self == *other }
|
|
}
|
|
}
|
|
)
|
|
|
|
totaleq_impl!(bool)
|
|
|
|
totaleq_impl!(u8)
|
|
totaleq_impl!(u16)
|
|
totaleq_impl!(u32)
|
|
totaleq_impl!(u64)
|
|
|
|
totaleq_impl!(i8)
|
|
totaleq_impl!(i16)
|
|
totaleq_impl!(i32)
|
|
totaleq_impl!(i64)
|
|
|
|
totaleq_impl!(int)
|
|
totaleq_impl!(uint)
|
|
|
|
totaleq_impl!(char)
|
|
|
|
/// Trait for testing approximate equality
|
|
pub trait ApproxEq<Eps> {
|
|
fn approx_epsilon() -> Eps;
|
|
fn approx_eq(&self, other: &Self) -> bool;
|
|
fn approx_eq_eps(&self, other: &Self, approx_epsilon: &Eps) -> bool;
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
pub enum Ordering { Less = -1, Equal = 0, Greater = 1 }
|
|
|
|
/// Trait for types that form a total order
|
|
pub trait TotalOrd: TotalEq {
|
|
fn cmp(&self, other: &Self) -> Ordering;
|
|
}
|
|
|
|
impl TotalOrd for Ordering {
|
|
#[inline(always)]
|
|
fn cmp(&self, other: &Ordering) -> Ordering {
|
|
(*self as int).cmp(&(*other as int))
|
|
}
|
|
}
|
|
|
|
impl Ord for Ordering {
|
|
#[inline(always)]
|
|
fn lt(&self, other: &Ordering) -> bool { (*self as int) < (*other as int) }
|
|
#[inline(always)]
|
|
fn le(&self, other: &Ordering) -> bool { (*self as int) <= (*other as int) }
|
|
#[inline(always)]
|
|
fn gt(&self, other: &Ordering) -> bool { (*self as int) > (*other as int) }
|
|
#[inline(always)]
|
|
fn ge(&self, other: &Ordering) -> bool { (*self as int) >= (*other as int) }
|
|
}
|
|
|
|
macro_rules! totalord_impl(
|
|
($t:ty) => {
|
|
impl TotalOrd for $t {
|
|
#[inline(always)]
|
|
fn cmp(&self, other: &$t) -> Ordering {
|
|
if *self < *other { Less }
|
|
else if *self > *other { Greater }
|
|
else { Equal }
|
|
}
|
|
}
|
|
}
|
|
)
|
|
|
|
totalord_impl!(u8)
|
|
totalord_impl!(u16)
|
|
totalord_impl!(u32)
|
|
totalord_impl!(u64)
|
|
|
|
totalord_impl!(i8)
|
|
totalord_impl!(i16)
|
|
totalord_impl!(i32)
|
|
totalord_impl!(i64)
|
|
|
|
totalord_impl!(int)
|
|
totalord_impl!(uint)
|
|
|
|
totalord_impl!(char)
|
|
|
|
pub fn cmp2<A:TotalOrd,B:TotalOrd>(
|
|
a1: &A, b1: &B,
|
|
a2: &A, b2: &B) -> Ordering
|
|
{
|
|
//! Compares (a1, b1) against (a2, b2), where the a values are more significant.
|
|
|
|
match a1.cmp(a2) {
|
|
Less => Less,
|
|
Greater => Greater,
|
|
Equal => b1.cmp(b2)
|
|
}
|
|
}
|
|
|
|
/**
|
|
Return `o1` if it is not `Equal`, otherwise `o2`. Simulates the
|
|
lexical ordering on a type `(int, int)`.
|
|
*/
|
|
// used in deriving code in libsyntax
|
|
#[inline(always)]
|
|
pub fn lexical_ordering(o1: Ordering, o2: Ordering) -> Ordering {
|
|
match o1 {
|
|
Equal => o2,
|
|
_ => o1
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Trait for values that can be compared for a sort-order.
|
|
*
|
|
* Eventually this may be simplified to only require
|
|
* an `le` method, with the others generated from
|
|
* default implementations. However it should remain
|
|
* possible to implement the others separately, for
|
|
* compatibility with floating-point NaN semantics
|
|
* (cf. IEEE 754-2008 section 5.11).
|
|
*/
|
|
#[lang="ord"]
|
|
pub trait Ord {
|
|
fn lt(&self, other: &Self) -> bool;
|
|
fn le(&self, other: &Self) -> bool;
|
|
fn ge(&self, other: &Self) -> bool;
|
|
fn gt(&self, other: &Self) -> bool;
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn lt<T:Ord>(v1: &T, v2: &T) -> bool {
|
|
(*v1).lt(v2)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn le<T:Ord>(v1: &T, v2: &T) -> bool {
|
|
(*v1).le(v2)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn eq<T:Eq>(v1: &T, v2: &T) -> bool {
|
|
(*v1).eq(v2)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn ne<T:Eq>(v1: &T, v2: &T) -> bool {
|
|
(*v1).ne(v2)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn ge<T:Ord>(v1: &T, v2: &T) -> bool {
|
|
(*v1).ge(v2)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn gt<T:Ord>(v1: &T, v2: &T) -> bool {
|
|
(*v1).gt(v2)
|
|
}
|
|
|
|
/// The equivalence relation. Two values may be equivalent even if they are
|
|
/// of different types. The most common use case for this relation is
|
|
/// container types; e.g. it is often desirable to be able to use `&str`
|
|
/// values to look up entries in a container with `~str` keys.
|
|
pub trait Equiv<T> {
|
|
fn equiv(&self, other: &T) -> bool;
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn min<T:Ord>(v1: T, v2: T) -> T {
|
|
if v1 < v2 { v1 } else { v2 }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn max<T:Ord>(v1: T, v2: T) -> T {
|
|
if v1 > v2 { v1 } else { v2 }
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::lexical_ordering;
|
|
|
|
#[test]
|
|
fn test_int_totalord() {
|
|
assert_eq!(5.cmp(&10), Less);
|
|
assert_eq!(10.cmp(&5), Greater);
|
|
assert_eq!(5.cmp(&5), Equal);
|
|
assert_eq!((-5).cmp(&12), Less);
|
|
assert_eq!(12.cmp(-5), Greater);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cmp2() {
|
|
assert_eq!(cmp2(1, 2, 3, 4), Less);
|
|
assert_eq!(cmp2(3, 2, 3, 4), Less);
|
|
assert_eq!(cmp2(5, 2, 3, 4), Greater);
|
|
assert_eq!(cmp2(5, 5, 5, 4), Greater);
|
|
}
|
|
|
|
#[test]
|
|
fn test_int_totaleq() {
|
|
assert!(5.equals(&5));
|
|
assert!(!2.equals(&17));
|
|
}
|
|
|
|
#[test]
|
|
fn test_ordering_order() {
|
|
assert!(Less < Equal);
|
|
assert_eq!(Greater.cmp(&Less), Greater);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lexical_ordering() {
|
|
fn t(o1: Ordering, o2: Ordering, e: Ordering) {
|
|
assert_eq!(lexical_ordering(o1, o2), e);
|
|
}
|
|
for [Less, Equal, Greater].each |&o| {
|
|
t(Less, o, Less);
|
|
t(Equal, o, o);
|
|
t(Greater, o, Greater);
|
|
}
|
|
}
|
|
}
|