rust/src/libsyntax/config.rs

284 lines
9.2 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use attr::AttrMetaMethods;
use diagnostic::SpanHandler;
use fold::Folder;
use {ast, fold, attr};
use codemap::Spanned;
use ptr::P;
use util::small_vector::SmallVector;
/// A folder that strips out items that do not belong in the current
/// configuration.
struct Context<F> where F: FnMut(&[ast::Attribute]) -> bool {
in_cfg: F,
}
// Support conditional compilation by transforming the AST, stripping out
// any items that do not belong in the current configuration
pub fn strip_unconfigured_items(diagnostic: &SpanHandler, krate: ast::Crate) -> ast::Crate {
let config = krate.config.clone();
strip_items(krate, |attrs| in_cfg(diagnostic, config.as_slice(), attrs))
}
impl<F> fold::Folder for Context<F> where F: FnMut(&[ast::Attribute]) -> bool {
fn fold_mod(&mut self, module: ast::Mod) -> ast::Mod {
fold_mod(self, module)
}
fn fold_block(&mut self, block: P<ast::Block>) -> P<ast::Block> {
fold_block(self, block)
}
fn fold_foreign_mod(&mut self, foreign_mod: ast::ForeignMod) -> ast::ForeignMod {
fold_foreign_mod(self, foreign_mod)
}
fn fold_item_underscore(&mut self, item: ast::Item_) -> ast::Item_ {
fold_item_underscore(self, item)
}
fn fold_expr(&mut self, expr: P<ast::Expr>) -> P<ast::Expr> {
fold_expr(self, expr)
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
fold::noop_fold_mac(mac, self)
}
fn fold_item(&mut self, item: P<ast::Item>) -> SmallVector<P<ast::Item>> {
fold_item(self, item)
}
}
pub fn strip_items<F>(krate: ast::Crate, in_cfg: F) -> ast::Crate where
F: FnMut(&[ast::Attribute]) -> bool,
{
let mut ctxt = Context {
in_cfg: in_cfg,
};
ctxt.fold_crate(krate)
}
fn fold_mod<F>(cx: &mut Context<F>,
ast::Mod {inner, items}: ast::Mod)
-> ast::Mod where
F: FnMut(&[ast::Attribute]) -> bool
{
ast::Mod {
inner: inner,
items: items.into_iter().flat_map(|a| {
cx.fold_item(a).into_iter()
}).collect()
}
}
fn filter_foreign_item<F>(cx: &mut Context<F>,
item: P<ast::ForeignItem>)
-> Option<P<ast::ForeignItem>> where
F: FnMut(&[ast::Attribute]) -> bool
{
if foreign_item_in_cfg(cx, &*item) {
Some(item)
} else {
None
}
}
fn fold_foreign_mod<F>(cx: &mut Context<F>,
ast::ForeignMod {abi, items}: ast::ForeignMod)
-> ast::ForeignMod where
F: FnMut(&[ast::Attribute]) -> bool
{
ast::ForeignMod {
abi: abi,
items: items.into_iter()
.filter_map(|a| filter_foreign_item(cx, a))
.collect()
}
}
fn fold_item<F>(cx: &mut Context<F>, item: P<ast::Item>) -> SmallVector<P<ast::Item>> where
F: FnMut(&[ast::Attribute]) -> bool
{
if item_in_cfg(cx, &*item) {
SmallVector::one(item.map(|i| cx.fold_item_simple(i)))
} else {
SmallVector::zero()
}
}
fn fold_item_underscore<F>(cx: &mut Context<F>, item: ast::Item_) -> ast::Item_ where
F: FnMut(&[ast::Attribute]) -> bool
{
let item = match item {
ast::ItemImpl(u, o, a, b, c, impl_items) => {
let impl_items = impl_items.into_iter()
.filter(|ii| impl_item_in_cfg(cx, ii))
.collect();
ast::ItemImpl(u, o, a, b, c, impl_items)
}
ast::ItemTrait(u, a, b, methods) => {
let methods = methods.into_iter()
.filter(|m| trait_method_in_cfg(cx, m))
.collect();
ast::ItemTrait(u, a, b, methods)
}
ast::ItemStruct(def, generics) => {
ast::ItemStruct(fold_struct(cx, def), generics)
}
ast::ItemEnum(def, generics) => {
let variants = def.variants.into_iter().filter_map(|v| {
if !(cx.in_cfg)(v.node.attrs.as_slice()) {
None
} else {
Some(v.map(|Spanned {node: ast::Variant_ {id, name, attrs, kind,
disr_expr, vis}, span}| {
Spanned {
node: ast::Variant_ {
id: id,
name: name,
attrs: attrs,
kind: match kind {
ast::TupleVariantKind(..) => kind,
ast::StructVariantKind(def) => {
ast::StructVariantKind(fold_struct(cx, def))
}
},
disr_expr: disr_expr,
vis: vis
},
span: span
}
}))
}
});
ast::ItemEnum(ast::EnumDef {
variants: variants.collect(),
}, generics)
}
item => item,
};
fold::noop_fold_item_underscore(item, cx)
}
fn fold_struct<F>(cx: &mut Context<F>, def: P<ast::StructDef>) -> P<ast::StructDef> where
F: FnMut(&[ast::Attribute]) -> bool
{
def.map(|ast::StructDef { fields, ctor_id }| {
ast::StructDef {
fields: fields.into_iter().filter(|m| {
(cx.in_cfg)(m.node.attrs.as_slice())
}).collect(),
ctor_id: ctor_id,
}
})
}
fn retain_stmt<F>(cx: &mut Context<F>, stmt: &ast::Stmt) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
match stmt.node {
ast::StmtDecl(ref decl, _) => {
match decl.node {
ast::DeclItem(ref item) => {
item_in_cfg(cx, &**item)
}
_ => true
}
}
_ => true
}
}
fn fold_block<F>(cx: &mut Context<F>, b: P<ast::Block>) -> P<ast::Block> where
F: FnMut(&[ast::Attribute]) -> bool
{
b.map(|ast::Block {id, stmts, expr, rules, span}| {
let resulting_stmts: Vec<P<ast::Stmt>> =
stmts.into_iter().filter(|a| retain_stmt(cx, &**a)).collect();
let resulting_stmts = resulting_stmts.into_iter()
.flat_map(|stmt| cx.fold_stmt(stmt).into_iter())
.collect();
ast::Block {
id: id,
stmts: resulting_stmts,
expr: expr.map(|x| cx.fold_expr(x)),
rules: rules,
span: span,
}
})
}
fn fold_expr<F>(cx: &mut Context<F>, expr: P<ast::Expr>) -> P<ast::Expr> where
F: FnMut(&[ast::Attribute]) -> bool
{
expr.map(|ast::Expr {id, span, node}| {
fold::noop_fold_expr(ast::Expr {
id: id,
node: match node {
ast::ExprMatch(m, arms, source) => {
ast::ExprMatch(m, arms.into_iter()
.filter(|a| (cx.in_cfg)(a.attrs.as_slice()))
.collect(), source)
}
_ => node
},
span: span
}, cx)
})
}
fn item_in_cfg<F>(cx: &mut Context<F>, item: &ast::Item) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
return (cx.in_cfg)(item.attrs.as_slice());
}
fn foreign_item_in_cfg<F>(cx: &mut Context<F>, item: &ast::ForeignItem) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
return (cx.in_cfg)(item.attrs.as_slice());
}
fn trait_method_in_cfg<F>(cx: &mut Context<F>, meth: &ast::TraitItem) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
match *meth {
ast::RequiredMethod(ref meth) => (cx.in_cfg)(meth.attrs.as_slice()),
ast::ProvidedMethod(ref meth) => (cx.in_cfg)(meth.attrs.as_slice()),
ast::TypeTraitItem(ref typ) => (cx.in_cfg)(typ.attrs.as_slice()),
}
}
fn impl_item_in_cfg<F>(cx: &mut Context<F>, impl_item: &ast::ImplItem) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
match *impl_item {
ast::MethodImplItem(ref meth) => (cx.in_cfg)(meth.attrs.as_slice()),
ast::TypeImplItem(ref typ) => (cx.in_cfg)(typ.attrs.as_slice()),
}
}
// Determine if an item should be translated in the current crate
// configuration based on the item's attributes
fn in_cfg(diagnostic: &SpanHandler, cfg: &[P<ast::MetaItem>], attrs: &[ast::Attribute]) -> bool {
attrs.iter().all(|attr| {
let mis = match attr.node.value.node {
ast::MetaList(_, ref mis) if attr.check_name("cfg") => mis,
_ => return true
};
if mis.len() != 1 {
diagnostic.span_err(attr.span, "expected 1 cfg-pattern");
return true;
}
attr::cfg_matches(diagnostic, cfg, &*mis[0])
})
}