rust/src/type_of.rs
2022-03-29 21:41:17 -04:00

384 lines
15 KiB
Rust

use std::fmt::Write;
use gccjit::{Struct, Type};
use crate::rustc_codegen_ssa::traits::{BaseTypeMethods, DerivedTypeMethods, LayoutTypeMethods};
use rustc_middle::bug;
use rustc_middle::ty::{self, Ty, TypeFoldable};
use rustc_middle::ty::layout::{FnAbiOf, LayoutOf, TyAndLayout};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_target::abi::{self, Abi, F32, F64, FieldsShape, Int, Integer, Pointer, PointeeInfo, Size, TyAbiInterface, Variants};
use rustc_target::abi::call::{CastTarget, FnAbi, Reg};
use crate::abi::{FnAbiGccExt, GccType};
use crate::context::CodegenCx;
use crate::type_::struct_fields;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
fn type_from_unsigned_integer(&self, i: Integer) -> Type<'gcc> {
use Integer::*;
match i {
I8 => self.type_u8(),
I16 => self.type_u16(),
I32 => self.type_u32(),
I64 => self.type_u64(),
I128 => self.type_u128(),
}
}
pub fn type_int_from_ty(&self, t: ty::IntTy) -> Type<'gcc> {
match t {
ty::IntTy::Isize => self.type_isize(),
ty::IntTy::I8 => self.type_i8(),
ty::IntTy::I16 => self.type_i16(),
ty::IntTy::I32 => self.type_i32(),
ty::IntTy::I64 => self.type_i64(),
ty::IntTy::I128 => self.type_i128(),
}
}
pub fn type_uint_from_ty(&self, t: ty::UintTy) -> Type<'gcc> {
match t {
ty::UintTy::Usize => self.type_isize(),
ty::UintTy::U8 => self.type_i8(),
ty::UintTy::U16 => self.type_i16(),
ty::UintTy::U32 => self.type_i32(),
ty::UintTy::U64 => self.type_i64(),
ty::UintTy::U128 => self.type_i128(),
}
}
}
pub fn uncached_gcc_type<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, layout: TyAndLayout<'tcx>, defer: &mut Option<(Struct<'gcc>, TyAndLayout<'tcx>)>) -> Type<'gcc> {
match layout.abi {
Abi::Scalar(_) => bug!("handled elsewhere"),
Abi::Vector { ref element, count } => {
let element = layout.scalar_gcc_type_at(cx, element, Size::ZERO);
return cx.context.new_vector_type(element, count);
},
Abi::ScalarPair(..) => {
return cx.type_struct(
&[
layout.scalar_pair_element_gcc_type(cx, 0, false),
layout.scalar_pair_element_gcc_type(cx, 1, false),
],
false,
);
}
Abi::Uninhabited | Abi::Aggregate { .. } => {}
}
let name = match layout.ty.kind() {
// FIXME(eddyb) producing readable type names for trait objects can result
// in problematically distinct types due to HRTB and subtyping (see #47638).
// ty::Dynamic(..) |
ty::Adt(..) | ty::Closure(..) | ty::Foreign(..) | ty::Generator(..) | ty::Str
if !cx.sess().fewer_names() =>
{
let mut name = with_no_trimmed_paths!(layout.ty.to_string());
if let (&ty::Adt(def, _), &Variants::Single { index }) =
(layout.ty.kind(), &layout.variants)
{
if def.is_enum() && !def.variants().is_empty() {
write!(&mut name, "::{}", def.variant(index).name).unwrap();
}
}
if let (&ty::Generator(_, _, _), &Variants::Single { index }) =
(layout.ty.kind(), &layout.variants)
{
write!(&mut name, "::{}", ty::GeneratorSubsts::variant_name(index)).unwrap();
}
Some(name)
}
ty::Adt(..) => {
// If `Some` is returned then a named struct is created in LLVM. Name collisions are
// avoided by LLVM (with increasing suffixes). If rustc doesn't generate names then that
// can improve perf.
// FIXME(antoyo): I don't think that's true for libgccjit.
Some(String::new())
}
_ => None,
};
match layout.fields {
FieldsShape::Primitive | FieldsShape::Union(_) => {
let fill = cx.type_padding_filler(layout.size, layout.align.abi);
let packed = false;
match name {
None => cx.type_struct(&[fill], packed),
Some(ref name) => {
let gcc_type = cx.type_named_struct(name);
cx.set_struct_body(gcc_type, &[fill], packed);
gcc_type.as_type()
},
}
}
FieldsShape::Array { count, .. } => cx.type_array(layout.field(cx, 0).gcc_type(cx, true), count),
FieldsShape::Arbitrary { .. } =>
match name {
None => {
let (gcc_fields, packed) = struct_fields(cx, layout);
cx.type_struct(&gcc_fields, packed)
},
Some(ref name) => {
let gcc_type = cx.type_named_struct(name);
*defer = Some((gcc_type, layout));
gcc_type.as_type()
},
},
}
}
pub trait LayoutGccExt<'tcx> {
fn is_gcc_immediate(&self) -> bool;
fn is_gcc_scalar_pair(&self) -> bool;
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc>;
fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc>;
fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc>;
fn gcc_field_index(&self, index: usize) -> u64;
fn pointee_info_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, offset: Size) -> Option<PointeeInfo>;
}
impl<'tcx> LayoutGccExt<'tcx> for TyAndLayout<'tcx> {
fn is_gcc_immediate(&self) -> bool {
match self.abi {
Abi::Scalar(_) | Abi::Vector { .. } => true,
Abi::ScalarPair(..) => false,
Abi::Uninhabited | Abi::Aggregate { .. } => self.is_zst(),
}
}
fn is_gcc_scalar_pair(&self) -> bool {
match self.abi {
Abi::ScalarPair(..) => true,
Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } | Abi::Aggregate { .. } => false,
}
}
/// Gets the GCC type corresponding to a Rust type, i.e., `rustc_middle::ty::Ty`.
/// The pointee type of the pointer in `PlaceRef` is always this type.
/// For sized types, it is also the right LLVM type for an `alloca`
/// containing a value of that type, and most immediates (except `bool`).
/// Unsized types, however, are represented by a "minimal unit", e.g.
/// `[T]` becomes `T`, while `str` and `Trait` turn into `i8` - this
/// is useful for indexing slices, as `&[T]`'s data pointer is `T*`.
/// If the type is an unsized struct, the regular layout is generated,
/// with the inner-most trailing unsized field using the "minimal unit"
/// of that field's type - this is useful for taking the address of
/// that field and ensuring the struct has the right alignment.
//TODO(antoyo): do we still need the set_fields parameter?
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc> {
if let Abi::Scalar(ref scalar) = self.abi {
// Use a different cache for scalars because pointers to DSTs
// can be either fat or thin (data pointers of fat pointers).
if let Some(&ty) = cx.scalar_types.borrow().get(&self.ty) {
return ty;
}
let ty =
match *self.ty.kind() {
ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
cx.type_ptr_to(cx.layout_of(ty).gcc_type(cx, set_fields))
}
ty::Adt(def, _) if def.is_box() => {
cx.type_ptr_to(cx.layout_of(self.ty.boxed_ty()).gcc_type(cx, true))
}
ty::FnPtr(sig) => cx.fn_ptr_backend_type(&cx.fn_abi_of_fn_ptr(sig, ty::List::empty())),
_ => self.scalar_gcc_type_at(cx, scalar, Size::ZERO),
};
cx.scalar_types.borrow_mut().insert(self.ty, ty);
return ty;
}
// Check the cache.
let variant_index =
match self.variants {
Variants::Single { index } => Some(index),
_ => None,
};
let cached_type = cx.types.borrow().get(&(self.ty, variant_index)).cloned();
if let Some(ty) = cached_type {
let type_to_set_fields = cx.types_with_fields_to_set.borrow_mut().remove(&ty);
if let Some((struct_type, layout)) = type_to_set_fields {
// Since we might be trying to generate a type containing another type which is not
// completely generated yet, we deferred setting the fields until now.
let (fields, packed) = struct_fields(cx, layout);
cx.set_struct_body(struct_type, &fields, packed);
}
return ty;
}
assert!(!self.ty.has_escaping_bound_vars(), "{:?} has escaping bound vars", self.ty);
// Make sure lifetimes are erased, to avoid generating distinct LLVM
// types for Rust types that only differ in the choice of lifetimes.
let normal_ty = cx.tcx.erase_regions(self.ty);
let mut defer = None;
let ty =
if self.ty != normal_ty {
let mut layout = cx.layout_of(normal_ty);
if let Some(v) = variant_index {
layout = layout.for_variant(cx, v);
}
layout.gcc_type(cx, true)
}
else {
uncached_gcc_type(cx, *self, &mut defer)
};
cx.types.borrow_mut().insert((self.ty, variant_index), ty);
if let Some((ty, layout)) = defer {
let (fields, packed) = struct_fields(cx, layout);
cx.set_struct_body(ty, &fields, packed);
}
ty
}
fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
if let Abi::Scalar(ref scalar) = self.abi {
if scalar.is_bool() {
return cx.type_i1();
}
}
self.gcc_type(cx, true)
}
fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc> {
match scalar.value {
Int(i, true) => cx.type_from_integer(i),
Int(i, false) => cx.type_from_unsigned_integer(i),
F32 => cx.type_f32(),
F64 => cx.type_f64(),
Pointer => {
// If we know the alignment, pick something better than i8.
let pointee =
if let Some(pointee) = self.pointee_info_at(cx, offset) {
cx.type_pointee_for_align(pointee.align)
}
else {
cx.type_i8()
};
cx.type_ptr_to(pointee)
}
}
}
fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
// TODO(antoyo): remove llvm hack:
// HACK(eddyb) special-case fat pointers until LLVM removes
// pointee types, to avoid bitcasting every `OperandRef::deref`.
match self.ty.kind() {
ty::Ref(..) | ty::RawPtr(_) => {
return self.field(cx, index).gcc_type(cx, true);
}
// only wide pointer boxes are handled as pointers
// thin pointer boxes with scalar allocators are handled by the general logic below
ty::Adt(def, substs) if def.is_box() && cx.layout_of(substs.type_at(1)).is_zst() => {
let ptr_ty = cx.tcx.mk_mut_ptr(self.ty.boxed_ty());
return cx.layout_of(ptr_ty).scalar_pair_element_gcc_type(cx, index, immediate);
}
_ => {}
}
let (a, b) = match self.abi {
Abi::ScalarPair(ref a, ref b) => (a, b),
_ => bug!("TyAndLayout::scalar_pair_element_llty({:?}): not applicable", self),
};
let scalar = [a, b][index];
// Make sure to return the same type `immediate_gcc_type` would when
// dealing with an immediate pair. This means that `(bool, bool)` is
// effectively represented as `{i8, i8}` in memory and two `i1`s as an
// immediate, just like `bool` is typically `i8` in memory and only `i1`
// when immediate. We need to load/store `bool` as `i8` to avoid
// crippling LLVM optimizations or triggering other LLVM bugs with `i1`.
// TODO(antoyo): this bugs certainly don't happen in this case since the bool type is used instead of i1.
if scalar.is_bool() {
return cx.type_i1();
}
let offset =
if index == 0 {
Size::ZERO
}
else {
a.value.size(cx).align_to(b.value.align(cx).abi)
};
self.scalar_gcc_type_at(cx, scalar, offset)
}
fn gcc_field_index(&self, index: usize) -> u64 {
match self.abi {
Abi::Scalar(_) | Abi::ScalarPair(..) => {
bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
}
_ => {}
}
match self.fields {
FieldsShape::Primitive | FieldsShape::Union(_) => {
bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
}
FieldsShape::Array { .. } => index as u64,
FieldsShape::Arbitrary { .. } => 1 + (self.fields.memory_index(index) as u64) * 2,
}
}
fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size) -> Option<PointeeInfo> {
if let Some(&pointee) = cx.pointee_infos.borrow().get(&(self.ty, offset)) {
return pointee;
}
let result = Ty::ty_and_layout_pointee_info_at(*self, cx, offset);
cx.pointee_infos.borrow_mut().insert((self.ty, offset), result);
result
}
}
impl<'gcc, 'tcx> LayoutTypeMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
layout.gcc_type(self, true)
}
fn immediate_backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
layout.immediate_gcc_type(self)
}
fn is_backend_immediate(&self, layout: TyAndLayout<'tcx>) -> bool {
layout.is_gcc_immediate()
}
fn is_backend_scalar_pair(&self, layout: TyAndLayout<'tcx>) -> bool {
layout.is_gcc_scalar_pair()
}
fn backend_field_index(&self, layout: TyAndLayout<'tcx>, index: usize) -> u64 {
layout.gcc_field_index(index)
}
fn scalar_pair_element_backend_type(&self, layout: TyAndLayout<'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
layout.scalar_pair_element_gcc_type(self, index, immediate)
}
fn cast_backend_type(&self, ty: &CastTarget) -> Type<'gcc> {
ty.gcc_type(self)
}
fn fn_ptr_backend_type(&self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
fn_abi.ptr_to_gcc_type(self)
}
fn reg_backend_type(&self, _ty: &Reg) -> Type<'gcc> {
unimplemented!();
}
fn fn_decl_backend_type(&self, _fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
// FIXME(antoyo): return correct type.
self.type_void()
}
}