rust/src/libsyntax/config.rs
Nick Cameron 6309b0f5bb move error handling from libsyntax/diagnostics.rs to libsyntax/errors/*
Also split out emitters into their own module.
2015-12-17 09:35:50 +13:00

521 lines
16 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use attr::AttrMetaMethods;
use errors::Handler;
use feature_gate::GatedCfgAttr;
use fold::Folder;
use {ast, fold, attr};
use visit;
use codemap::{Spanned, respan};
use ptr::P;
use util::small_vector::SmallVector;
/// A folder that strips out items that do not belong in the current
/// configuration.
struct Context<'a, F> where F: FnMut(&[ast::Attribute]) -> bool {
in_cfg: F,
diagnostic: &'a Handler,
}
// Support conditional compilation by transforming the AST, stripping out
// any items that do not belong in the current configuration
pub fn strip_unconfigured_items(diagnostic: &Handler, krate: ast::Crate,
feature_gated_cfgs: &mut Vec<GatedCfgAttr>)
-> ast::Crate
{
// Need to do this check here because cfg runs before feature_gates
check_for_gated_stmt_expr_attributes(&krate, feature_gated_cfgs);
let krate = process_cfg_attr(diagnostic, krate, feature_gated_cfgs);
let config = krate.config.clone();
strip_items(diagnostic,
krate,
|attrs| {
let mut diag = CfgDiagReal {
diag: diagnostic,
feature_gated_cfgs: feature_gated_cfgs,
};
in_cfg(&config, attrs, &mut diag)
})
}
impl<'a, F> fold::Folder for Context<'a, F> where F: FnMut(&[ast::Attribute]) -> bool {
fn fold_foreign_mod(&mut self, foreign_mod: ast::ForeignMod) -> ast::ForeignMod {
fold_foreign_mod(self, foreign_mod)
}
fn fold_item_underscore(&mut self, item: ast::Item_) -> ast::Item_ {
fold_item_underscore(self, item)
}
fn fold_expr(&mut self, expr: P<ast::Expr>) -> P<ast::Expr> {
// If an expr is valid to cfg away it will have been removed by the
// outer stmt or expression folder before descending in here.
// Anything else is always required, and thus has to error out
// in case of a cfg attr.
//
// NB: This is intentionally not part of the fold_expr() function
// in order for fold_opt_expr() to be able to avoid this check
if let Some(attr) = expr.attrs().iter().find(|a| is_cfg(a)) {
self.diagnostic.span_err(attr.span,
"removing an expression is not supported in this position");
}
fold_expr(self, expr)
}
fn fold_opt_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
fold_opt_expr(self, expr)
}
fn fold_stmt(&mut self, stmt: P<ast::Stmt>) -> SmallVector<P<ast::Stmt>> {
fold_stmt(self, stmt)
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
fold::noop_fold_mac(mac, self)
}
fn fold_item(&mut self, item: P<ast::Item>) -> SmallVector<P<ast::Item>> {
fold_item(self, item)
}
}
pub fn strip_items<'a, F>(diagnostic: &'a Handler,
krate: ast::Crate, in_cfg: F) -> ast::Crate where
F: FnMut(&[ast::Attribute]) -> bool,
{
let mut ctxt = Context {
in_cfg: in_cfg,
diagnostic: diagnostic,
};
ctxt.fold_crate(krate)
}
fn filter_foreign_item<F>(cx: &mut Context<F>,
item: P<ast::ForeignItem>)
-> Option<P<ast::ForeignItem>> where
F: FnMut(&[ast::Attribute]) -> bool
{
if foreign_item_in_cfg(cx, &item) {
Some(item)
} else {
None
}
}
fn fold_foreign_mod<F>(cx: &mut Context<F>,
ast::ForeignMod {abi, items}: ast::ForeignMod)
-> ast::ForeignMod where
F: FnMut(&[ast::Attribute]) -> bool
{
ast::ForeignMod {
abi: abi,
items: items.into_iter()
.filter_map(|a| filter_foreign_item(cx, a))
.collect()
}
}
fn fold_item<F>(cx: &mut Context<F>, item: P<ast::Item>) -> SmallVector<P<ast::Item>> where
F: FnMut(&[ast::Attribute]) -> bool
{
if item_in_cfg(cx, &item) {
SmallVector::one(item.map(|i| cx.fold_item_simple(i)))
} else {
SmallVector::zero()
}
}
fn fold_item_underscore<F>(cx: &mut Context<F>, item: ast::Item_) -> ast::Item_ where
F: FnMut(&[ast::Attribute]) -> bool
{
let item = match item {
ast::ItemImpl(u, o, a, b, c, impl_items) => {
let impl_items = impl_items.into_iter()
.filter(|ii| (cx.in_cfg)(&ii.attrs))
.collect();
ast::ItemImpl(u, o, a, b, c, impl_items)
}
ast::ItemTrait(u, a, b, methods) => {
let methods = methods.into_iter()
.filter(|ti| (cx.in_cfg)(&ti.attrs))
.collect();
ast::ItemTrait(u, a, b, methods)
}
ast::ItemStruct(def, generics) => {
ast::ItemStruct(fold_struct(cx, def), generics)
}
ast::ItemEnum(def, generics) => {
let variants = def.variants.into_iter().filter_map(|v| {
if !(cx.in_cfg)(&v.node.attrs) {
None
} else {
Some(v.map(|Spanned {node: ast::Variant_ {name, attrs, data,
disr_expr}, span}| {
Spanned {
node: ast::Variant_ {
name: name,
attrs: attrs,
data: fold_struct(cx, data),
disr_expr: disr_expr,
},
span: span
}
}))
}
});
ast::ItemEnum(ast::EnumDef {
variants: variants.collect(),
}, generics)
}
item => item,
};
fold::noop_fold_item_underscore(item, cx)
}
fn fold_struct<F>(cx: &mut Context<F>, vdata: ast::VariantData) -> ast::VariantData where
F: FnMut(&[ast::Attribute]) -> bool
{
match vdata {
ast::VariantData::Struct(fields, id) => {
ast::VariantData::Struct(fields.into_iter().filter(|m| {
(cx.in_cfg)(&m.node.attrs)
}).collect(), id)
}
ast::VariantData::Tuple(fields, id) => {
ast::VariantData::Tuple(fields.into_iter().filter(|m| {
(cx.in_cfg)(&m.node.attrs)
}).collect(), id)
}
ast::VariantData::Unit(id) => ast::VariantData::Unit(id)
}
}
fn fold_opt_expr<F>(cx: &mut Context<F>, expr: P<ast::Expr>) -> Option<P<ast::Expr>>
where F: FnMut(&[ast::Attribute]) -> bool
{
if expr_in_cfg(cx, &expr) {
Some(fold_expr(cx, expr))
} else {
None
}
}
fn fold_expr<F>(cx: &mut Context<F>, expr: P<ast::Expr>) -> P<ast::Expr> where
F: FnMut(&[ast::Attribute]) -> bool
{
expr.map(|ast::Expr {id, span, node, attrs}| {
fold::noop_fold_expr(ast::Expr {
id: id,
node: match node {
ast::ExprMatch(m, arms) => {
ast::ExprMatch(m, arms.into_iter()
.filter(|a| (cx.in_cfg)(&a.attrs))
.collect())
}
_ => node
},
span: span,
attrs: attrs,
}, cx)
})
}
fn fold_stmt<F>(cx: &mut Context<F>, stmt: P<ast::Stmt>) -> SmallVector<P<ast::Stmt>>
where F: FnMut(&[ast::Attribute]) -> bool
{
if stmt_in_cfg(cx, &stmt) {
stmt.and_then(|s| fold::noop_fold_stmt(s, cx))
} else {
SmallVector::zero()
}
}
fn stmt_in_cfg<F>(cx: &mut Context<F>, stmt: &ast::Stmt) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
(cx.in_cfg)(stmt.node.attrs())
}
fn expr_in_cfg<F>(cx: &mut Context<F>, expr: &ast::Expr) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
(cx.in_cfg)(expr.attrs())
}
fn item_in_cfg<F>(cx: &mut Context<F>, item: &ast::Item) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
return (cx.in_cfg)(&item.attrs);
}
fn foreign_item_in_cfg<F>(cx: &mut Context<F>, item: &ast::ForeignItem) -> bool where
F: FnMut(&[ast::Attribute]) -> bool
{
return (cx.in_cfg)(&item.attrs);
}
fn is_cfg(attr: &ast::Attribute) -> bool {
attr.check_name("cfg")
}
// Determine if an item should be translated in the current crate
// configuration based on the item's attributes
fn in_cfg<T: CfgDiag>(cfg: &[P<ast::MetaItem>],
attrs: &[ast::Attribute],
diag: &mut T) -> bool {
attrs.iter().all(|attr| {
let mis = match attr.node.value.node {
ast::MetaList(_, ref mis) if is_cfg(&attr) => mis,
_ => return true
};
if mis.len() != 1 {
diag.emit_error(|diagnostic| {
diagnostic.span_err(attr.span, "expected 1 cfg-pattern");
});
return true;
}
attr::cfg_matches(cfg, &mis[0], diag)
})
}
struct CfgAttrFolder<'a, T> {
diag: T,
config: &'a ast::CrateConfig,
}
// Process `#[cfg_attr]`.
fn process_cfg_attr(diagnostic: &Handler, krate: ast::Crate,
feature_gated_cfgs: &mut Vec<GatedCfgAttr>) -> ast::Crate {
let mut fld = CfgAttrFolder {
diag: CfgDiagReal {
diag: diagnostic,
feature_gated_cfgs: feature_gated_cfgs,
},
config: &krate.config.clone(),
};
fld.fold_crate(krate)
}
impl<'a, T: CfgDiag> fold::Folder for CfgAttrFolder<'a, T> {
fn fold_attribute(&mut self, attr: ast::Attribute) -> Option<ast::Attribute> {
if !attr.check_name("cfg_attr") {
return fold::noop_fold_attribute(attr, self);
}
let attr_list = match attr.meta_item_list() {
Some(attr_list) => attr_list,
None => {
self.diag.emit_error(|diag| {
diag.span_err(attr.span,
"expected `#[cfg_attr(<cfg pattern>, <attr>)]`");
});
return None;
}
};
let (cfg, mi) = match (attr_list.len(), attr_list.get(0), attr_list.get(1)) {
(2, Some(cfg), Some(mi)) => (cfg, mi),
_ => {
self.diag.emit_error(|diag| {
diag.span_err(attr.span,
"expected `#[cfg_attr(<cfg pattern>, <attr>)]`");
});
return None;
}
};
if attr::cfg_matches(&self.config[..], &cfg, &mut self.diag) {
Some(respan(mi.span, ast::Attribute_ {
id: attr::mk_attr_id(),
style: attr.node.style,
value: mi.clone(),
is_sugared_doc: false,
}))
} else {
None
}
}
// Need the ability to run pre-expansion.
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
fold::noop_fold_mac(mac, self)
}
}
fn check_for_gated_stmt_expr_attributes(krate: &ast::Crate,
discovered: &mut Vec<GatedCfgAttr>) {
let mut v = StmtExprAttrFeatureVisitor {
config: &krate.config,
discovered: discovered,
};
visit::walk_crate(&mut v, krate);
}
/// To cover this feature, we need to discover all attributes
/// so we need to run before cfg.
struct StmtExprAttrFeatureVisitor<'a, 'b> {
config: &'a ast::CrateConfig,
discovered: &'b mut Vec<GatedCfgAttr>,
}
// Runs the cfg_attr and cfg folders locally in "silent" mode
// to discover attribute use on stmts or expressions ahead of time
impl<'v, 'a, 'b> visit::Visitor<'v> for StmtExprAttrFeatureVisitor<'a, 'b> {
fn visit_stmt(&mut self, s: &'v ast::Stmt) {
// check if there even are any attributes on this node
let stmt_attrs = s.node.attrs();
if stmt_attrs.len() > 0 {
// attributes on items are fine
if let ast::StmtDecl(ref decl, _) = s.node {
if let ast::DeclItem(_) = decl.node {
visit::walk_stmt(self, s);
return;
}
}
// flag the offending attributes
for attr in stmt_attrs {
self.discovered.push(GatedCfgAttr::GatedAttr(attr.span));
}
// if the node does not end up being cfg-d away, walk down
if node_survives_cfg(stmt_attrs, self.config) {
visit::walk_stmt(self, s);
}
} else {
visit::walk_stmt(self, s);
}
}
fn visit_expr(&mut self, ex: &'v ast::Expr) {
// check if there even are any attributes on this node
let expr_attrs = ex.attrs();
if expr_attrs.len() > 0 {
// flag the offending attributes
for attr in expr_attrs {
self.discovered.push(GatedCfgAttr::GatedAttr(attr.span));
}
// if the node does not end up being cfg-d away, walk down
if node_survives_cfg(expr_attrs, self.config) {
visit::walk_expr(self, ex);
}
} else {
visit::walk_expr(self, ex);
}
}
fn visit_foreign_item(&mut self, i: &'v ast::ForeignItem) {
if node_survives_cfg(&i.attrs, self.config) {
visit::walk_foreign_item(self, i);
}
}
fn visit_item(&mut self, i: &'v ast::Item) {
if node_survives_cfg(&i.attrs, self.config) {
visit::walk_item(self, i);
}
}
fn visit_impl_item(&mut self, ii: &'v ast::ImplItem) {
if node_survives_cfg(&ii.attrs, self.config) {
visit::walk_impl_item(self, ii);
}
}
fn visit_trait_item(&mut self, ti: &'v ast::TraitItem) {
if node_survives_cfg(&ti.attrs, self.config) {
visit::walk_trait_item(self, ti);
}
}
fn visit_struct_field(&mut self, s: &'v ast::StructField) {
if node_survives_cfg(&s.node.attrs, self.config) {
visit::walk_struct_field(self, s);
}
}
fn visit_variant(&mut self, v: &'v ast::Variant,
g: &'v ast::Generics, item_id: ast::NodeId) {
if node_survives_cfg(&v.node.attrs, self.config) {
visit::walk_variant(self, v, g, item_id);
}
}
fn visit_arm(&mut self, a: &'v ast::Arm) {
if node_survives_cfg(&a.attrs, self.config) {
visit::walk_arm(self, a);
}
}
// This visitor runs pre expansion, so we need to prevent
// the default panic here
fn visit_mac(&mut self, mac: &'v ast::Mac) {
visit::walk_mac(self, mac)
}
}
pub trait CfgDiag {
fn emit_error<F>(&mut self, f: F) where F: FnMut(&Handler);
fn flag_gated<F>(&mut self, f: F) where F: FnMut(&mut Vec<GatedCfgAttr>);
}
pub struct CfgDiagReal<'a, 'b> {
pub diag: &'a Handler,
pub feature_gated_cfgs: &'b mut Vec<GatedCfgAttr>,
}
impl<'a, 'b> CfgDiag for CfgDiagReal<'a, 'b> {
fn emit_error<F>(&mut self, mut f: F) where F: FnMut(&Handler) {
f(self.diag)
}
fn flag_gated<F>(&mut self, mut f: F) where F: FnMut(&mut Vec<GatedCfgAttr>) {
f(self.feature_gated_cfgs)
}
}
struct CfgDiagSilent {
error: bool,
}
impl CfgDiag for CfgDiagSilent {
fn emit_error<F>(&mut self, _: F) where F: FnMut(&Handler) {
self.error = true;
}
fn flag_gated<F>(&mut self, _: F) where F: FnMut(&mut Vec<GatedCfgAttr>) {}
}
fn node_survives_cfg(attrs: &[ast::Attribute],
config: &ast::CrateConfig) -> bool {
let mut survives_cfg = true;
for attr in attrs {
let mut fld = CfgAttrFolder {
diag: CfgDiagSilent { error: false },
config: config,
};
let attr = fld.fold_attribute(attr.clone());
// In case of error we can just return true,
// since the actual cfg folders will end compilation anyway.
if fld.diag.error { return true; }
survives_cfg &= attr.map(|attr| {
let mut diag = CfgDiagSilent { error: false };
let r = in_cfg(config, &[attr], &mut diag);
if diag.error { return true; }
r
}).unwrap_or(true)
}
survives_cfg
}