cd5c8235c5
Sister pull request of https://github.com/rust-lang/rust/pull/19288, but for the other style of block doc comment.
1151 lines
44 KiB
Rust
1151 lines
44 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Handles translation of callees as well as other call-related
|
|
//! things. Callees are a superset of normal rust values and sometimes
|
|
//! have different representations. In particular, top-level fn items
|
|
//! and methods are represented as just a fn ptr and not a full
|
|
//! closure.
|
|
|
|
pub use self::AutorefArg::*;
|
|
pub use self::CalleeData::*;
|
|
pub use self::CallArgs::*;
|
|
|
|
use arena::TypedArena;
|
|
use back::abi;
|
|
use back::link;
|
|
use session;
|
|
use llvm::{ValueRef, get_param};
|
|
use llvm;
|
|
use metadata::csearch;
|
|
use middle::def;
|
|
use middle::subst;
|
|
use middle::subst::{Subst, Substs};
|
|
use trans::adt;
|
|
use trans::base;
|
|
use trans::base::*;
|
|
use trans::build::*;
|
|
use trans::callee;
|
|
use trans::cleanup;
|
|
use trans::cleanup::CleanupMethods;
|
|
use trans::closure;
|
|
use trans::common;
|
|
use trans::common::*;
|
|
use trans::datum::*;
|
|
use trans::expr;
|
|
use trans::glue;
|
|
use trans::inline;
|
|
use trans::foreign;
|
|
use trans::intrinsic;
|
|
use trans::meth;
|
|
use trans::monomorphize;
|
|
use trans::type_::Type;
|
|
use trans::type_of;
|
|
use middle::ty::{mod, Ty};
|
|
use middle::typeck::coherence::make_substs_for_receiver_types;
|
|
use middle::typeck::MethodCall;
|
|
use util::ppaux::Repr;
|
|
use util::ppaux::ty_to_string;
|
|
|
|
use syntax::abi as synabi;
|
|
use syntax::ast;
|
|
use syntax::ast_map;
|
|
use syntax::ptr::P;
|
|
|
|
pub struct MethodData {
|
|
pub llfn: ValueRef,
|
|
pub llself: ValueRef,
|
|
}
|
|
|
|
pub enum CalleeData<'tcx> {
|
|
Closure(Datum<'tcx, Lvalue>),
|
|
|
|
// Constructor for enum variant/tuple-like-struct
|
|
// i.e. Some, Ok
|
|
NamedTupleConstructor(subst::Substs<'tcx>, ty::Disr),
|
|
|
|
// Represents a (possibly monomorphized) top-level fn item or method
|
|
// item. Note that this is just the fn-ptr and is not a Rust closure
|
|
// value (which is a pair).
|
|
Fn(/* llfn */ ValueRef),
|
|
|
|
Intrinsic(ast::NodeId, subst::Substs<'tcx>),
|
|
|
|
TraitItem(MethodData)
|
|
}
|
|
|
|
pub struct Callee<'blk, 'tcx: 'blk> {
|
|
pub bcx: Block<'blk, 'tcx>,
|
|
pub data: CalleeData<'tcx>,
|
|
}
|
|
|
|
fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &ast::Expr)
|
|
-> Callee<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_callee");
|
|
debug!("callee::trans(expr={})", expr.repr(bcx.tcx()));
|
|
|
|
// pick out special kinds of expressions that can be called:
|
|
match expr.node {
|
|
ast::ExprPath(_) => {
|
|
return trans_def(bcx, bcx.def(expr.id), expr);
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
// any other expressions are closures:
|
|
return datum_callee(bcx, expr);
|
|
|
|
fn datum_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &ast::Expr)
|
|
-> Callee<'blk, 'tcx> {
|
|
let DatumBlock {mut bcx, datum} = expr::trans(bcx, expr);
|
|
match datum.ty.sty {
|
|
ty::ty_bare_fn(..) => {
|
|
let llval = datum.to_llscalarish(bcx);
|
|
return Callee {
|
|
bcx: bcx,
|
|
data: Fn(llval),
|
|
};
|
|
}
|
|
ty::ty_closure(..) => {
|
|
let datum = unpack_datum!(
|
|
bcx, datum.to_lvalue_datum(bcx, "callee", expr.id));
|
|
return Callee {
|
|
bcx: bcx,
|
|
data: Closure(datum),
|
|
};
|
|
}
|
|
_ => {
|
|
bcx.tcx().sess.span_bug(
|
|
expr.span,
|
|
format!("type of callee is neither bare-fn nor closure: \
|
|
{}",
|
|
bcx.ty_to_string(datum.ty)).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn fn_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, llfn: ValueRef)
|
|
-> Callee<'blk, 'tcx> {
|
|
return Callee {
|
|
bcx: bcx,
|
|
data: Fn(llfn),
|
|
};
|
|
}
|
|
|
|
fn trans_def<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
def: def::Def,
|
|
ref_expr: &ast::Expr)
|
|
-> Callee<'blk, 'tcx> {
|
|
debug!("trans_def(def={}, ref_expr={})", def.repr(bcx.tcx()), ref_expr.repr(bcx.tcx()));
|
|
let expr_ty = node_id_type(bcx, ref_expr.id);
|
|
match def {
|
|
def::DefFn(did, _) if {
|
|
let maybe_def_id = inline::get_local_instance(bcx.ccx(), did);
|
|
let maybe_ast_node = maybe_def_id.and_then(|def_id| bcx.tcx().map
|
|
.find(def_id.node));
|
|
match maybe_ast_node {
|
|
Some(ast_map::NodeStructCtor(_)) => true,
|
|
_ => false
|
|
}
|
|
} => {
|
|
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
|
|
Callee {
|
|
bcx: bcx,
|
|
data: NamedTupleConstructor(substs, 0)
|
|
}
|
|
}
|
|
def::DefFn(did, _) if match expr_ty.sty {
|
|
ty::ty_bare_fn(ref f) => f.abi == synabi::RustIntrinsic,
|
|
_ => false
|
|
} => {
|
|
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
|
|
let def_id = inline::maybe_instantiate_inline(bcx.ccx(), did);
|
|
Callee { bcx: bcx, data: Intrinsic(def_id.node, substs) }
|
|
}
|
|
def::DefFn(did, _) | def::DefMethod(did, _, def::FromImpl(_)) |
|
|
def::DefStaticMethod(did, def::FromImpl(_)) => {
|
|
fn_callee(bcx, trans_fn_ref(bcx, did, ExprId(ref_expr.id)))
|
|
}
|
|
def::DefStaticMethod(meth_did, def::FromTrait(trait_did)) |
|
|
def::DefMethod(meth_did, _, def::FromTrait(trait_did)) => {
|
|
fn_callee(bcx, meth::trans_static_method_callee(bcx, meth_did,
|
|
trait_did,
|
|
ref_expr.id))
|
|
}
|
|
def::DefVariant(tid, vid, _) => {
|
|
let vinfo = ty::enum_variant_with_id(bcx.tcx(), tid, vid);
|
|
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
|
|
|
|
// Nullary variants are not callable
|
|
assert!(vinfo.args.len() > 0u);
|
|
|
|
Callee {
|
|
bcx: bcx,
|
|
data: NamedTupleConstructor(substs, vinfo.disr_val)
|
|
}
|
|
}
|
|
def::DefStruct(_) => {
|
|
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
|
|
Callee {
|
|
bcx: bcx,
|
|
data: NamedTupleConstructor(substs, 0)
|
|
}
|
|
}
|
|
def::DefStatic(..) |
|
|
def::DefConst(..) |
|
|
def::DefLocal(..) |
|
|
def::DefUpvar(..) => {
|
|
datum_callee(bcx, ref_expr)
|
|
}
|
|
def::DefMod(..) | def::DefForeignMod(..) | def::DefTrait(..) |
|
|
def::DefTy(..) | def::DefPrimTy(..) | def::DefAssociatedTy(..) |
|
|
def::DefUse(..) | def::DefTyParamBinder(..) |
|
|
def::DefRegion(..) | def::DefLabel(..) | def::DefTyParam(..) |
|
|
def::DefSelfTy(..) => {
|
|
bcx.tcx().sess.span_bug(
|
|
ref_expr.span,
|
|
format!("cannot translate def {} \
|
|
to a callable thing!", def).as_slice());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Translates a reference (with id `ref_id`) to the fn/method with id `def_id` into a function
|
|
/// pointer. This may require monomorphization or inlining.
|
|
pub fn trans_fn_ref(bcx: Block, def_id: ast::DefId, node: ExprOrMethodCall) -> ValueRef {
|
|
let _icx = push_ctxt("trans_fn_ref");
|
|
|
|
let substs = node_id_substs(bcx, node);
|
|
debug!("trans_fn_ref(def_id={}, node={}, substs={})",
|
|
def_id.repr(bcx.tcx()),
|
|
node,
|
|
substs.repr(bcx.tcx()));
|
|
trans_fn_ref_with_substs(bcx, def_id, node, substs)
|
|
}
|
|
|
|
fn trans_fn_ref_with_substs_to_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
def_id: ast::DefId,
|
|
ref_id: ast::NodeId,
|
|
substs: subst::Substs<'tcx>)
|
|
-> Callee<'blk, 'tcx> {
|
|
Callee {
|
|
bcx: bcx,
|
|
data: Fn(trans_fn_ref_with_substs(bcx,
|
|
def_id,
|
|
ExprId(ref_id),
|
|
substs)),
|
|
}
|
|
}
|
|
|
|
/// Translates the adapter that deconstructs a `Box<Trait>` object into
|
|
/// `Trait` so that a by-value self method can be called.
|
|
pub fn trans_unboxing_shim<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
llshimmedfn: ValueRef,
|
|
fty: &ty::BareFnTy<'tcx>,
|
|
method_id: ast::DefId,
|
|
substs: &subst::Substs<'tcx>)
|
|
-> ValueRef {
|
|
let _icx = push_ctxt("trans_unboxing_shim");
|
|
let ccx = bcx.ccx();
|
|
let tcx = bcx.tcx();
|
|
|
|
let fty = fty.subst(tcx, substs);
|
|
|
|
// Transform the self type to `Box<self_type>`.
|
|
let self_type = fty.sig.inputs[0];
|
|
let boxed_self_type = ty::mk_uniq(tcx, self_type);
|
|
let boxed_function_type = ty::FnSig {
|
|
inputs: fty.sig.inputs.iter().enumerate().map(|(i, typ)| {
|
|
if i == 0 {
|
|
boxed_self_type
|
|
} else {
|
|
*typ
|
|
}
|
|
}).collect(),
|
|
output: fty.sig.output,
|
|
variadic: false,
|
|
};
|
|
let boxed_function_type = ty::BareFnTy {
|
|
fn_style: fty.fn_style,
|
|
abi: fty.abi,
|
|
sig: boxed_function_type,
|
|
};
|
|
let boxed_function_type = ty::mk_bare_fn(tcx, boxed_function_type);
|
|
let function_type = match fty.abi {
|
|
synabi::RustCall => {
|
|
// We're passing through to a RustCall ABI function, but
|
|
// because the shim will already perform untupling, we
|
|
// need to pretend the shimmed function does not use
|
|
// RustCall so the untupled arguments can be passed
|
|
// through verbatim. This is kind of ugly.
|
|
let fake_ty = ty::FnSig {
|
|
inputs: type_of::untuple_arguments_if_necessary(ccx,
|
|
fty.sig.inputs.as_slice(),
|
|
fty.abi),
|
|
output: fty.sig.output,
|
|
variadic: false,
|
|
};
|
|
let fake_ty = ty::BareFnTy {
|
|
fn_style: fty.fn_style,
|
|
abi: synabi::Rust,
|
|
sig: fake_ty,
|
|
};
|
|
ty::mk_bare_fn(tcx, fake_ty)
|
|
}
|
|
_ => {
|
|
ty::mk_bare_fn(tcx, fty)
|
|
}
|
|
};
|
|
|
|
let function_name = ty::with_path(tcx, method_id, |path| {
|
|
link::mangle_internal_name_by_path_and_seq(path, "unboxing_shim")
|
|
});
|
|
let llfn = decl_internal_rust_fn(ccx,
|
|
boxed_function_type,
|
|
function_name.as_slice());
|
|
|
|
let block_arena = TypedArena::new();
|
|
let empty_param_substs = Substs::trans_empty();
|
|
let return_type = ty::ty_fn_ret(boxed_function_type);
|
|
let fcx = new_fn_ctxt(ccx,
|
|
llfn,
|
|
ast::DUMMY_NODE_ID,
|
|
false,
|
|
return_type,
|
|
&empty_param_substs,
|
|
None,
|
|
&block_arena);
|
|
let mut bcx = init_function(&fcx, false, return_type);
|
|
|
|
// Create the substituted versions of the self type.
|
|
let arg_scope = fcx.push_custom_cleanup_scope();
|
|
let arg_scope_id = cleanup::CustomScope(arg_scope);
|
|
let boxed_self_type = ty::ty_fn_args(boxed_function_type)[0];
|
|
let arg_types = ty::ty_fn_args(function_type);
|
|
let self_type = arg_types[0];
|
|
let boxed_self_kind = arg_kind(&fcx, boxed_self_type);
|
|
|
|
// Create a datum for self.
|
|
let llboxedself = get_param(fcx.llfn, fcx.arg_pos(0) as u32);
|
|
let llboxedself = Datum::new(llboxedself,
|
|
boxed_self_type,
|
|
boxed_self_kind);
|
|
let boxed_self =
|
|
unpack_datum!(bcx,
|
|
llboxedself.to_lvalue_datum_in_scope(bcx,
|
|
"boxedself",
|
|
arg_scope_id));
|
|
|
|
// This `Load` is needed because lvalue data are always by-ref.
|
|
let llboxedself = Load(bcx, boxed_self.val);
|
|
|
|
let llself = if type_is_immediate(ccx, self_type) {
|
|
let llboxedself = Load(bcx, llboxedself);
|
|
immediate_rvalue(llboxedself, self_type)
|
|
} else {
|
|
let llself = rvalue_scratch_datum(bcx, self_type, "self");
|
|
memcpy_ty(bcx, llself.val, llboxedself, self_type);
|
|
llself
|
|
};
|
|
|
|
// Make sure we don't free the box twice!
|
|
boxed_self.kind.post_store(bcx, boxed_self.val, boxed_self_type);
|
|
|
|
// Schedule a cleanup to free the box.
|
|
fcx.schedule_free_value(arg_scope_id,
|
|
llboxedself,
|
|
cleanup::HeapExchange,
|
|
self_type);
|
|
|
|
// Now call the function.
|
|
let mut llshimmedargs = vec!(llself.val);
|
|
for i in range(1, arg_types.len()) {
|
|
llshimmedargs.push(get_param(fcx.llfn, fcx.arg_pos(i) as u32));
|
|
}
|
|
assert!(!fcx.needs_ret_allocas);
|
|
let dest = fcx.llretslotptr.get().map(|_|
|
|
expr::SaveIn(fcx.get_ret_slot(bcx, return_type, "ret_slot"))
|
|
);
|
|
bcx = trans_call_inner(bcx,
|
|
None,
|
|
function_type,
|
|
|bcx, _| {
|
|
Callee {
|
|
bcx: bcx,
|
|
data: Fn(llshimmedfn),
|
|
}
|
|
},
|
|
ArgVals(llshimmedargs.as_slice()),
|
|
dest).bcx;
|
|
|
|
bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_scope);
|
|
finish_fn(&fcx, bcx, return_type);
|
|
|
|
llfn
|
|
}
|
|
|
|
/// Translates a reference to a fn/method item, monomorphizing and
|
|
/// inlining as it goes.
|
|
///
|
|
/// # Parameters
|
|
///
|
|
/// - `bcx`: the current block where the reference to the fn occurs
|
|
/// - `def_id`: def id of the fn or method item being referenced
|
|
/// - `node`: node id of the reference to the fn/method, if applicable.
|
|
/// This parameter may be zero; but, if so, the resulting value may not
|
|
/// have the right type, so it must be cast before being used.
|
|
/// - `substs`: values for each of the fn/method's parameters
|
|
pub fn trans_fn_ref_with_substs<'blk, 'tcx>(
|
|
bcx: Block<'blk, 'tcx>, //
|
|
def_id: ast::DefId, // def id of fn
|
|
node: ExprOrMethodCall, // node id of use of fn; may be zero if N/A
|
|
substs: subst::Substs<'tcx>) // vtables for the call
|
|
-> ValueRef
|
|
{
|
|
let _icx = push_ctxt("trans_fn_ref_with_substs");
|
|
let ccx = bcx.ccx();
|
|
let tcx = bcx.tcx();
|
|
|
|
debug!("trans_fn_ref_with_substs(bcx={}, def_id={}, node={}, \
|
|
substs={})",
|
|
bcx.to_str(),
|
|
def_id.repr(tcx),
|
|
node,
|
|
substs.repr(tcx));
|
|
|
|
assert!(substs.types.all(|t| !ty::type_needs_infer(*t)));
|
|
assert!(substs.types.all(|t| !ty::type_has_escaping_regions(*t)));
|
|
let substs = substs.erase_regions();
|
|
|
|
// Load the info for the appropriate trait if necessary.
|
|
match ty::trait_of_item(tcx, def_id) {
|
|
None => {}
|
|
Some(trait_id) => {
|
|
ty::populate_implementations_for_trait_if_necessary(tcx, trait_id)
|
|
}
|
|
}
|
|
|
|
// We need to do a bunch of special handling for default methods.
|
|
// We need to modify the def_id and our substs in order to monomorphize
|
|
// the function.
|
|
let (is_default, def_id, substs) = match ty::provided_source(tcx, def_id) {
|
|
None => (false, def_id, substs),
|
|
Some(source_id) => {
|
|
// There are two relevant substitutions when compiling
|
|
// default methods. First, there is the substitution for
|
|
// the type parameters of the impl we are using and the
|
|
// method we are calling. This substitution is the substs
|
|
// argument we already have.
|
|
// In order to compile a default method, though, we need
|
|
// to consider another substitution: the substitution for
|
|
// the type parameters on trait; the impl we are using
|
|
// implements the trait at some particular type
|
|
// parameters, and we need to substitute for those first.
|
|
// So, what we need to do is find this substitution and
|
|
// compose it with the one we already have.
|
|
|
|
let impl_id = ty::impl_or_trait_item(tcx, def_id).container()
|
|
.id();
|
|
let impl_or_trait_item = ty::impl_or_trait_item(tcx, source_id);
|
|
match impl_or_trait_item {
|
|
ty::MethodTraitItem(method) => {
|
|
let trait_ref = ty::impl_trait_ref(tcx, impl_id).unwrap();
|
|
let trait_ref = ty::erase_late_bound_regions(tcx, &trait_ref);
|
|
|
|
// Compute the first substitution
|
|
let first_subst =
|
|
make_substs_for_receiver_types(tcx, &*trait_ref, &*method)
|
|
.erase_regions();
|
|
|
|
// And compose them
|
|
let new_substs = first_subst.subst(tcx, &substs);
|
|
|
|
debug!("trans_fn_with_vtables - default method: \
|
|
substs = {}, trait_subst = {}, \
|
|
first_subst = {}, new_subst = {}",
|
|
substs.repr(tcx), trait_ref.substs.repr(tcx),
|
|
first_subst.repr(tcx), new_substs.repr(tcx));
|
|
|
|
(true, source_id, new_substs)
|
|
}
|
|
ty::TypeTraitItem(_) => {
|
|
bcx.tcx().sess.bug("trans_fn_ref_with_vtables() tried \
|
|
to translate an associated type?!")
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// If this is an unboxed closure, redirect to it.
|
|
match closure::get_or_create_declaration_if_unboxed_closure(bcx,
|
|
def_id,
|
|
&substs) {
|
|
None => {}
|
|
Some(llfn) => return llfn,
|
|
}
|
|
|
|
// Check whether this fn has an inlined copy and, if so, redirect
|
|
// def_id to the local id of the inlined copy.
|
|
let def_id = inline::maybe_instantiate_inline(ccx, def_id);
|
|
|
|
// We must monomorphise if the fn has type parameters, is a default method,
|
|
// or is a named tuple constructor.
|
|
let must_monomorphise = if !substs.types.is_empty() || is_default {
|
|
true
|
|
} else if def_id.krate == ast::LOCAL_CRATE {
|
|
let map_node = session::expect(
|
|
ccx.sess(),
|
|
tcx.map.find(def_id.node),
|
|
|| "local item should be in ast map".to_string());
|
|
|
|
match map_node {
|
|
ast_map::NodeVariant(v) => match v.node.kind {
|
|
ast::TupleVariantKind(ref args) => args.len() > 0,
|
|
_ => false
|
|
},
|
|
ast_map::NodeStructCtor(_) => true,
|
|
_ => false
|
|
}
|
|
} else {
|
|
false
|
|
};
|
|
|
|
// Create a monomorphic version of generic functions
|
|
if must_monomorphise {
|
|
// Should be either intra-crate or inlined.
|
|
assert_eq!(def_id.krate, ast::LOCAL_CRATE);
|
|
|
|
let opt_ref_id = match node {
|
|
ExprId(id) => if id != 0 { Some(id) } else { None },
|
|
MethodCall(_) => None,
|
|
};
|
|
|
|
let (val, must_cast) =
|
|
monomorphize::monomorphic_fn(ccx, def_id, &substs, opt_ref_id);
|
|
let mut val = val;
|
|
if must_cast && node != ExprId(0) {
|
|
// Monotype of the REFERENCE to the function (type params
|
|
// are subst'd)
|
|
let ref_ty = match node {
|
|
ExprId(id) => node_id_type(bcx, id),
|
|
MethodCall(method_call) => {
|
|
let t = (*bcx.tcx().method_map.borrow())[method_call].ty;
|
|
monomorphize_type(bcx, t)
|
|
}
|
|
};
|
|
|
|
val = PointerCast(
|
|
bcx, val, type_of::type_of_fn_from_ty(ccx, ref_ty).ptr_to());
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// Polytype of the function item (may have type params)
|
|
let fn_tpt = ty::lookup_item_type(tcx, def_id);
|
|
|
|
// Find the actual function pointer.
|
|
let mut val = {
|
|
if def_id.krate == ast::LOCAL_CRATE {
|
|
// Internal reference.
|
|
get_item_val(ccx, def_id.node)
|
|
} else {
|
|
// External reference.
|
|
trans_external_path(ccx, def_id, fn_tpt.ty)
|
|
}
|
|
};
|
|
|
|
// This is subtle and surprising, but sometimes we have to bitcast
|
|
// the resulting fn pointer. The reason has to do with external
|
|
// functions. If you have two crates that both bind the same C
|
|
// library, they may not use precisely the same types: for
|
|
// example, they will probably each declare their own structs,
|
|
// which are distinct types from LLVM's point of view (nominal
|
|
// types).
|
|
//
|
|
// Now, if those two crates are linked into an application, and
|
|
// they contain inlined code, you can wind up with a situation
|
|
// where both of those functions wind up being loaded into this
|
|
// application simultaneously. In that case, the same function
|
|
// (from LLVM's point of view) requires two types. But of course
|
|
// LLVM won't allow one function to have two types.
|
|
//
|
|
// What we currently do, therefore, is declare the function with
|
|
// one of the two types (whichever happens to come first) and then
|
|
// bitcast as needed when the function is referenced to make sure
|
|
// it has the type we expect.
|
|
//
|
|
// This can occur on either a crate-local or crate-external
|
|
// reference. It also occurs when testing libcore and in some
|
|
// other weird situations. Annoying.
|
|
let llty = type_of::type_of_fn_from_ty(ccx, fn_tpt.ty);
|
|
let llptrty = llty.ptr_to();
|
|
if val_ty(val) != llptrty {
|
|
debug!("trans_fn_ref_with_vtables(): casting pointer!");
|
|
val = BitCast(bcx, val, llptrty);
|
|
} else {
|
|
debug!("trans_fn_ref_with_vtables(): not casting pointer!");
|
|
}
|
|
|
|
val
|
|
}
|
|
|
|
// ______________________________________________________________________
|
|
// Translating calls
|
|
|
|
pub fn trans_call<'a, 'blk, 'tcx>(in_cx: Block<'blk, 'tcx>,
|
|
call_ex: &ast::Expr,
|
|
f: &ast::Expr,
|
|
args: CallArgs<'a, 'tcx>,
|
|
dest: expr::Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_call");
|
|
trans_call_inner(in_cx,
|
|
Some(common::expr_info(call_ex)),
|
|
expr_ty(in_cx, f),
|
|
|cx, _| trans(cx, f),
|
|
args,
|
|
Some(dest)).bcx
|
|
}
|
|
|
|
pub fn trans_method_call<'a, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
call_ex: &ast::Expr,
|
|
rcvr: &ast::Expr,
|
|
args: CallArgs<'a, 'tcx>,
|
|
dest: expr::Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_method_call");
|
|
debug!("trans_method_call(call_ex={})", call_ex.repr(bcx.tcx()));
|
|
let method_call = MethodCall::expr(call_ex.id);
|
|
let method_ty = (*bcx.tcx().method_map.borrow())[method_call].ty;
|
|
trans_call_inner(
|
|
bcx,
|
|
Some(common::expr_info(call_ex)),
|
|
monomorphize_type(bcx, method_ty),
|
|
|cx, arg_cleanup_scope| {
|
|
meth::trans_method_callee(cx, method_call, Some(rcvr), arg_cleanup_scope)
|
|
},
|
|
args,
|
|
Some(dest)).bcx
|
|
}
|
|
|
|
pub fn trans_lang_call<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
did: ast::DefId,
|
|
args: &[ValueRef],
|
|
dest: Option<expr::Dest>)
|
|
-> Result<'blk, 'tcx> {
|
|
let fty = if did.krate == ast::LOCAL_CRATE {
|
|
ty::node_id_to_type(bcx.tcx(), did.node)
|
|
} else {
|
|
csearch::get_type(bcx.tcx(), did).ty
|
|
};
|
|
callee::trans_call_inner(bcx,
|
|
None,
|
|
fty,
|
|
|bcx, _| {
|
|
trans_fn_ref_with_substs_to_callee(bcx,
|
|
did,
|
|
0,
|
|
subst::Substs::trans_empty())
|
|
},
|
|
ArgVals(args),
|
|
dest)
|
|
}
|
|
|
|
/// This behemoth of a function translates function calls. Unfortunately, in order to generate more
|
|
/// efficient LLVM output at -O0, it has quite a complex signature (refactoring this into two
|
|
/// functions seems like a good idea).
|
|
///
|
|
/// In particular, for lang items, it is invoked with a dest of None, and in that case the return
|
|
/// value contains the result of the fn. The lang item must not return a structural type or else
|
|
/// all heck breaks loose.
|
|
///
|
|
/// For non-lang items, `dest` is always Some, and hence the result is written into memory
|
|
/// somewhere. Nonetheless we return the actual return value of the function.
|
|
pub fn trans_call_inner<'a, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
call_info: Option<NodeInfo>,
|
|
callee_ty: Ty<'tcx>,
|
|
get_callee: |bcx: Block<'blk, 'tcx>,
|
|
arg_cleanup_scope: cleanup::ScopeId|
|
|
-> Callee<'blk, 'tcx>,
|
|
args: CallArgs<'a, 'tcx>,
|
|
dest: Option<expr::Dest>)
|
|
-> Result<'blk, 'tcx> {
|
|
// Introduce a temporary cleanup scope that will contain cleanups
|
|
// for the arguments while they are being evaluated. The purpose
|
|
// this cleanup is to ensure that, should a panic occur while
|
|
// evaluating argument N, the values for arguments 0...N-1 are all
|
|
// cleaned up. If no panic occurs, the values are handed off to
|
|
// the callee, and hence none of the cleanups in this temporary
|
|
// scope will ever execute.
|
|
let fcx = bcx.fcx;
|
|
let ccx = fcx.ccx;
|
|
let arg_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
|
|
let callee = get_callee(bcx, cleanup::CustomScope(arg_cleanup_scope));
|
|
let mut bcx = callee.bcx;
|
|
|
|
let (abi, ret_ty) = match callee_ty.sty {
|
|
ty::ty_bare_fn(ref f) => (f.abi, f.sig.output),
|
|
ty::ty_closure(ref f) => (f.abi, f.sig.output),
|
|
_ => panic!("expected bare rust fn or closure in trans_call_inner")
|
|
};
|
|
|
|
let (llfn, llenv, llself) = match callee.data {
|
|
Fn(llfn) => {
|
|
(llfn, None, None)
|
|
}
|
|
TraitItem(d) => {
|
|
(d.llfn, None, Some(d.llself))
|
|
}
|
|
Closure(d) => {
|
|
// Closures are represented as (llfn, llclosure) pair:
|
|
// load the requisite values out.
|
|
let pair = d.to_llref();
|
|
let llfn = GEPi(bcx, pair, &[0u, abi::FAT_PTR_ADDR]);
|
|
let llfn = Load(bcx, llfn);
|
|
let llenv = GEPi(bcx, pair, &[0u, abi::FAT_PTR_EXTRA]);
|
|
let llenv = Load(bcx, llenv);
|
|
(llfn, Some(llenv), None)
|
|
}
|
|
Intrinsic(node, substs) => {
|
|
assert!(abi == synabi::RustIntrinsic);
|
|
assert!(dest.is_some());
|
|
|
|
let call_info = call_info.expect("no call info for intrinsic call?");
|
|
return intrinsic::trans_intrinsic_call(bcx, node, callee_ty,
|
|
arg_cleanup_scope, args,
|
|
dest.unwrap(), substs,
|
|
call_info);
|
|
}
|
|
NamedTupleConstructor(substs, disr) => {
|
|
assert!(dest.is_some());
|
|
fcx.pop_custom_cleanup_scope(arg_cleanup_scope);
|
|
|
|
let ctor_ty = callee_ty.subst(bcx.tcx(), &substs);
|
|
return base::trans_named_tuple_constructor(bcx,
|
|
ctor_ty,
|
|
disr,
|
|
args,
|
|
dest.unwrap(),
|
|
call_info);
|
|
}
|
|
};
|
|
|
|
// Intrinsics should not become actual functions.
|
|
// We trans them in place in `trans_intrinsic_call`
|
|
assert!(abi != synabi::RustIntrinsic);
|
|
|
|
let is_rust_fn = abi == synabi::Rust || abi == synabi::RustCall;
|
|
|
|
// Generate a location to store the result. If the user does
|
|
// not care about the result, just make a stack slot.
|
|
let opt_llretslot = dest.and_then(|dest| match dest {
|
|
expr::SaveIn(dst) => Some(dst),
|
|
expr::Ignore => {
|
|
let ret_ty = match ret_ty {
|
|
ty::FnConverging(ret_ty) => ret_ty,
|
|
ty::FnDiverging => ty::mk_nil(ccx.tcx())
|
|
};
|
|
if !is_rust_fn ||
|
|
type_of::return_uses_outptr(ccx, ret_ty) ||
|
|
ty::type_needs_drop(bcx.tcx(), ret_ty) {
|
|
// Push the out-pointer if we use an out-pointer for this
|
|
// return type, otherwise push "undef".
|
|
if type_is_zero_size(ccx, ret_ty) {
|
|
let llty = type_of::type_of(ccx, ret_ty);
|
|
Some(C_undef(llty.ptr_to()))
|
|
} else {
|
|
Some(alloc_ty(bcx, ret_ty, "__llret"))
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
});
|
|
|
|
let mut llresult = unsafe {
|
|
llvm::LLVMGetUndef(Type::nil(ccx).ptr_to().to_ref())
|
|
};
|
|
|
|
// The code below invokes the function, using either the Rust
|
|
// conventions (if it is a rust fn) or the native conventions
|
|
// (otherwise). The important part is that, when all is said
|
|
// and done, either the return value of the function will have been
|
|
// written in opt_llretslot (if it is Some) or `llresult` will be
|
|
// set appropriately (otherwise).
|
|
if is_rust_fn {
|
|
let mut llargs = Vec::new();
|
|
|
|
if let (ty::FnConverging(ret_ty), Some(llretslot)) = (ret_ty, opt_llretslot) {
|
|
if type_of::return_uses_outptr(ccx, ret_ty) {
|
|
llargs.push(llretslot);
|
|
}
|
|
}
|
|
|
|
// Push the environment (or a trait object's self).
|
|
match (llenv, llself) {
|
|
(Some(llenv), None) => llargs.push(llenv),
|
|
(None, Some(llself)) => llargs.push(llself),
|
|
_ => {}
|
|
}
|
|
|
|
// Push the arguments.
|
|
bcx = trans_args(bcx,
|
|
args,
|
|
callee_ty,
|
|
&mut llargs,
|
|
cleanup::CustomScope(arg_cleanup_scope),
|
|
llself.is_some(),
|
|
abi);
|
|
|
|
fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean();
|
|
|
|
// Invoke the actual rust fn and update bcx/llresult.
|
|
let (llret, b) = base::invoke(bcx,
|
|
llfn,
|
|
llargs,
|
|
callee_ty,
|
|
call_info,
|
|
dest.is_none());
|
|
bcx = b;
|
|
llresult = llret;
|
|
|
|
// If the Rust convention for this type is return via
|
|
// the return value, copy it into llretslot.
|
|
match (opt_llretslot, ret_ty) {
|
|
(Some(llretslot), ty::FnConverging(ret_ty)) => {
|
|
if !type_of::return_uses_outptr(bcx.ccx(), ret_ty) &&
|
|
!type_is_zero_size(bcx.ccx(), ret_ty)
|
|
{
|
|
store_ty(bcx, llret, llretslot, ret_ty)
|
|
}
|
|
}
|
|
(_, _) => {}
|
|
}
|
|
} else {
|
|
// Lang items are the only case where dest is None, and
|
|
// they are always Rust fns.
|
|
assert!(dest.is_some());
|
|
|
|
let mut llargs = Vec::new();
|
|
let arg_tys = match args {
|
|
ArgExprs(a) => a.iter().map(|x| expr_ty(bcx, &**x)).collect(),
|
|
_ => panic!("expected arg exprs.")
|
|
};
|
|
bcx = trans_args(bcx,
|
|
args,
|
|
callee_ty,
|
|
&mut llargs,
|
|
cleanup::CustomScope(arg_cleanup_scope),
|
|
false,
|
|
abi);
|
|
fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean();
|
|
|
|
bcx = foreign::trans_native_call(bcx, callee_ty,
|
|
llfn, opt_llretslot.unwrap(),
|
|
llargs.as_slice(), arg_tys);
|
|
}
|
|
|
|
fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_cleanup_scope);
|
|
|
|
// If the caller doesn't care about the result of this fn call,
|
|
// drop the temporary slot we made.
|
|
match (dest, opt_llretslot, ret_ty) {
|
|
(Some(expr::Ignore), Some(llretslot), ty::FnConverging(ret_ty)) => {
|
|
// drop the value if it is not being saved.
|
|
bcx = glue::drop_ty(bcx, llretslot, ret_ty, call_info);
|
|
call_lifetime_end(bcx, llretslot);
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
if ret_ty == ty::FnDiverging {
|
|
Unreachable(bcx);
|
|
}
|
|
|
|
Result::new(bcx, llresult)
|
|
}
|
|
|
|
pub enum CallArgs<'a, 'tcx> {
|
|
// Supply value of arguments as a list of expressions that must be
|
|
// translated. This is used in the common case of `foo(bar, qux)`.
|
|
ArgExprs(&'a [P<ast::Expr>]),
|
|
|
|
// Supply value of arguments as a list of LLVM value refs; frequently
|
|
// used with lang items and so forth, when the argument is an internal
|
|
// value.
|
|
ArgVals(&'a [ValueRef]),
|
|
|
|
// For overloaded operators: `(lhs, Vec(rhs, rhs_id))`. `lhs`
|
|
// is the left-hand-side and `rhs/rhs_id` is the datum/expr-id of
|
|
// the right-hand-side arguments (if any).
|
|
ArgOverloadedOp(Datum<'tcx, Expr>, Vec<(Datum<'tcx, Expr>, ast::NodeId)>),
|
|
|
|
// Supply value of arguments as a list of expressions that must be
|
|
// translated, for overloaded call operators.
|
|
ArgOverloadedCall(Vec<&'a ast::Expr>),
|
|
}
|
|
|
|
fn trans_args_under_call_abi<'blk, 'tcx>(
|
|
mut bcx: Block<'blk, 'tcx>,
|
|
arg_exprs: &[P<ast::Expr>],
|
|
fn_ty: Ty<'tcx>,
|
|
llargs: &mut Vec<ValueRef>,
|
|
arg_cleanup_scope: cleanup::ScopeId,
|
|
ignore_self: bool)
|
|
-> Block<'blk, 'tcx> {
|
|
// Translate the `self` argument first.
|
|
if !ignore_self {
|
|
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &*arg_exprs[0]));
|
|
llargs.push(unpack_result!(bcx, {
|
|
trans_arg_datum(bcx,
|
|
ty::ty_fn_args(fn_ty)[0],
|
|
arg_datum,
|
|
arg_cleanup_scope,
|
|
DontAutorefArg)
|
|
}))
|
|
}
|
|
|
|
// Now untuple the rest of the arguments.
|
|
let tuple_expr = &arg_exprs[1];
|
|
let tuple_type = node_id_type(bcx, tuple_expr.id);
|
|
|
|
match tuple_type.sty {
|
|
ty::ty_tup(ref field_types) => {
|
|
let tuple_datum = unpack_datum!(bcx,
|
|
expr::trans(bcx, &**tuple_expr));
|
|
let tuple_lvalue_datum =
|
|
unpack_datum!(bcx,
|
|
tuple_datum.to_lvalue_datum(bcx,
|
|
"args",
|
|
tuple_expr.id));
|
|
let repr = adt::represent_type(bcx.ccx(), tuple_type);
|
|
let repr_ptr = &*repr;
|
|
for i in range(0, field_types.len()) {
|
|
let arg_datum = tuple_lvalue_datum.get_element(
|
|
bcx,
|
|
field_types[i],
|
|
|srcval| {
|
|
adt::trans_field_ptr(bcx, repr_ptr, srcval, 0, i)
|
|
});
|
|
let arg_datum = arg_datum.to_expr_datum();
|
|
let arg_datum =
|
|
unpack_datum!(bcx, arg_datum.to_rvalue_datum(bcx, "arg"));
|
|
let arg_datum =
|
|
unpack_datum!(bcx, arg_datum.to_appropriate_datum(bcx));
|
|
llargs.push(arg_datum.add_clean(bcx.fcx, arg_cleanup_scope));
|
|
}
|
|
}
|
|
_ => {
|
|
bcx.sess().span_bug(tuple_expr.span,
|
|
"argument to `.call()` wasn't a tuple?!")
|
|
}
|
|
};
|
|
|
|
bcx
|
|
}
|
|
|
|
fn trans_overloaded_call_args<'blk, 'tcx>(
|
|
mut bcx: Block<'blk, 'tcx>,
|
|
arg_exprs: Vec<&ast::Expr>,
|
|
fn_ty: Ty<'tcx>,
|
|
llargs: &mut Vec<ValueRef>,
|
|
arg_cleanup_scope: cleanup::ScopeId,
|
|
ignore_self: bool)
|
|
-> Block<'blk, 'tcx> {
|
|
// Translate the `self` argument first.
|
|
let arg_tys = ty::ty_fn_args(fn_ty);
|
|
if !ignore_self {
|
|
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, arg_exprs[0]));
|
|
llargs.push(unpack_result!(bcx, {
|
|
trans_arg_datum(bcx,
|
|
arg_tys[0],
|
|
arg_datum,
|
|
arg_cleanup_scope,
|
|
DontAutorefArg)
|
|
}))
|
|
}
|
|
|
|
// Now untuple the rest of the arguments.
|
|
let tuple_type = arg_tys[1];
|
|
match tuple_type.sty {
|
|
ty::ty_tup(ref field_types) => {
|
|
for (i, &field_type) in field_types.iter().enumerate() {
|
|
let arg_datum =
|
|
unpack_datum!(bcx, expr::trans(bcx, arg_exprs[i + 1]));
|
|
llargs.push(unpack_result!(bcx, {
|
|
trans_arg_datum(bcx,
|
|
field_type,
|
|
arg_datum,
|
|
arg_cleanup_scope,
|
|
DontAutorefArg)
|
|
}))
|
|
}
|
|
}
|
|
_ => {
|
|
bcx.sess().span_bug(arg_exprs[0].span,
|
|
"argument to `.call()` wasn't a tuple?!")
|
|
}
|
|
};
|
|
|
|
bcx
|
|
}
|
|
|
|
pub fn trans_args<'a, 'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
|
args: CallArgs<'a, 'tcx>,
|
|
fn_ty: Ty<'tcx>,
|
|
llargs: &mut Vec<ValueRef>,
|
|
arg_cleanup_scope: cleanup::ScopeId,
|
|
ignore_self: bool,
|
|
abi: synabi::Abi)
|
|
-> Block<'blk, 'tcx> {
|
|
debug!("trans_args(abi={})", abi);
|
|
|
|
let _icx = push_ctxt("trans_args");
|
|
let arg_tys = ty::ty_fn_args(fn_ty);
|
|
let variadic = ty::fn_is_variadic(fn_ty);
|
|
|
|
let mut bcx = cx;
|
|
|
|
// First we figure out the caller's view of the types of the arguments.
|
|
// This will be needed if this is a generic call, because the callee has
|
|
// to cast her view of the arguments to the caller's view.
|
|
match args {
|
|
ArgExprs(arg_exprs) => {
|
|
if abi == synabi::RustCall {
|
|
// This is only used for direct calls to the `call`,
|
|
// `call_mut` or `call_once` functions.
|
|
return trans_args_under_call_abi(cx,
|
|
arg_exprs,
|
|
fn_ty,
|
|
llargs,
|
|
arg_cleanup_scope,
|
|
ignore_self)
|
|
}
|
|
|
|
let num_formal_args = arg_tys.len();
|
|
for (i, arg_expr) in arg_exprs.iter().enumerate() {
|
|
if i == 0 && ignore_self {
|
|
continue;
|
|
}
|
|
let arg_ty = if i >= num_formal_args {
|
|
assert!(variadic);
|
|
expr_ty_adjusted(cx, &**arg_expr)
|
|
} else {
|
|
arg_tys[i]
|
|
};
|
|
|
|
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &**arg_expr));
|
|
llargs.push(unpack_result!(bcx, {
|
|
trans_arg_datum(bcx, arg_ty, arg_datum,
|
|
arg_cleanup_scope,
|
|
DontAutorefArg)
|
|
}));
|
|
}
|
|
}
|
|
ArgOverloadedCall(arg_exprs) => {
|
|
return trans_overloaded_call_args(cx,
|
|
arg_exprs,
|
|
fn_ty,
|
|
llargs,
|
|
arg_cleanup_scope,
|
|
ignore_self)
|
|
}
|
|
ArgOverloadedOp(lhs, rhs) => {
|
|
assert!(!variadic);
|
|
|
|
llargs.push(unpack_result!(bcx, {
|
|
trans_arg_datum(bcx, arg_tys[0], lhs,
|
|
arg_cleanup_scope,
|
|
DontAutorefArg)
|
|
}));
|
|
|
|
assert_eq!(arg_tys.len(), 1 + rhs.len());
|
|
for (rhs, rhs_id) in rhs.into_iter() {
|
|
llargs.push(unpack_result!(bcx, {
|
|
trans_arg_datum(bcx, arg_tys[1], rhs,
|
|
arg_cleanup_scope,
|
|
DoAutorefArg(rhs_id))
|
|
}));
|
|
}
|
|
}
|
|
ArgVals(vs) => {
|
|
llargs.push_all(vs);
|
|
}
|
|
}
|
|
|
|
bcx
|
|
}
|
|
|
|
pub enum AutorefArg {
|
|
DontAutorefArg,
|
|
DoAutorefArg(ast::NodeId)
|
|
}
|
|
|
|
pub fn trans_arg_datum<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
formal_arg_ty: Ty<'tcx>,
|
|
arg_datum: Datum<'tcx, Expr>,
|
|
arg_cleanup_scope: cleanup::ScopeId,
|
|
autoref_arg: AutorefArg)
|
|
-> Result<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_arg_datum");
|
|
let mut bcx = bcx;
|
|
let ccx = bcx.ccx();
|
|
|
|
debug!("trans_arg_datum({})",
|
|
formal_arg_ty.repr(bcx.tcx()));
|
|
|
|
let arg_datum_ty = arg_datum.ty;
|
|
|
|
debug!(" arg datum: {}", arg_datum.to_string(bcx.ccx()));
|
|
|
|
let mut val;
|
|
// FIXME(#3548) use the adjustments table
|
|
match autoref_arg {
|
|
DoAutorefArg(arg_id) => {
|
|
// We will pass argument by reference
|
|
// We want an lvalue, so that we can pass by reference and
|
|
let arg_datum = unpack_datum!(
|
|
bcx, arg_datum.to_lvalue_datum(bcx, "arg", arg_id));
|
|
val = arg_datum.val;
|
|
}
|
|
DontAutorefArg => {
|
|
// Make this an rvalue, since we are going to be
|
|
// passing ownership.
|
|
let arg_datum = unpack_datum!(
|
|
bcx, arg_datum.to_rvalue_datum(bcx, "arg"));
|
|
|
|
// Now that arg_datum is owned, get it into the appropriate
|
|
// mode (ref vs value).
|
|
let arg_datum = unpack_datum!(
|
|
bcx, arg_datum.to_appropriate_datum(bcx));
|
|
|
|
// Technically, ownership of val passes to the callee.
|
|
// However, we must cleanup should we panic before the
|
|
// callee is actually invoked.
|
|
val = arg_datum.add_clean(bcx.fcx, arg_cleanup_scope);
|
|
}
|
|
}
|
|
|
|
if formal_arg_ty != arg_datum_ty {
|
|
// this could happen due to e.g. subtyping
|
|
let llformal_arg_ty = type_of::type_of_explicit_arg(ccx, formal_arg_ty);
|
|
debug!("casting actual type ({}) to match formal ({})",
|
|
bcx.val_to_string(val), bcx.llty_str(llformal_arg_ty));
|
|
debug!("Rust types: {}; {}", ty_to_string(bcx.tcx(), arg_datum_ty),
|
|
ty_to_string(bcx.tcx(), formal_arg_ty));
|
|
val = PointerCast(bcx, val, llformal_arg_ty);
|
|
}
|
|
|
|
debug!("--- trans_arg_datum passing {}", bcx.val_to_string(val));
|
|
Result::new(bcx, val)
|
|
}
|