2467 lines
97 KiB
Rust
2467 lines
97 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! # Translation of Expressions
|
|
//!
|
|
//! The expr module handles translation of expressions. The most general
|
|
//! translation routine is `trans()`, which will translate an expression
|
|
//! into a datum. `trans_into()` is also available, which will translate
|
|
//! an expression and write the result directly into memory, sometimes
|
|
//! avoiding the need for a temporary stack slot. Finally,
|
|
//! `trans_to_lvalue()` is available if you'd like to ensure that the
|
|
//! result has cleanup scheduled.
|
|
//!
|
|
//! Internally, each of these functions dispatches to various other
|
|
//! expression functions depending on the kind of expression. We divide
|
|
//! up expressions into:
|
|
//!
|
|
//! - **Datum expressions:** Those that most naturally yield values.
|
|
//! Examples would be `22`, `box x`, or `a + b` (when not overloaded).
|
|
//! - **DPS expressions:** Those that most naturally write into a location
|
|
//! in memory. Examples would be `foo()` or `Point { x: 3, y: 4 }`.
|
|
//! - **Statement expressions:** That that do not generate a meaningful
|
|
//! result. Examples would be `while { ... }` or `return 44`.
|
|
//!
|
|
//! Public entry points:
|
|
//!
|
|
//! - `trans_into(bcx, expr, dest) -> bcx`: evaluates an expression,
|
|
//! storing the result into `dest`. This is the preferred form, if you
|
|
//! can manage it.
|
|
//!
|
|
//! - `trans(bcx, expr) -> DatumBlock`: evaluates an expression, yielding
|
|
//! `Datum` with the result. You can then store the datum, inspect
|
|
//! the value, etc. This may introduce temporaries if the datum is a
|
|
//! structural type.
|
|
//!
|
|
//! - `trans_to_lvalue(bcx, expr, "...") -> DatumBlock`: evaluates an
|
|
//! expression and ensures that the result has a cleanup associated with it,
|
|
//! creating a temporary stack slot if necessary.
|
|
//!
|
|
//! - `trans_var -> Datum`: looks up a local variable, upvar or static.
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
pub use self::Dest::*;
|
|
use self::lazy_binop_ty::*;
|
|
|
|
use llvm::{self, ValueRef, TypeKind};
|
|
use middle::const_qualif::ConstQualif;
|
|
use rustc::hir::def::Def;
|
|
use rustc::ty::subst::Substs;
|
|
use {_match, abi, adt, asm, base, closure, consts, controlflow};
|
|
use base::*;
|
|
use build::*;
|
|
use callee::{Callee, ArgExprs, ArgOverloadedCall, ArgOverloadedOp};
|
|
use cleanup::{self, CleanupMethods, DropHintMethods};
|
|
use common::*;
|
|
use datum::*;
|
|
use debuginfo::{self, DebugLoc, ToDebugLoc};
|
|
use glue;
|
|
use machine;
|
|
use tvec;
|
|
use type_of;
|
|
use value::Value;
|
|
use Disr;
|
|
use rustc::ty::adjustment::{AdjustDerefRef, AdjustReifyFnPointer};
|
|
use rustc::ty::adjustment::{AdjustUnsafeFnPointer, AdjustMutToConstPointer};
|
|
use rustc::ty::adjustment::CustomCoerceUnsized;
|
|
use rustc::ty::{self, Ty, TyCtxt};
|
|
use rustc::ty::MethodCall;
|
|
use rustc::ty::cast::{CastKind, CastTy};
|
|
use util::common::indenter;
|
|
use machine::{llsize_of, llsize_of_alloc};
|
|
use type_::Type;
|
|
|
|
use rustc::hir;
|
|
|
|
use syntax::ast;
|
|
use syntax::parse::token::InternedString;
|
|
use syntax_pos;
|
|
use std::fmt;
|
|
use std::mem;
|
|
|
|
// Destinations
|
|
|
|
// These are passed around by the code generating functions to track the
|
|
// destination of a computation's value.
|
|
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
pub enum Dest {
|
|
SaveIn(ValueRef),
|
|
Ignore,
|
|
}
|
|
|
|
impl fmt::Debug for Dest {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
SaveIn(v) => write!(f, "SaveIn({:?})", Value(v)),
|
|
Ignore => f.write_str("Ignore")
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This function is equivalent to `trans(bcx, expr).store_to_dest(dest)` but it may generate
|
|
/// better optimized LLVM code.
|
|
pub fn trans_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
dest: Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let mut bcx = bcx;
|
|
|
|
expr.debug_loc().apply(bcx.fcx);
|
|
|
|
if adjustment_required(bcx, expr) {
|
|
// use trans, which may be less efficient but
|
|
// which will perform the adjustments:
|
|
let datum = unpack_datum!(bcx, trans(bcx, expr));
|
|
return datum.store_to_dest(bcx, dest, expr.id);
|
|
}
|
|
|
|
let qualif = *bcx.tcx().const_qualif_map.borrow().get(&expr.id).unwrap();
|
|
if !qualif.intersects(ConstQualif::NOT_CONST | ConstQualif::NEEDS_DROP) {
|
|
if !qualif.intersects(ConstQualif::PREFER_IN_PLACE) {
|
|
if let SaveIn(lldest) = dest {
|
|
match consts::get_const_expr_as_global(bcx.ccx(), expr, qualif,
|
|
bcx.fcx.param_substs,
|
|
consts::TrueConst::No) {
|
|
Ok(global) => {
|
|
// Cast pointer to destination, because constants
|
|
// have different types.
|
|
let lldest = PointerCast(bcx, lldest, val_ty(global));
|
|
memcpy_ty(bcx, lldest, global, expr_ty_adjusted(bcx, expr));
|
|
return bcx;
|
|
},
|
|
Err(consts::ConstEvalFailure::Runtime(_)) => {
|
|
// in case const evaluation errors, translate normally
|
|
// debug assertions catch the same errors
|
|
// see RFC 1229
|
|
},
|
|
Err(consts::ConstEvalFailure::Compiletime(_)) => {
|
|
return bcx;
|
|
},
|
|
}
|
|
}
|
|
|
|
// If we see a const here, that's because it evaluates to a type with zero size. We
|
|
// should be able to just discard it, since const expressions are guaranteed not to
|
|
// have side effects. This seems to be reached through tuple struct constructors being
|
|
// passed zero-size constants.
|
|
if let hir::ExprPath(..) = expr.node {
|
|
match bcx.tcx().expect_def(expr.id) {
|
|
Def::Const(_) | Def::AssociatedConst(_) => {
|
|
assert!(type_is_zero_size(bcx.ccx(), bcx.tcx().node_id_to_type(expr.id)));
|
|
return bcx;
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
// Even if we don't have a value to emit, and the expression
|
|
// doesn't have any side-effects, we still have to translate the
|
|
// body of any closures.
|
|
// FIXME: Find a better way of handling this case.
|
|
} else {
|
|
// The only way we're going to see a `const` at this point is if
|
|
// it prefers in-place instantiation, likely because it contains
|
|
// `[x; N]` somewhere within.
|
|
match expr.node {
|
|
hir::ExprPath(..) => {
|
|
match bcx.tcx().expect_def(expr.id) {
|
|
Def::Const(did) | Def::AssociatedConst(did) => {
|
|
let empty_substs = bcx.tcx().mk_substs(Substs::empty());
|
|
let const_expr = consts::get_const_expr(bcx.ccx(), did, expr,
|
|
empty_substs);
|
|
// Temporarily get cleanup scopes out of the way,
|
|
// as they require sub-expressions to be contained
|
|
// inside the current AST scope.
|
|
// These should record no cleanups anyways, `const`
|
|
// can't have destructors.
|
|
let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(),
|
|
vec![]);
|
|
// Lock emitted debug locations to the location of
|
|
// the constant reference expression.
|
|
debuginfo::with_source_location_override(bcx.fcx,
|
|
expr.debug_loc(),
|
|
|| {
|
|
bcx = trans_into(bcx, const_expr, dest)
|
|
});
|
|
let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(),
|
|
scopes);
|
|
assert!(scopes.is_empty());
|
|
return bcx;
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!("trans_into() expr={:?}", expr);
|
|
|
|
let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
|
|
expr.id,
|
|
expr.span,
|
|
false);
|
|
bcx.fcx.push_ast_cleanup_scope(cleanup_debug_loc);
|
|
|
|
let kind = expr_kind(bcx.tcx(), expr);
|
|
bcx = match kind {
|
|
ExprKind::Lvalue | ExprKind::RvalueDatum => {
|
|
trans_unadjusted(bcx, expr).store_to_dest(dest, expr.id)
|
|
}
|
|
ExprKind::RvalueDps => {
|
|
trans_rvalue_dps_unadjusted(bcx, expr, dest)
|
|
}
|
|
ExprKind::RvalueStmt => {
|
|
trans_rvalue_stmt_unadjusted(bcx, expr)
|
|
}
|
|
};
|
|
|
|
bcx.fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id)
|
|
}
|
|
|
|
/// Translates an expression, returning a datum (and new block) encapsulating the result. When
|
|
/// possible, it is preferred to use `trans_into`, as that may avoid creating a temporary on the
|
|
/// stack.
|
|
pub fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
debug!("trans(expr={:?})", expr);
|
|
|
|
let mut bcx = bcx;
|
|
let fcx = bcx.fcx;
|
|
let qualif = *bcx.tcx().const_qualif_map.borrow().get(&expr.id).unwrap();
|
|
let adjusted_global = !qualif.intersects(ConstQualif::NON_STATIC_BORROWS);
|
|
let global = if !qualif.intersects(ConstQualif::NOT_CONST | ConstQualif::NEEDS_DROP) {
|
|
match consts::get_const_expr_as_global(bcx.ccx(), expr, qualif,
|
|
bcx.fcx.param_substs,
|
|
consts::TrueConst::No) {
|
|
Ok(global) => {
|
|
if qualif.intersects(ConstQualif::HAS_STATIC_BORROWS) {
|
|
// Is borrowed as 'static, must return lvalue.
|
|
|
|
// Cast pointer to global, because constants have different types.
|
|
let const_ty = expr_ty_adjusted(bcx, expr);
|
|
let llty = type_of::type_of(bcx.ccx(), const_ty);
|
|
let global = PointerCast(bcx, global, llty.ptr_to());
|
|
let datum = Datum::new(global, const_ty, Lvalue::new("expr::trans"));
|
|
return DatumBlock::new(bcx, datum.to_expr_datum());
|
|
}
|
|
|
|
// Otherwise, keep around and perform adjustments, if needed.
|
|
let const_ty = if adjusted_global {
|
|
expr_ty_adjusted(bcx, expr)
|
|
} else {
|
|
expr_ty(bcx, expr)
|
|
};
|
|
|
|
// This could use a better heuristic.
|
|
Some(if type_is_immediate(bcx.ccx(), const_ty) {
|
|
// Cast pointer to global, because constants have different types.
|
|
let llty = type_of::type_of(bcx.ccx(), const_ty);
|
|
let global = PointerCast(bcx, global, llty.ptr_to());
|
|
// Maybe just get the value directly, instead of loading it?
|
|
immediate_rvalue(load_ty(bcx, global, const_ty), const_ty)
|
|
} else {
|
|
let scratch = alloc_ty(bcx, const_ty, "const");
|
|
call_lifetime_start(bcx, scratch);
|
|
let lldest = if !const_ty.is_structural() {
|
|
// Cast pointer to slot, because constants have different types.
|
|
PointerCast(bcx, scratch, val_ty(global))
|
|
} else {
|
|
// In this case, memcpy_ty calls llvm.memcpy after casting both
|
|
// source and destination to i8*, so we don't need any casts.
|
|
scratch
|
|
};
|
|
memcpy_ty(bcx, lldest, global, const_ty);
|
|
Datum::new(scratch, const_ty, Rvalue::new(ByRef))
|
|
})
|
|
},
|
|
Err(consts::ConstEvalFailure::Runtime(_)) => {
|
|
// in case const evaluation errors, translate normally
|
|
// debug assertions catch the same errors
|
|
// see RFC 1229
|
|
None
|
|
},
|
|
Err(consts::ConstEvalFailure::Compiletime(_)) => {
|
|
// generate a dummy llvm value
|
|
let const_ty = expr_ty(bcx, expr);
|
|
let llty = type_of::type_of(bcx.ccx(), const_ty);
|
|
let dummy = C_undef(llty.ptr_to());
|
|
Some(Datum::new(dummy, const_ty, Rvalue::new(ByRef)))
|
|
},
|
|
}
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
|
|
expr.id,
|
|
expr.span,
|
|
false);
|
|
fcx.push_ast_cleanup_scope(cleanup_debug_loc);
|
|
let datum = match global {
|
|
Some(rvalue) => rvalue.to_expr_datum(),
|
|
None => unpack_datum!(bcx, trans_unadjusted(bcx, expr))
|
|
};
|
|
let datum = if adjusted_global {
|
|
datum // trans::consts already performed adjustments.
|
|
} else {
|
|
unpack_datum!(bcx, apply_adjustments(bcx, expr, datum))
|
|
};
|
|
bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id);
|
|
return DatumBlock::new(bcx, datum);
|
|
}
|
|
|
|
pub fn get_meta(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
|
|
StructGEP(bcx, fat_ptr, abi::FAT_PTR_EXTRA)
|
|
}
|
|
|
|
pub fn get_dataptr(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
|
|
StructGEP(bcx, fat_ptr, abi::FAT_PTR_ADDR)
|
|
}
|
|
|
|
pub fn copy_fat_ptr(bcx: Block, src_ptr: ValueRef, dst_ptr: ValueRef) {
|
|
Store(bcx, Load(bcx, get_dataptr(bcx, src_ptr)), get_dataptr(bcx, dst_ptr));
|
|
Store(bcx, Load(bcx, get_meta(bcx, src_ptr)), get_meta(bcx, dst_ptr));
|
|
}
|
|
|
|
fn adjustment_required<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr) -> bool {
|
|
let adjustment = match bcx.tcx().tables.borrow().adjustments.get(&expr.id).cloned() {
|
|
None => { return false; }
|
|
Some(adj) => adj
|
|
};
|
|
|
|
// Don't skip a conversion from Box<T> to &T, etc.
|
|
if bcx.tcx().is_overloaded_autoderef(expr.id, 0) {
|
|
return true;
|
|
}
|
|
|
|
match adjustment {
|
|
AdjustReifyFnPointer => true,
|
|
AdjustUnsafeFnPointer | AdjustMutToConstPointer => {
|
|
// purely a type-level thing
|
|
false
|
|
}
|
|
AdjustDerefRef(ref adj) => {
|
|
// We are a bit paranoid about adjustments and thus might have a re-
|
|
// borrow here which merely derefs and then refs again (it might have
|
|
// a different region or mutability, but we don't care here).
|
|
!(adj.autoderefs == 1 && adj.autoref.is_some() && adj.unsize.is_none())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper for trans that apply adjustments from `expr` to `datum`, which should be the unadjusted
|
|
/// translation of `expr`.
|
|
fn apply_adjustments<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
datum: Datum<'tcx, Expr>)
|
|
-> DatumBlock<'blk, 'tcx, Expr>
|
|
{
|
|
let mut bcx = bcx;
|
|
let mut datum = datum;
|
|
let adjustment = match bcx.tcx().tables.borrow().adjustments.get(&expr.id).cloned() {
|
|
None => {
|
|
return DatumBlock::new(bcx, datum);
|
|
}
|
|
Some(adj) => { adj }
|
|
};
|
|
debug!("unadjusted datum for expr {:?}: {:?} adjustment={:?}",
|
|
expr, datum, adjustment);
|
|
match adjustment {
|
|
AdjustReifyFnPointer => {
|
|
match datum.ty.sty {
|
|
ty::TyFnDef(def_id, substs, _) => {
|
|
datum = Callee::def(bcx.ccx(), def_id, substs)
|
|
.reify(bcx.ccx()).to_expr_datum();
|
|
}
|
|
_ => {
|
|
bug!("{} cannot be reified to a fn ptr", datum.ty)
|
|
}
|
|
}
|
|
}
|
|
AdjustUnsafeFnPointer | AdjustMutToConstPointer => {
|
|
// purely a type-level thing
|
|
}
|
|
AdjustDerefRef(ref adj) => {
|
|
let skip_reborrows = if adj.autoderefs == 1 && adj.autoref.is_some() {
|
|
// We are a bit paranoid about adjustments and thus might have a re-
|
|
// borrow here which merely derefs and then refs again (it might have
|
|
// a different region or mutability, but we don't care here).
|
|
match datum.ty.sty {
|
|
// Don't skip a conversion from Box<T> to &T, etc.
|
|
ty::TyRef(..) => {
|
|
if bcx.tcx().is_overloaded_autoderef(expr.id, 0) {
|
|
// Don't skip an overloaded deref.
|
|
0
|
|
} else {
|
|
1
|
|
}
|
|
}
|
|
_ => 0
|
|
}
|
|
} else {
|
|
0
|
|
};
|
|
|
|
if adj.autoderefs > skip_reborrows {
|
|
// Schedule cleanup.
|
|
let lval = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "auto_deref", expr.id));
|
|
datum = unpack_datum!(bcx, deref_multiple(bcx, expr,
|
|
lval.to_expr_datum(),
|
|
adj.autoderefs - skip_reborrows));
|
|
}
|
|
|
|
// (You might think there is a more elegant way to do this than a
|
|
// skip_reborrows bool, but then you remember that the borrow checker exists).
|
|
if skip_reborrows == 0 && adj.autoref.is_some() {
|
|
datum = unpack_datum!(bcx, auto_ref(bcx, datum, expr));
|
|
}
|
|
|
|
if let Some(target) = adj.unsize {
|
|
// We do not arrange cleanup ourselves; if we already are an
|
|
// L-value, then cleanup will have already been scheduled (and
|
|
// the `datum.to_rvalue_datum` call below will emit code to zero
|
|
// the drop flag when moving out of the L-value). If we are an
|
|
// R-value, then we do not need to schedule cleanup.
|
|
let source_datum = unpack_datum!(bcx,
|
|
datum.to_rvalue_datum(bcx, "__coerce_source"));
|
|
|
|
let target = bcx.monomorphize(&target);
|
|
|
|
let scratch = alloc_ty(bcx, target, "__coerce_target");
|
|
call_lifetime_start(bcx, scratch);
|
|
let target_datum = Datum::new(scratch, target,
|
|
Rvalue::new(ByRef));
|
|
bcx = coerce_unsized(bcx, expr.span, source_datum, target_datum);
|
|
datum = Datum::new(scratch, target,
|
|
RvalueExpr(Rvalue::new(ByRef)));
|
|
}
|
|
}
|
|
}
|
|
debug!("after adjustments, datum={:?}", datum);
|
|
DatumBlock::new(bcx, datum)
|
|
}
|
|
|
|
fn coerce_unsized<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
span: syntax_pos::Span,
|
|
source: Datum<'tcx, Rvalue>,
|
|
target: Datum<'tcx, Rvalue>)
|
|
-> Block<'blk, 'tcx> {
|
|
let mut bcx = bcx;
|
|
debug!("coerce_unsized({:?} -> {:?})", source, target);
|
|
|
|
match (&source.ty.sty, &target.ty.sty) {
|
|
(&ty::TyBox(a), &ty::TyBox(b)) |
|
|
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
|
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
|
|
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
|
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
|
|
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
|
|
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
|
|
let (inner_source, inner_target) = (a, b);
|
|
|
|
let (base, old_info) = if !type_is_sized(bcx.tcx(), inner_source) {
|
|
// Normally, the source is a thin pointer and we are
|
|
// adding extra info to make a fat pointer. The exception
|
|
// is when we are upcasting an existing object fat pointer
|
|
// to use a different vtable. In that case, we want to
|
|
// load out the original data pointer so we can repackage
|
|
// it.
|
|
(Load(bcx, get_dataptr(bcx, source.val)),
|
|
Some(Load(bcx, get_meta(bcx, source.val))))
|
|
} else {
|
|
let val = if source.kind.is_by_ref() {
|
|
load_ty(bcx, source.val, source.ty)
|
|
} else {
|
|
source.val
|
|
};
|
|
(val, None)
|
|
};
|
|
|
|
let info = unsized_info(bcx.ccx(), inner_source, inner_target, old_info);
|
|
|
|
// Compute the base pointer. This doesn't change the pointer value,
|
|
// but merely its type.
|
|
let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), inner_target).ptr_to();
|
|
let base = PointerCast(bcx, base, ptr_ty);
|
|
|
|
Store(bcx, base, get_dataptr(bcx, target.val));
|
|
Store(bcx, info, get_meta(bcx, target.val));
|
|
}
|
|
|
|
// This can be extended to enums and tuples in the future.
|
|
// (&ty::TyEnum(def_id_a, _), &ty::TyEnum(def_id_b, _)) |
|
|
(&ty::TyStruct(def_id_a, _), &ty::TyStruct(def_id_b, _)) => {
|
|
assert_eq!(def_id_a, def_id_b);
|
|
|
|
// The target is already by-ref because it's to be written to.
|
|
let source = unpack_datum!(bcx, source.to_ref_datum(bcx));
|
|
assert!(target.kind.is_by_ref());
|
|
|
|
let kind = custom_coerce_unsize_info(bcx.ccx().shared(),
|
|
source.ty,
|
|
target.ty);
|
|
|
|
let repr_source = adt::represent_type(bcx.ccx(), source.ty);
|
|
let src_fields = match &*repr_source {
|
|
&adt::Repr::Univariant(ref s, _) => &s.fields,
|
|
_ => span_bug!(span,
|
|
"Non univariant struct? (repr_source: {:?})",
|
|
repr_source),
|
|
};
|
|
let repr_target = adt::represent_type(bcx.ccx(), target.ty);
|
|
let target_fields = match &*repr_target {
|
|
&adt::Repr::Univariant(ref s, _) => &s.fields,
|
|
_ => span_bug!(span,
|
|
"Non univariant struct? (repr_target: {:?})",
|
|
repr_target),
|
|
};
|
|
|
|
let coerce_index = match kind {
|
|
CustomCoerceUnsized::Struct(i) => i
|
|
};
|
|
assert!(coerce_index < src_fields.len() && src_fields.len() == target_fields.len());
|
|
|
|
let source_val = adt::MaybeSizedValue::sized(source.val);
|
|
let target_val = adt::MaybeSizedValue::sized(target.val);
|
|
|
|
let iter = src_fields.iter().zip(target_fields).enumerate();
|
|
for (i, (src_ty, target_ty)) in iter {
|
|
let ll_source = adt::trans_field_ptr(bcx, &repr_source, source_val, Disr(0), i);
|
|
let ll_target = adt::trans_field_ptr(bcx, &repr_target, target_val, Disr(0), i);
|
|
|
|
// If this is the field we need to coerce, recurse on it.
|
|
if i == coerce_index {
|
|
coerce_unsized(bcx, span,
|
|
Datum::new(ll_source, src_ty,
|
|
Rvalue::new(ByRef)),
|
|
Datum::new(ll_target, target_ty,
|
|
Rvalue::new(ByRef)));
|
|
} else {
|
|
// Otherwise, simply copy the data from the source.
|
|
assert!(src_ty.is_phantom_data() || src_ty == target_ty);
|
|
memcpy_ty(bcx, ll_target, ll_source, src_ty);
|
|
}
|
|
}
|
|
}
|
|
_ => bug!("coerce_unsized: invalid coercion {:?} -> {:?}",
|
|
source.ty,
|
|
target.ty)
|
|
}
|
|
bcx
|
|
}
|
|
|
|
/// Translates an expression in "lvalue" mode -- meaning that it returns a reference to the memory
|
|
/// that the expr represents.
|
|
///
|
|
/// If this expression is an rvalue, this implies introducing a temporary. In other words,
|
|
/// something like `x().f` is translated into roughly the equivalent of
|
|
///
|
|
/// { tmp = x(); tmp.f }
|
|
pub fn trans_to_lvalue<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
name: &str)
|
|
-> DatumBlock<'blk, 'tcx, Lvalue> {
|
|
let mut bcx = bcx;
|
|
let datum = unpack_datum!(bcx, trans(bcx, expr));
|
|
return datum.to_lvalue_datum(bcx, name, expr.id);
|
|
}
|
|
|
|
/// A version of `trans` that ignores adjustments. You almost certainly do not want to call this
|
|
/// directly.
|
|
fn trans_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
|
|
debug!("trans_unadjusted(expr={:?})", expr);
|
|
let _indenter = indenter();
|
|
|
|
expr.debug_loc().apply(bcx.fcx);
|
|
|
|
return match expr_kind(bcx.tcx(), expr) {
|
|
ExprKind::Lvalue | ExprKind::RvalueDatum => {
|
|
let datum = unpack_datum!(bcx, {
|
|
trans_datum_unadjusted(bcx, expr)
|
|
});
|
|
|
|
DatumBlock {bcx: bcx, datum: datum}
|
|
}
|
|
|
|
ExprKind::RvalueStmt => {
|
|
bcx = trans_rvalue_stmt_unadjusted(bcx, expr);
|
|
nil(bcx, expr_ty(bcx, expr))
|
|
}
|
|
|
|
ExprKind::RvalueDps => {
|
|
let ty = expr_ty(bcx, expr);
|
|
if type_is_zero_size(bcx.ccx(), ty) {
|
|
bcx = trans_rvalue_dps_unadjusted(bcx, expr, Ignore);
|
|
nil(bcx, ty)
|
|
} else {
|
|
let scratch = rvalue_scratch_datum(bcx, ty, "");
|
|
bcx = trans_rvalue_dps_unadjusted(
|
|
bcx, expr, SaveIn(scratch.val));
|
|
|
|
// Note: this is not obviously a good idea. It causes
|
|
// immediate values to be loaded immediately after a
|
|
// return from a call or other similar expression,
|
|
// which in turn leads to alloca's having shorter
|
|
// lifetimes and hence larger stack frames. However,
|
|
// in turn it can lead to more register pressure.
|
|
// Still, in practice it seems to increase
|
|
// performance, since we have fewer problems with
|
|
// morestack churn.
|
|
let scratch = unpack_datum!(
|
|
bcx, scratch.to_appropriate_datum(bcx));
|
|
|
|
DatumBlock::new(bcx, scratch.to_expr_datum())
|
|
}
|
|
}
|
|
};
|
|
|
|
fn nil<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ty: Ty<'tcx>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let llval = C_undef(type_of::type_of(bcx.ccx(), ty));
|
|
let datum = immediate_rvalue(llval, ty);
|
|
DatumBlock::new(bcx, datum.to_expr_datum())
|
|
}
|
|
}
|
|
|
|
fn trans_datum_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let fcx = bcx.fcx;
|
|
let _icx = push_ctxt("trans_datum_unadjusted");
|
|
|
|
match expr.node {
|
|
hir::ExprType(ref e, _) => {
|
|
trans(bcx, &e)
|
|
}
|
|
hir::ExprPath(..) => {
|
|
let var = trans_var(bcx, bcx.tcx().expect_def(expr.id));
|
|
DatumBlock::new(bcx, var.to_expr_datum())
|
|
}
|
|
hir::ExprField(ref base, name) => {
|
|
trans_rec_field(bcx, &base, name.node)
|
|
}
|
|
hir::ExprTupField(ref base, idx) => {
|
|
trans_rec_tup_field(bcx, &base, idx.node)
|
|
}
|
|
hir::ExprIndex(ref base, ref idx) => {
|
|
trans_index(bcx, expr, &base, &idx, MethodCall::expr(expr.id))
|
|
}
|
|
hir::ExprBox(ref contents) => {
|
|
// Special case for `Box<T>`
|
|
let box_ty = expr_ty(bcx, expr);
|
|
let contents_ty = expr_ty(bcx, &contents);
|
|
match box_ty.sty {
|
|
ty::TyBox(..) => {
|
|
trans_uniq_expr(bcx, expr, box_ty, &contents, contents_ty)
|
|
}
|
|
_ => span_bug!(expr.span,
|
|
"expected unique box")
|
|
}
|
|
|
|
}
|
|
hir::ExprLit(ref lit) => trans_immediate_lit(bcx, expr, &lit),
|
|
hir::ExprBinary(op, ref lhs, ref rhs) => {
|
|
trans_binary(bcx, expr, op, &lhs, &rhs)
|
|
}
|
|
hir::ExprUnary(op, ref x) => {
|
|
trans_unary(bcx, expr, op, &x)
|
|
}
|
|
hir::ExprAddrOf(_, ref x) => {
|
|
match x.node {
|
|
hir::ExprRepeat(..) | hir::ExprVec(..) => {
|
|
// Special case for slices.
|
|
let cleanup_debug_loc =
|
|
debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
|
|
x.id,
|
|
x.span,
|
|
false);
|
|
fcx.push_ast_cleanup_scope(cleanup_debug_loc);
|
|
let datum = unpack_datum!(
|
|
bcx, tvec::trans_slice_vec(bcx, expr, &x));
|
|
bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, x.id);
|
|
DatumBlock::new(bcx, datum)
|
|
}
|
|
_ => {
|
|
trans_addr_of(bcx, expr, &x)
|
|
}
|
|
}
|
|
}
|
|
hir::ExprCast(ref val, _) => {
|
|
// Datum output mode means this is a scalar cast:
|
|
trans_imm_cast(bcx, &val, expr.id)
|
|
}
|
|
_ => {
|
|
span_bug!(
|
|
expr.span,
|
|
"trans_rvalue_datum_unadjusted reached \
|
|
fall-through case: {:?}",
|
|
expr.node);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_field<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
|
|
base: &hir::Expr,
|
|
get_idx: F)
|
|
-> DatumBlock<'blk, 'tcx, Expr> where
|
|
F: FnOnce(TyCtxt<'blk, 'tcx, 'tcx>, &VariantInfo<'tcx>) -> usize,
|
|
{
|
|
let mut bcx = bcx;
|
|
let _icx = push_ctxt("trans_rec_field");
|
|
|
|
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "field"));
|
|
let bare_ty = base_datum.ty;
|
|
let repr = adt::represent_type(bcx.ccx(), bare_ty);
|
|
let vinfo = VariantInfo::from_ty(bcx.tcx(), bare_ty, None);
|
|
|
|
let ix = get_idx(bcx.tcx(), &vinfo);
|
|
let d = base_datum.get_element(
|
|
bcx,
|
|
vinfo.fields[ix].1,
|
|
|srcval| {
|
|
adt::trans_field_ptr(bcx, &repr, srcval, vinfo.discr, ix)
|
|
});
|
|
|
|
if type_is_sized(bcx.tcx(), d.ty) {
|
|
DatumBlock { datum: d.to_expr_datum(), bcx: bcx }
|
|
} else {
|
|
let scratch = rvalue_scratch_datum(bcx, d.ty, "");
|
|
Store(bcx, d.val, get_dataptr(bcx, scratch.val));
|
|
let info = Load(bcx, get_meta(bcx, base_datum.val));
|
|
Store(bcx, info, get_meta(bcx, scratch.val));
|
|
|
|
// Always generate an lvalue datum, because this pointer doesn't own
|
|
// the data and cleanup is scheduled elsewhere.
|
|
DatumBlock::new(bcx, Datum::new(scratch.val, scratch.ty, LvalueExpr(d.kind)))
|
|
}
|
|
}
|
|
|
|
/// Translates `base.field`.
|
|
fn trans_rec_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
base: &hir::Expr,
|
|
field: ast::Name)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
trans_field(bcx, base, |_, vinfo| vinfo.field_index(field))
|
|
}
|
|
|
|
/// Translates `base.<idx>`.
|
|
fn trans_rec_tup_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
base: &hir::Expr,
|
|
idx: usize)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
trans_field(bcx, base, |_, _| idx)
|
|
}
|
|
|
|
fn trans_index<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
index_expr: &hir::Expr,
|
|
base: &hir::Expr,
|
|
idx: &hir::Expr,
|
|
method_call: MethodCall)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
//! Translates `base[idx]`.
|
|
|
|
let _icx = push_ctxt("trans_index");
|
|
let ccx = bcx.ccx();
|
|
let mut bcx = bcx;
|
|
|
|
let index_expr_debug_loc = index_expr.debug_loc();
|
|
|
|
// Check for overloaded index.
|
|
let method = ccx.tcx().tables.borrow().method_map.get(&method_call).cloned();
|
|
let elt_datum = match method {
|
|
Some(method) => {
|
|
let method_ty = monomorphize_type(bcx, method.ty);
|
|
|
|
let base_datum = unpack_datum!(bcx, trans(bcx, base));
|
|
|
|
// Translate index expression.
|
|
let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
|
|
|
|
let ref_ty = // invoked methods have LB regions instantiated:
|
|
bcx.tcx().no_late_bound_regions(&method_ty.fn_ret()).unwrap().unwrap();
|
|
let elt_ty = match ref_ty.builtin_deref(true, ty::NoPreference) {
|
|
None => {
|
|
span_bug!(index_expr.span,
|
|
"index method didn't return a \
|
|
dereferenceable type?!")
|
|
}
|
|
Some(elt_tm) => elt_tm.ty,
|
|
};
|
|
|
|
// Overloaded. Invoke the index() method, which basically
|
|
// yields a `&T` pointer. We can then proceed down the
|
|
// normal path (below) to dereference that `&T`.
|
|
let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_index_elt");
|
|
|
|
bcx = Callee::method(bcx, method)
|
|
.call(bcx, index_expr_debug_loc,
|
|
ArgOverloadedOp(base_datum, Some(ix_datum)),
|
|
Some(SaveIn(scratch.val))).bcx;
|
|
|
|
let datum = scratch.to_expr_datum();
|
|
let lval = Lvalue::new("expr::trans_index overload");
|
|
if type_is_sized(bcx.tcx(), elt_ty) {
|
|
Datum::new(datum.to_llscalarish(bcx), elt_ty, LvalueExpr(lval))
|
|
} else {
|
|
Datum::new(datum.val, elt_ty, LvalueExpr(lval))
|
|
}
|
|
}
|
|
None => {
|
|
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx,
|
|
base,
|
|
"index"));
|
|
|
|
// Translate index expression and cast to a suitable LLVM integer.
|
|
// Rust is less strict than LLVM in this regard.
|
|
let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
|
|
let ix_val = ix_datum.to_llscalarish(bcx);
|
|
let ix_size = machine::llbitsize_of_real(bcx.ccx(),
|
|
val_ty(ix_val));
|
|
let int_size = machine::llbitsize_of_real(bcx.ccx(),
|
|
ccx.int_type());
|
|
let ix_val = {
|
|
if ix_size < int_size {
|
|
if expr_ty(bcx, idx).is_signed() {
|
|
SExt(bcx, ix_val, ccx.int_type())
|
|
} else { ZExt(bcx, ix_val, ccx.int_type()) }
|
|
} else if ix_size > int_size {
|
|
Trunc(bcx, ix_val, ccx.int_type())
|
|
} else {
|
|
ix_val
|
|
}
|
|
};
|
|
|
|
let unit_ty = base_datum.ty.sequence_element_type(bcx.tcx());
|
|
|
|
let (base, len) = base_datum.get_vec_base_and_len(bcx);
|
|
|
|
debug!("trans_index: base {:?}", Value(base));
|
|
debug!("trans_index: len {:?}", Value(len));
|
|
|
|
let bounds_check = ICmp(bcx,
|
|
llvm::IntUGE,
|
|
ix_val,
|
|
len,
|
|
index_expr_debug_loc);
|
|
let expect = ccx.get_intrinsic(&("llvm.expect.i1"));
|
|
let expected = Call(bcx,
|
|
expect,
|
|
&[bounds_check, C_bool(ccx, false)],
|
|
index_expr_debug_loc);
|
|
bcx = with_cond(bcx, expected, |bcx| {
|
|
controlflow::trans_fail_bounds_check(bcx,
|
|
expr_info(index_expr),
|
|
ix_val,
|
|
len)
|
|
});
|
|
let elt = InBoundsGEP(bcx, base, &[ix_val]);
|
|
let elt = PointerCast(bcx, elt, type_of::type_of(ccx, unit_ty).ptr_to());
|
|
let lval = Lvalue::new("expr::trans_index fallback");
|
|
Datum::new(elt, unit_ty, LvalueExpr(lval))
|
|
}
|
|
};
|
|
|
|
DatumBlock::new(bcx, elt_datum)
|
|
}
|
|
|
|
/// Translates a reference to a variable.
|
|
pub fn trans_var<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, def: Def)
|
|
-> Datum<'tcx, Lvalue> {
|
|
|
|
match def {
|
|
Def::Static(did, _) => consts::get_static(bcx.ccx(), did),
|
|
Def::Upvar(_, nid, _, _) => {
|
|
// Can't move upvars, so this is never a ZeroMemLastUse.
|
|
let local_ty = node_id_type(bcx, nid);
|
|
let lval = Lvalue::new_with_hint("expr::trans_var (upvar)",
|
|
bcx, nid, HintKind::ZeroAndMaintain);
|
|
match bcx.fcx.llupvars.borrow().get(&nid) {
|
|
Some(&val) => Datum::new(val, local_ty, lval),
|
|
None => {
|
|
bug!("trans_var: no llval for upvar {} found", nid);
|
|
}
|
|
}
|
|
}
|
|
Def::Local(_, nid) => {
|
|
let datum = match bcx.fcx.lllocals.borrow().get(&nid) {
|
|
Some(&v) => v,
|
|
None => {
|
|
bug!("trans_var: no datum for local/arg {} found", nid);
|
|
}
|
|
};
|
|
debug!("take_local(nid={}, v={:?}, ty={})",
|
|
nid, Value(datum.val), datum.ty);
|
|
datum
|
|
}
|
|
_ => bug!("{:?} should not reach expr::trans_var", def)
|
|
}
|
|
}
|
|
|
|
fn trans_rvalue_stmt_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr)
|
|
-> Block<'blk, 'tcx> {
|
|
let mut bcx = bcx;
|
|
let _icx = push_ctxt("trans_rvalue_stmt");
|
|
|
|
if bcx.unreachable.get() {
|
|
return bcx;
|
|
}
|
|
|
|
expr.debug_loc().apply(bcx.fcx);
|
|
|
|
match expr.node {
|
|
hir::ExprBreak(label_opt) => {
|
|
controlflow::trans_break(bcx, expr, label_opt.map(|l| l.node))
|
|
}
|
|
hir::ExprType(ref e, _) => {
|
|
trans_into(bcx, &e, Ignore)
|
|
}
|
|
hir::ExprAgain(label_opt) => {
|
|
controlflow::trans_cont(bcx, expr, label_opt.map(|l| l.node))
|
|
}
|
|
hir::ExprRet(ref ex) => {
|
|
// Check to see if the return expression itself is reachable.
|
|
// This can occur when the inner expression contains a return
|
|
let reachable = if let Some(ref cfg) = bcx.fcx.cfg {
|
|
cfg.node_is_reachable(expr.id)
|
|
} else {
|
|
true
|
|
};
|
|
|
|
if reachable {
|
|
controlflow::trans_ret(bcx, expr, ex.as_ref().map(|e| &**e))
|
|
} else {
|
|
// If it's not reachable, just translate the inner expression
|
|
// directly. This avoids having to manage a return slot when
|
|
// it won't actually be used anyway.
|
|
if let &Some(ref x) = ex {
|
|
bcx = trans_into(bcx, &x, Ignore);
|
|
}
|
|
// Mark the end of the block as unreachable. Once we get to
|
|
// a return expression, there's no more we should be doing
|
|
// after this.
|
|
Unreachable(bcx);
|
|
bcx
|
|
}
|
|
}
|
|
hir::ExprWhile(ref cond, ref body, _) => {
|
|
controlflow::trans_while(bcx, expr, &cond, &body)
|
|
}
|
|
hir::ExprLoop(ref body, _) => {
|
|
controlflow::trans_loop(bcx, expr, &body)
|
|
}
|
|
hir::ExprAssign(ref dst, ref src) => {
|
|
let src_datum = unpack_datum!(bcx, trans(bcx, &src));
|
|
let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &dst, "assign"));
|
|
|
|
if bcx.fcx.type_needs_drop(dst_datum.ty) {
|
|
// If there are destructors involved, make sure we
|
|
// are copying from an rvalue, since that cannot possible
|
|
// alias an lvalue. We are concerned about code like:
|
|
//
|
|
// a = a
|
|
//
|
|
// but also
|
|
//
|
|
// a = a.b
|
|
//
|
|
// where e.g. a : Option<Foo> and a.b :
|
|
// Option<Foo>. In that case, freeing `a` before the
|
|
// assignment may also free `a.b`!
|
|
//
|
|
// We could avoid this intermediary with some analysis
|
|
// to determine whether `dst` may possibly own `src`.
|
|
expr.debug_loc().apply(bcx.fcx);
|
|
let src_datum = unpack_datum!(
|
|
bcx, src_datum.to_rvalue_datum(bcx, "ExprAssign"));
|
|
let opt_hint_datum = dst_datum.kind.drop_flag_info.hint_datum(bcx);
|
|
let opt_hint_val = opt_hint_datum.map(|d|d.to_value());
|
|
|
|
// 1. Drop the data at the destination, passing the
|
|
// drop-hint in case the lvalue has already been
|
|
// dropped or moved.
|
|
bcx = glue::drop_ty_core(bcx,
|
|
dst_datum.val,
|
|
dst_datum.ty,
|
|
expr.debug_loc(),
|
|
false,
|
|
opt_hint_val);
|
|
|
|
// 2. We are overwriting the destination; ensure that
|
|
// its drop-hint (if any) says "initialized."
|
|
if let Some(hint_val) = opt_hint_val {
|
|
let hint_llval = hint_val.value();
|
|
let drop_needed = C_u8(bcx.fcx.ccx, adt::DTOR_NEEDED_HINT);
|
|
Store(bcx, drop_needed, hint_llval);
|
|
}
|
|
src_datum.store_to(bcx, dst_datum.val)
|
|
} else {
|
|
src_datum.store_to(bcx, dst_datum.val)
|
|
}
|
|
}
|
|
hir::ExprAssignOp(op, ref dst, ref src) => {
|
|
let method = bcx.tcx().tables
|
|
.borrow()
|
|
.method_map
|
|
.get(&MethodCall::expr(expr.id)).cloned();
|
|
|
|
if let Some(method) = method {
|
|
let dst = unpack_datum!(bcx, trans(bcx, &dst));
|
|
let src_datum = unpack_datum!(bcx, trans(bcx, &src));
|
|
|
|
Callee::method(bcx, method)
|
|
.call(bcx, expr.debug_loc(),
|
|
ArgOverloadedOp(dst, Some(src_datum)), None).bcx
|
|
} else {
|
|
trans_assign_op(bcx, expr, op, &dst, &src)
|
|
}
|
|
}
|
|
hir::ExprInlineAsm(ref a, ref outputs, ref inputs) => {
|
|
let outputs = outputs.iter().map(|output| {
|
|
let out_datum = unpack_datum!(bcx, trans(bcx, output));
|
|
unpack_datum!(bcx, out_datum.to_lvalue_datum(bcx, "out", expr.id))
|
|
}).collect();
|
|
let inputs = inputs.iter().map(|input| {
|
|
let input = unpack_datum!(bcx, trans(bcx, input));
|
|
let input = unpack_datum!(bcx, input.to_rvalue_datum(bcx, "in"));
|
|
input.to_llscalarish(bcx)
|
|
}).collect();
|
|
asm::trans_inline_asm(bcx, a, outputs, inputs);
|
|
bcx
|
|
}
|
|
_ => {
|
|
span_bug!(
|
|
expr.span,
|
|
"trans_rvalue_stmt_unadjusted reached \
|
|
fall-through case: {:?}",
|
|
expr.node);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_rvalue_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
dest: Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_rvalue_dps_unadjusted");
|
|
let mut bcx = bcx;
|
|
|
|
expr.debug_loc().apply(bcx.fcx);
|
|
|
|
// Entry into the method table if this is an overloaded call/op.
|
|
let method_call = MethodCall::expr(expr.id);
|
|
|
|
match expr.node {
|
|
hir::ExprType(ref e, _) => {
|
|
trans_into(bcx, &e, dest)
|
|
}
|
|
hir::ExprPath(..) => {
|
|
trans_def_dps_unadjusted(bcx, expr, bcx.tcx().expect_def(expr.id), dest)
|
|
}
|
|
hir::ExprIf(ref cond, ref thn, ref els) => {
|
|
controlflow::trans_if(bcx, expr.id, &cond, &thn, els.as_ref().map(|e| &**e), dest)
|
|
}
|
|
hir::ExprMatch(ref discr, ref arms, _) => {
|
|
_match::trans_match(bcx, expr, &discr, &arms[..], dest)
|
|
}
|
|
hir::ExprBlock(ref blk) => {
|
|
controlflow::trans_block(bcx, &blk, dest)
|
|
}
|
|
hir::ExprStruct(_, ref fields, ref base) => {
|
|
trans_struct(bcx,
|
|
&fields[..],
|
|
base.as_ref().map(|e| &**e),
|
|
expr.span,
|
|
expr.id,
|
|
node_id_type(bcx, expr.id),
|
|
dest)
|
|
}
|
|
hir::ExprTup(ref args) => {
|
|
let numbered_fields: Vec<(usize, &hir::Expr)> =
|
|
args.iter().enumerate().map(|(i, arg)| (i, &**arg)).collect();
|
|
trans_adt(bcx,
|
|
expr_ty(bcx, expr),
|
|
Disr(0),
|
|
&numbered_fields[..],
|
|
None,
|
|
dest,
|
|
expr.debug_loc())
|
|
}
|
|
hir::ExprLit(ref lit) => {
|
|
match lit.node {
|
|
ast::LitKind::Str(ref s, _) => {
|
|
tvec::trans_lit_str(bcx, expr, (*s).clone(), dest)
|
|
}
|
|
_ => {
|
|
span_bug!(expr.span,
|
|
"trans_rvalue_dps_unadjusted shouldn't be \
|
|
translating this type of literal")
|
|
}
|
|
}
|
|
}
|
|
hir::ExprVec(..) | hir::ExprRepeat(..) => {
|
|
tvec::trans_fixed_vstore(bcx, expr, dest)
|
|
}
|
|
hir::ExprClosure(_, ref decl, ref body, _) => {
|
|
let dest = match dest {
|
|
SaveIn(lldest) => closure::Dest::SaveIn(bcx, lldest),
|
|
Ignore => closure::Dest::Ignore(bcx.ccx())
|
|
};
|
|
|
|
// NB. To get the id of the closure, we don't use
|
|
// `local_def_id(id)`, but rather we extract the closure
|
|
// def-id from the expr's type. This is because this may
|
|
// be an inlined expression from another crate, and we
|
|
// want to get the ORIGINAL closure def-id, since that is
|
|
// the key we need to find the closure-kind and
|
|
// closure-type etc.
|
|
let (def_id, substs) = match expr_ty(bcx, expr).sty {
|
|
ty::TyClosure(def_id, substs) => (def_id, substs),
|
|
ref t =>
|
|
span_bug!(
|
|
expr.span,
|
|
"closure expr without closure type: {:?}", t),
|
|
};
|
|
|
|
closure::trans_closure_expr(dest,
|
|
decl,
|
|
body,
|
|
expr.id,
|
|
def_id,
|
|
substs).unwrap_or(bcx)
|
|
}
|
|
hir::ExprCall(ref f, ref args) => {
|
|
let method = bcx.tcx().tables.borrow().method_map.get(&method_call).cloned();
|
|
let (callee, args) = if let Some(method) = method {
|
|
let mut all_args = vec![&**f];
|
|
all_args.extend(args.iter().map(|e| &**e));
|
|
|
|
(Callee::method(bcx, method), ArgOverloadedCall(all_args))
|
|
} else {
|
|
let f = unpack_datum!(bcx, trans(bcx, f));
|
|
(match f.ty.sty {
|
|
ty::TyFnDef(def_id, substs, _) => {
|
|
Callee::def(bcx.ccx(), def_id, substs)
|
|
}
|
|
ty::TyFnPtr(_) => {
|
|
let f = unpack_datum!(bcx,
|
|
f.to_rvalue_datum(bcx, "callee"));
|
|
Callee::ptr(f)
|
|
}
|
|
_ => {
|
|
span_bug!(expr.span,
|
|
"type of callee is not a fn: {}", f.ty);
|
|
}
|
|
}, ArgExprs(&args))
|
|
};
|
|
callee.call(bcx, expr.debug_loc(), args, Some(dest)).bcx
|
|
}
|
|
hir::ExprMethodCall(_, _, ref args) => {
|
|
Callee::method_call(bcx, method_call)
|
|
.call(bcx, expr.debug_loc(), ArgExprs(&args), Some(dest)).bcx
|
|
}
|
|
hir::ExprBinary(op, ref lhs, ref rhs_expr) => {
|
|
// if not overloaded, would be RvalueDatumExpr
|
|
let lhs = unpack_datum!(bcx, trans(bcx, &lhs));
|
|
let mut rhs = unpack_datum!(bcx, trans(bcx, &rhs_expr));
|
|
if !op.node.is_by_value() {
|
|
rhs = unpack_datum!(bcx, auto_ref(bcx, rhs, rhs_expr));
|
|
}
|
|
|
|
Callee::method_call(bcx, method_call)
|
|
.call(bcx, expr.debug_loc(),
|
|
ArgOverloadedOp(lhs, Some(rhs)), Some(dest)).bcx
|
|
}
|
|
hir::ExprUnary(_, ref subexpr) => {
|
|
// if not overloaded, would be RvalueDatumExpr
|
|
let arg = unpack_datum!(bcx, trans(bcx, &subexpr));
|
|
|
|
Callee::method_call(bcx, method_call)
|
|
.call(bcx, expr.debug_loc(),
|
|
ArgOverloadedOp(arg, None), Some(dest)).bcx
|
|
}
|
|
hir::ExprCast(..) => {
|
|
// Trait casts used to come this way, now they should be coercions.
|
|
span_bug!(expr.span, "DPS expr_cast (residual trait cast?)")
|
|
}
|
|
hir::ExprAssignOp(op, _, _) => {
|
|
span_bug!(
|
|
expr.span,
|
|
"augmented assignment `{}=` should always be a rvalue_stmt",
|
|
op.node.as_str())
|
|
}
|
|
_ => {
|
|
span_bug!(
|
|
expr.span,
|
|
"trans_rvalue_dps_unadjusted reached fall-through \
|
|
case: {:?}",
|
|
expr.node);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_def_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
ref_expr: &hir::Expr,
|
|
def: Def,
|
|
dest: Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_def_dps_unadjusted");
|
|
|
|
let lldest = match dest {
|
|
SaveIn(lldest) => lldest,
|
|
Ignore => { return bcx; }
|
|
};
|
|
|
|
let ty = expr_ty(bcx, ref_expr);
|
|
if let ty::TyFnDef(..) = ty.sty {
|
|
// Zero-sized function or ctor.
|
|
return bcx;
|
|
}
|
|
|
|
match def {
|
|
Def::Variant(tid, vid) => {
|
|
let variant = bcx.tcx().lookup_adt_def(tid).variant_with_id(vid);
|
|
// Nullary variant.
|
|
let ty = expr_ty(bcx, ref_expr);
|
|
let repr = adt::represent_type(bcx.ccx(), ty);
|
|
adt::trans_set_discr(bcx, &repr, lldest, Disr::from(variant.disr_val));
|
|
bcx
|
|
}
|
|
Def::Struct(..) => {
|
|
match ty.sty {
|
|
ty::TyStruct(def, _) if def.has_dtor() => {
|
|
let repr = adt::represent_type(bcx.ccx(), ty);
|
|
adt::trans_set_discr(bcx, &repr, lldest, Disr(0));
|
|
}
|
|
_ => {}
|
|
}
|
|
bcx
|
|
}
|
|
_ => {
|
|
span_bug!(ref_expr.span,
|
|
"Non-DPS def {:?} referened by {}",
|
|
def, bcx.node_id_to_string(ref_expr.id));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_struct<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
fields: &[hir::Field],
|
|
base: Option<&hir::Expr>,
|
|
expr_span: syntax_pos::Span,
|
|
expr_id: ast::NodeId,
|
|
ty: Ty<'tcx>,
|
|
dest: Dest) -> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_rec");
|
|
|
|
let tcx = bcx.tcx();
|
|
let vinfo = VariantInfo::of_node(tcx, ty, expr_id);
|
|
|
|
let mut need_base = vec![true; vinfo.fields.len()];
|
|
|
|
let numbered_fields = fields.iter().map(|field| {
|
|
let pos = vinfo.field_index(field.name.node);
|
|
need_base[pos] = false;
|
|
(pos, &*field.expr)
|
|
}).collect::<Vec<_>>();
|
|
|
|
let optbase = match base {
|
|
Some(base_expr) => {
|
|
let mut leftovers = Vec::new();
|
|
for (i, b) in need_base.iter().enumerate() {
|
|
if *b {
|
|
leftovers.push((i, vinfo.fields[i].1));
|
|
}
|
|
}
|
|
Some(StructBaseInfo {expr: base_expr,
|
|
fields: leftovers })
|
|
}
|
|
None => {
|
|
if need_base.iter().any(|b| *b) {
|
|
span_bug!(expr_span, "missing fields and no base expr")
|
|
}
|
|
None
|
|
}
|
|
};
|
|
|
|
trans_adt(bcx,
|
|
ty,
|
|
vinfo.discr,
|
|
&numbered_fields,
|
|
optbase,
|
|
dest,
|
|
DebugLoc::At(expr_id, expr_span))
|
|
}
|
|
|
|
/// Information that `trans_adt` needs in order to fill in the fields
|
|
/// of a struct copied from a base struct (e.g., from an expression
|
|
/// like `Foo { a: b, ..base }`.
|
|
///
|
|
/// Note that `fields` may be empty; the base expression must always be
|
|
/// evaluated for side-effects.
|
|
pub struct StructBaseInfo<'a, 'tcx> {
|
|
/// The base expression; will be evaluated after all explicit fields.
|
|
expr: &'a hir::Expr,
|
|
/// The indices of fields to copy paired with their types.
|
|
fields: Vec<(usize, Ty<'tcx>)>
|
|
}
|
|
|
|
/// Constructs an ADT instance:
|
|
///
|
|
/// - `fields` should be a list of field indices paired with the
|
|
/// expression to store into that field. The initializers will be
|
|
/// evaluated in the order specified by `fields`.
|
|
///
|
|
/// - `optbase` contains information on the base struct (if any) from
|
|
/// which remaining fields are copied; see comments on `StructBaseInfo`.
|
|
pub fn trans_adt<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
|
|
ty: Ty<'tcx>,
|
|
discr: Disr,
|
|
fields: &[(usize, &hir::Expr)],
|
|
optbase: Option<StructBaseInfo<'a, 'tcx>>,
|
|
dest: Dest,
|
|
debug_location: DebugLoc)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_adt");
|
|
let fcx = bcx.fcx;
|
|
let repr = adt::represent_type(bcx.ccx(), ty);
|
|
|
|
debug_location.apply(bcx.fcx);
|
|
|
|
// If we don't care about the result, just make a
|
|
// temporary stack slot
|
|
let addr = match dest {
|
|
SaveIn(pos) => pos,
|
|
Ignore => {
|
|
let llresult = alloc_ty(bcx, ty, "temp");
|
|
call_lifetime_start(bcx, llresult);
|
|
llresult
|
|
}
|
|
};
|
|
|
|
debug!("trans_adt");
|
|
|
|
// This scope holds intermediates that must be cleaned should
|
|
// panic occur before the ADT as a whole is ready.
|
|
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
|
|
if ty.is_simd() {
|
|
// Issue 23112: The original logic appeared vulnerable to same
|
|
// order-of-eval bug. But, SIMD values are tuple-structs;
|
|
// i.e. functional record update (FRU) syntax is unavailable.
|
|
//
|
|
// To be safe, double-check that we did not get here via FRU.
|
|
assert!(optbase.is_none());
|
|
|
|
// This is the constructor of a SIMD type, such types are
|
|
// always primitive machine types and so do not have a
|
|
// destructor or require any clean-up.
|
|
let llty = type_of::type_of(bcx.ccx(), ty);
|
|
|
|
// keep a vector as a register, and running through the field
|
|
// `insertelement`ing them directly into that register
|
|
// (i.e. avoid GEPi and `store`s to an alloca) .
|
|
let mut vec_val = C_undef(llty);
|
|
|
|
for &(i, ref e) in fields {
|
|
let block_datum = trans(bcx, &e);
|
|
bcx = block_datum.bcx;
|
|
let position = C_uint(bcx.ccx(), i);
|
|
let value = block_datum.datum.to_llscalarish(bcx);
|
|
vec_val = InsertElement(bcx, vec_val, value, position);
|
|
}
|
|
Store(bcx, vec_val, addr);
|
|
} else if let Some(base) = optbase {
|
|
// Issue 23112: If there is a base, then order-of-eval
|
|
// requires field expressions eval'ed before base expression.
|
|
|
|
// First, trans field expressions to temporary scratch values.
|
|
let scratch_vals: Vec<_> = fields.iter().map(|&(i, ref e)| {
|
|
let datum = unpack_datum!(bcx, trans(bcx, &e));
|
|
(i, datum)
|
|
}).collect();
|
|
|
|
debug_location.apply(bcx.fcx);
|
|
|
|
// Second, trans the base to the dest.
|
|
assert_eq!(discr, Disr(0));
|
|
|
|
let addr = adt::MaybeSizedValue::sized(addr);
|
|
match expr_kind(bcx.tcx(), &base.expr) {
|
|
ExprKind::RvalueDps | ExprKind::RvalueDatum if !bcx.fcx.type_needs_drop(ty) => {
|
|
bcx = trans_into(bcx, &base.expr, SaveIn(addr.value));
|
|
},
|
|
ExprKind::RvalueStmt => {
|
|
bug!("unexpected expr kind for struct base expr")
|
|
}
|
|
_ => {
|
|
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &base.expr, "base"));
|
|
for &(i, t) in &base.fields {
|
|
let datum = base_datum.get_element(
|
|
bcx, t, |srcval| adt::trans_field_ptr(bcx, &repr, srcval, discr, i));
|
|
assert!(type_is_sized(bcx.tcx(), datum.ty));
|
|
let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i);
|
|
bcx = datum.store_to(bcx, dest);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, move scratch field values into actual field locations
|
|
for (i, datum) in scratch_vals {
|
|
let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i);
|
|
bcx = datum.store_to(bcx, dest);
|
|
}
|
|
} else {
|
|
// No base means we can write all fields directly in place.
|
|
let addr = adt::MaybeSizedValue::sized(addr);
|
|
for &(i, ref e) in fields {
|
|
let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i);
|
|
let e_ty = expr_ty_adjusted(bcx, &e);
|
|
bcx = trans_into(bcx, &e, SaveIn(dest));
|
|
let scope = cleanup::CustomScope(custom_cleanup_scope);
|
|
fcx.schedule_lifetime_end(scope, dest);
|
|
// FIXME: nonzeroing move should generalize to fields
|
|
fcx.schedule_drop_mem(scope, dest, e_ty, None);
|
|
}
|
|
}
|
|
|
|
adt::trans_set_discr(bcx, &repr, addr, discr);
|
|
|
|
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
|
|
|
|
// If we don't care about the result drop the temporary we made
|
|
match dest {
|
|
SaveIn(_) => bcx,
|
|
Ignore => {
|
|
bcx = glue::drop_ty(bcx, addr, ty, debug_location);
|
|
base::call_lifetime_end(bcx, addr);
|
|
bcx
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
fn trans_immediate_lit<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
lit: &ast::Lit)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
// must not be a string constant, that is a RvalueDpsExpr
|
|
let _icx = push_ctxt("trans_immediate_lit");
|
|
let ty = expr_ty(bcx, expr);
|
|
let v = consts::const_lit(bcx.ccx(), expr, lit);
|
|
immediate_rvalue_bcx(bcx, v, ty).to_expr_datumblock()
|
|
}
|
|
|
|
fn trans_unary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
op: hir::UnOp,
|
|
sub_expr: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let ccx = bcx.ccx();
|
|
let mut bcx = bcx;
|
|
let _icx = push_ctxt("trans_unary_datum");
|
|
|
|
let method_call = MethodCall::expr(expr.id);
|
|
|
|
// The only overloaded operator that is translated to a datum
|
|
// is an overloaded deref, since it is always yields a `&T`.
|
|
// Otherwise, we should be in the RvalueDpsExpr path.
|
|
assert!(op == hir::UnDeref || !ccx.tcx().is_method_call(expr.id));
|
|
|
|
let un_ty = expr_ty(bcx, expr);
|
|
|
|
let debug_loc = expr.debug_loc();
|
|
|
|
match op {
|
|
hir::UnNot => {
|
|
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
|
|
let llresult = Not(bcx, datum.to_llscalarish(bcx), debug_loc);
|
|
immediate_rvalue_bcx(bcx, llresult, un_ty).to_expr_datumblock()
|
|
}
|
|
hir::UnNeg => {
|
|
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
|
|
let val = datum.to_llscalarish(bcx);
|
|
let (bcx, llneg) = {
|
|
if un_ty.is_fp() {
|
|
let result = FNeg(bcx, val, debug_loc);
|
|
(bcx, result)
|
|
} else {
|
|
let is_signed = un_ty.is_signed();
|
|
let result = Neg(bcx, val, debug_loc);
|
|
let bcx = if bcx.ccx().check_overflow() && is_signed {
|
|
let (llty, min) = base::llty_and_min_for_signed_ty(bcx, un_ty);
|
|
let is_min = ICmp(bcx, llvm::IntEQ, val,
|
|
C_integral(llty, min, true), debug_loc);
|
|
with_cond(bcx, is_min, |bcx| {
|
|
let msg = InternedString::new(
|
|
"attempted to negate with overflow");
|
|
controlflow::trans_fail(bcx, expr_info(expr), msg)
|
|
})
|
|
} else {
|
|
bcx
|
|
};
|
|
(bcx, result)
|
|
}
|
|
};
|
|
immediate_rvalue_bcx(bcx, llneg, un_ty).to_expr_datumblock()
|
|
}
|
|
hir::UnDeref => {
|
|
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
|
|
deref_once(bcx, expr, datum, method_call)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_uniq_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
box_expr: &hir::Expr,
|
|
box_ty: Ty<'tcx>,
|
|
contents: &hir::Expr,
|
|
contents_ty: Ty<'tcx>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_uniq_expr");
|
|
let fcx = bcx.fcx;
|
|
assert!(type_is_sized(bcx.tcx(), contents_ty));
|
|
let llty = type_of::type_of(bcx.ccx(), contents_ty);
|
|
let size = llsize_of(bcx.ccx(), llty);
|
|
let align = C_uint(bcx.ccx(), type_of::align_of(bcx.ccx(), contents_ty));
|
|
let llty_ptr = llty.ptr_to();
|
|
let Result { bcx, val } = malloc_raw_dyn(bcx,
|
|
llty_ptr,
|
|
box_ty,
|
|
size,
|
|
align,
|
|
box_expr.debug_loc());
|
|
// Unique boxes do not allocate for zero-size types. The standard library
|
|
// may assume that `free` is never called on the pointer returned for
|
|
// `Box<ZeroSizeType>`.
|
|
let bcx = if llsize_of_alloc(bcx.ccx(), llty) == 0 {
|
|
trans_into(bcx, contents, SaveIn(val))
|
|
} else {
|
|
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
fcx.schedule_free_value(cleanup::CustomScope(custom_cleanup_scope),
|
|
val, cleanup::HeapExchange, contents_ty);
|
|
let bcx = trans_into(bcx, contents, SaveIn(val));
|
|
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
|
|
bcx
|
|
};
|
|
immediate_rvalue_bcx(bcx, val, box_ty).to_expr_datumblock()
|
|
}
|
|
|
|
fn trans_addr_of<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
subexpr: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_addr_of");
|
|
let mut bcx = bcx;
|
|
let sub_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, subexpr, "addr_of"));
|
|
let ty = expr_ty(bcx, expr);
|
|
if !type_is_sized(bcx.tcx(), sub_datum.ty) {
|
|
// Always generate an lvalue datum, because this pointer doesn't own
|
|
// the data and cleanup is scheduled elsewhere.
|
|
DatumBlock::new(bcx, Datum::new(sub_datum.val, ty, LvalueExpr(sub_datum.kind)))
|
|
} else {
|
|
// Sized value, ref to a thin pointer
|
|
immediate_rvalue_bcx(bcx, sub_datum.val, ty).to_expr_datumblock()
|
|
}
|
|
}
|
|
|
|
fn trans_scalar_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
binop_expr: &hir::Expr,
|
|
binop_ty: Ty<'tcx>,
|
|
op: hir::BinOp,
|
|
lhs: Datum<'tcx, Rvalue>,
|
|
rhs: Datum<'tcx, Rvalue>)
|
|
-> DatumBlock<'blk, 'tcx, Expr>
|
|
{
|
|
let _icx = push_ctxt("trans_scalar_binop");
|
|
|
|
let lhs_t = lhs.ty;
|
|
assert!(!lhs_t.is_simd());
|
|
let is_float = lhs_t.is_fp();
|
|
let is_signed = lhs_t.is_signed();
|
|
let info = expr_info(binop_expr);
|
|
|
|
let binop_debug_loc = binop_expr.debug_loc();
|
|
|
|
let mut bcx = bcx;
|
|
let lhs = lhs.to_llscalarish(bcx);
|
|
let rhs = rhs.to_llscalarish(bcx);
|
|
let val = match op.node {
|
|
hir::BiAdd => {
|
|
if is_float {
|
|
FAdd(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Add, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
}
|
|
hir::BiSub => {
|
|
if is_float {
|
|
FSub(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Sub, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
}
|
|
hir::BiMul => {
|
|
if is_float {
|
|
FMul(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Mul, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
}
|
|
hir::BiDiv => {
|
|
if is_float {
|
|
FDiv(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
// Only zero-check integers; fp /0 is NaN
|
|
bcx = base::fail_if_zero_or_overflows(bcx,
|
|
expr_info(binop_expr),
|
|
op,
|
|
lhs,
|
|
rhs,
|
|
lhs_t);
|
|
if is_signed {
|
|
SDiv(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
UDiv(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
}
|
|
}
|
|
hir::BiRem => {
|
|
if is_float {
|
|
FRem(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
// Only zero-check integers; fp %0 is NaN
|
|
bcx = base::fail_if_zero_or_overflows(bcx,
|
|
expr_info(binop_expr),
|
|
op, lhs, rhs, lhs_t);
|
|
if is_signed {
|
|
SRem(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
URem(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
}
|
|
}
|
|
hir::BiBitOr => Or(bcx, lhs, rhs, binop_debug_loc),
|
|
hir::BiBitAnd => And(bcx, lhs, rhs, binop_debug_loc),
|
|
hir::BiBitXor => Xor(bcx, lhs, rhs, binop_debug_loc),
|
|
hir::BiShl => {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Shl, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
hir::BiShr => {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Shr, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
hir::BiEq | hir::BiNe | hir::BiLt | hir::BiGe | hir::BiLe | hir::BiGt => {
|
|
base::compare_scalar_types(bcx, lhs, rhs, lhs_t, op.node, binop_debug_loc)
|
|
}
|
|
_ => {
|
|
span_bug!(binop_expr.span, "unexpected binop");
|
|
}
|
|
};
|
|
|
|
immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock()
|
|
}
|
|
|
|
// refinement types would obviate the need for this
|
|
#[derive(Clone, Copy)]
|
|
enum lazy_binop_ty {
|
|
lazy_and,
|
|
lazy_or,
|
|
}
|
|
|
|
|
|
fn trans_lazy_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
binop_expr: &hir::Expr,
|
|
op: lazy_binop_ty,
|
|
a: &hir::Expr,
|
|
b: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_lazy_binop");
|
|
let binop_ty = expr_ty(bcx, binop_expr);
|
|
let fcx = bcx.fcx;
|
|
|
|
let DatumBlock {bcx: past_lhs, datum: lhs} = trans(bcx, a);
|
|
let lhs = lhs.to_llscalarish(past_lhs);
|
|
|
|
if past_lhs.unreachable.get() {
|
|
return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock();
|
|
}
|
|
|
|
// If the rhs can never be reached, don't generate code for it.
|
|
if let Some(cond_val) = const_to_opt_uint(lhs) {
|
|
match (cond_val, op) {
|
|
(0, lazy_and) |
|
|
(1, lazy_or) => {
|
|
return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock();
|
|
}
|
|
_ => { /* continue */ }
|
|
}
|
|
}
|
|
|
|
let join = fcx.new_id_block("join", binop_expr.id);
|
|
let before_rhs = fcx.new_id_block("before_rhs", b.id);
|
|
|
|
match op {
|
|
lazy_and => CondBr(past_lhs, lhs, before_rhs.llbb, join.llbb, DebugLoc::None),
|
|
lazy_or => CondBr(past_lhs, lhs, join.llbb, before_rhs.llbb, DebugLoc::None)
|
|
}
|
|
|
|
let DatumBlock {bcx: past_rhs, datum: rhs} = trans(before_rhs, b);
|
|
let rhs = rhs.to_llscalarish(past_rhs);
|
|
|
|
if past_rhs.unreachable.get() {
|
|
return immediate_rvalue_bcx(join, lhs, binop_ty).to_expr_datumblock();
|
|
}
|
|
|
|
Br(past_rhs, join.llbb, DebugLoc::None);
|
|
let phi = Phi(join, Type::i1(bcx.ccx()), &[lhs, rhs],
|
|
&[past_lhs.llbb, past_rhs.llbb]);
|
|
|
|
return immediate_rvalue_bcx(join, phi, binop_ty).to_expr_datumblock();
|
|
}
|
|
|
|
fn trans_binary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
op: hir::BinOp,
|
|
lhs: &hir::Expr,
|
|
rhs: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_binary");
|
|
let ccx = bcx.ccx();
|
|
|
|
// if overloaded, would be RvalueDpsExpr
|
|
assert!(!ccx.tcx().is_method_call(expr.id));
|
|
|
|
match op.node {
|
|
hir::BiAnd => {
|
|
trans_lazy_binop(bcx, expr, lazy_and, lhs, rhs)
|
|
}
|
|
hir::BiOr => {
|
|
trans_lazy_binop(bcx, expr, lazy_or, lhs, rhs)
|
|
}
|
|
_ => {
|
|
let mut bcx = bcx;
|
|
let binop_ty = expr_ty(bcx, expr);
|
|
|
|
let lhs = unpack_datum!(bcx, trans(bcx, lhs));
|
|
let lhs = unpack_datum!(bcx, lhs.to_rvalue_datum(bcx, "binop_lhs"));
|
|
debug!("trans_binary (expr {}): lhs={:?}", expr.id, lhs);
|
|
let rhs = unpack_datum!(bcx, trans(bcx, rhs));
|
|
let rhs = unpack_datum!(bcx, rhs.to_rvalue_datum(bcx, "binop_rhs"));
|
|
debug!("trans_binary (expr {}): rhs={:?}", expr.id, rhs);
|
|
|
|
if type_is_fat_ptr(ccx.tcx(), lhs.ty) {
|
|
assert!(type_is_fat_ptr(ccx.tcx(), rhs.ty),
|
|
"built-in binary operators on fat pointers are homogeneous");
|
|
assert_eq!(binop_ty, bcx.tcx().types.bool);
|
|
let val = base::compare_scalar_types(
|
|
bcx,
|
|
lhs.val,
|
|
rhs.val,
|
|
lhs.ty,
|
|
op.node,
|
|
expr.debug_loc());
|
|
immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock()
|
|
} else {
|
|
assert!(!type_is_fat_ptr(ccx.tcx(), rhs.ty),
|
|
"built-in binary operators on fat pointers are homogeneous");
|
|
trans_scalar_binop(bcx, expr, binop_ty, op, lhs, rhs)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn cast_is_noop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
|
|
expr: &hir::Expr,
|
|
t_in: Ty<'tcx>,
|
|
t_out: Ty<'tcx>)
|
|
-> bool {
|
|
if let Some(&CastKind::CoercionCast) = tcx.cast_kinds.borrow().get(&expr.id) {
|
|
return true;
|
|
}
|
|
|
|
match (t_in.builtin_deref(true, ty::NoPreference),
|
|
t_out.builtin_deref(true, ty::NoPreference)) {
|
|
(Some(ty::TypeAndMut{ ty: t_in, .. }), Some(ty::TypeAndMut{ ty: t_out, .. })) => {
|
|
t_in == t_out
|
|
}
|
|
_ => {
|
|
// This condition isn't redundant with the check for CoercionCast:
|
|
// different types can be substituted into the same type, and
|
|
// == equality can be overconservative if there are regions.
|
|
t_in == t_out
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_imm_cast<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
id: ast::NodeId)
|
|
-> DatumBlock<'blk, 'tcx, Expr>
|
|
{
|
|
use rustc::ty::cast::CastTy::*;
|
|
use rustc::ty::cast::IntTy::*;
|
|
|
|
fn int_cast(bcx: Block,
|
|
lldsttype: Type,
|
|
llsrctype: Type,
|
|
llsrc: ValueRef,
|
|
signed: bool)
|
|
-> ValueRef
|
|
{
|
|
let _icx = push_ctxt("int_cast");
|
|
let srcsz = llsrctype.int_width();
|
|
let dstsz = lldsttype.int_width();
|
|
return if dstsz == srcsz {
|
|
BitCast(bcx, llsrc, lldsttype)
|
|
} else if srcsz > dstsz {
|
|
TruncOrBitCast(bcx, llsrc, lldsttype)
|
|
} else if signed {
|
|
SExtOrBitCast(bcx, llsrc, lldsttype)
|
|
} else {
|
|
ZExtOrBitCast(bcx, llsrc, lldsttype)
|
|
}
|
|
}
|
|
|
|
fn float_cast(bcx: Block,
|
|
lldsttype: Type,
|
|
llsrctype: Type,
|
|
llsrc: ValueRef)
|
|
-> ValueRef
|
|
{
|
|
let _icx = push_ctxt("float_cast");
|
|
let srcsz = llsrctype.float_width();
|
|
let dstsz = lldsttype.float_width();
|
|
return if dstsz > srcsz {
|
|
FPExt(bcx, llsrc, lldsttype)
|
|
} else if srcsz > dstsz {
|
|
FPTrunc(bcx, llsrc, lldsttype)
|
|
} else { llsrc };
|
|
}
|
|
|
|
let _icx = push_ctxt("trans_cast");
|
|
let mut bcx = bcx;
|
|
let ccx = bcx.ccx();
|
|
|
|
let t_in = expr_ty_adjusted(bcx, expr);
|
|
let t_out = node_id_type(bcx, id);
|
|
|
|
debug!("trans_cast({:?} as {:?})", t_in, t_out);
|
|
let mut ll_t_in = type_of::immediate_type_of(ccx, t_in);
|
|
let ll_t_out = type_of::immediate_type_of(ccx, t_out);
|
|
// Convert the value to be cast into a ValueRef, either by-ref or
|
|
// by-value as appropriate given its type:
|
|
let mut datum = unpack_datum!(bcx, trans(bcx, expr));
|
|
|
|
let datum_ty = monomorphize_type(bcx, datum.ty);
|
|
|
|
if cast_is_noop(bcx.tcx(), expr, datum_ty, t_out) {
|
|
datum.ty = t_out;
|
|
return DatumBlock::new(bcx, datum);
|
|
}
|
|
|
|
if type_is_fat_ptr(bcx.tcx(), t_in) {
|
|
assert!(datum.kind.is_by_ref());
|
|
if type_is_fat_ptr(bcx.tcx(), t_out) {
|
|
return DatumBlock::new(bcx, Datum::new(
|
|
PointerCast(bcx, datum.val, ll_t_out.ptr_to()),
|
|
t_out,
|
|
Rvalue::new(ByRef)
|
|
)).to_expr_datumblock();
|
|
} else {
|
|
// Return the address
|
|
return immediate_rvalue_bcx(bcx,
|
|
PointerCast(bcx,
|
|
Load(bcx, get_dataptr(bcx, datum.val)),
|
|
ll_t_out),
|
|
t_out).to_expr_datumblock();
|
|
}
|
|
}
|
|
|
|
let r_t_in = CastTy::from_ty(t_in).expect("bad input type for cast");
|
|
let r_t_out = CastTy::from_ty(t_out).expect("bad output type for cast");
|
|
|
|
let (llexpr, signed) = if let Int(CEnum) = r_t_in {
|
|
let repr = adt::represent_type(ccx, t_in);
|
|
let datum = unpack_datum!(
|
|
bcx, datum.to_lvalue_datum(bcx, "trans_imm_cast", expr.id));
|
|
let llexpr_ptr = datum.to_llref();
|
|
let discr = adt::trans_get_discr(bcx, &repr, llexpr_ptr,
|
|
Some(Type::i64(ccx)), true);
|
|
ll_t_in = val_ty(discr);
|
|
(discr, adt::is_discr_signed(&repr))
|
|
} else {
|
|
(datum.to_llscalarish(bcx), t_in.is_signed())
|
|
};
|
|
|
|
let newval = match (r_t_in, r_t_out) {
|
|
(Ptr(_), Ptr(_)) | (FnPtr, Ptr(_)) | (RPtr(_), Ptr(_)) => {
|
|
PointerCast(bcx, llexpr, ll_t_out)
|
|
}
|
|
(Ptr(_), Int(_)) | (FnPtr, Int(_)) => PtrToInt(bcx, llexpr, ll_t_out),
|
|
(Int(_), Ptr(_)) => IntToPtr(bcx, llexpr, ll_t_out),
|
|
|
|
(Int(_), Int(_)) => int_cast(bcx, ll_t_out, ll_t_in, llexpr, signed),
|
|
(Float, Float) => float_cast(bcx, ll_t_out, ll_t_in, llexpr),
|
|
(Int(_), Float) if signed => SIToFP(bcx, llexpr, ll_t_out),
|
|
(Int(_), Float) => UIToFP(bcx, llexpr, ll_t_out),
|
|
(Float, Int(I)) => FPToSI(bcx, llexpr, ll_t_out),
|
|
(Float, Int(_)) => FPToUI(bcx, llexpr, ll_t_out),
|
|
|
|
_ => span_bug!(expr.span,
|
|
"translating unsupported cast: \
|
|
{:?} -> {:?}",
|
|
t_in,
|
|
t_out)
|
|
};
|
|
return immediate_rvalue_bcx(bcx, newval, t_out).to_expr_datumblock();
|
|
}
|
|
|
|
fn trans_assign_op<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
op: hir::BinOp,
|
|
dst: &hir::Expr,
|
|
src: &hir::Expr)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_assign_op");
|
|
let mut bcx = bcx;
|
|
|
|
debug!("trans_assign_op(expr={:?})", expr);
|
|
|
|
// User-defined operator methods cannot be used with `+=` etc right now
|
|
assert!(!bcx.tcx().is_method_call(expr.id));
|
|
|
|
// Evaluate LHS (destination), which should be an lvalue
|
|
let dst = unpack_datum!(bcx, trans_to_lvalue(bcx, dst, "assign_op"));
|
|
assert!(!bcx.fcx.type_needs_drop(dst.ty));
|
|
let lhs = load_ty(bcx, dst.val, dst.ty);
|
|
let lhs = immediate_rvalue(lhs, dst.ty);
|
|
|
|
// Evaluate RHS - FIXME(#28160) this sucks
|
|
let rhs = unpack_datum!(bcx, trans(bcx, &src));
|
|
let rhs = unpack_datum!(bcx, rhs.to_rvalue_datum(bcx, "assign_op_rhs"));
|
|
|
|
// Perform computation and store the result
|
|
let result_datum = unpack_datum!(
|
|
bcx, trans_scalar_binop(bcx, expr, dst.ty, op, lhs, rhs));
|
|
return result_datum.store_to(bcx, dst.val);
|
|
}
|
|
|
|
fn auto_ref<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
datum: Datum<'tcx, Expr>,
|
|
expr: &hir::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
|
|
// Ensure cleanup of `datum` if not already scheduled and obtain
|
|
// a "by ref" pointer.
|
|
let lv_datum = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "autoref", expr.id));
|
|
|
|
// Compute final type. Note that we are loose with the region and
|
|
// mutability, since those things don't matter in trans.
|
|
let referent_ty = lv_datum.ty;
|
|
let ptr_ty = bcx.tcx().mk_imm_ref(bcx.tcx().mk_region(ty::ReErased), referent_ty);
|
|
|
|
// Construct the resulting datum. The right datum to return here would be an Lvalue datum,
|
|
// because there is cleanup scheduled and the datum doesn't own the data, but for thin pointers
|
|
// we microoptimize it to be an Rvalue datum to avoid the extra alloca and level of
|
|
// indirection and for thin pointers, this has no ill effects.
|
|
let kind = if type_is_sized(bcx.tcx(), referent_ty) {
|
|
RvalueExpr(Rvalue::new(ByValue))
|
|
} else {
|
|
LvalueExpr(lv_datum.kind)
|
|
};
|
|
|
|
// Get the pointer.
|
|
let llref = lv_datum.to_llref();
|
|
DatumBlock::new(bcx, Datum::new(llref, ptr_ty, kind))
|
|
}
|
|
|
|
fn deref_multiple<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
times: usize)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let mut datum = datum;
|
|
for i in 0..times {
|
|
let method_call = MethodCall::autoderef(expr.id, i as u32);
|
|
datum = unpack_datum!(bcx, deref_once(bcx, expr, datum, method_call));
|
|
}
|
|
DatumBlock { bcx: bcx, datum: datum }
|
|
}
|
|
|
|
fn deref_once<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &hir::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
method_call: MethodCall)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let ccx = bcx.ccx();
|
|
|
|
debug!("deref_once(expr={:?}, datum={:?}, method_call={:?})",
|
|
expr, datum, method_call);
|
|
|
|
let mut bcx = bcx;
|
|
|
|
// Check for overloaded deref.
|
|
let method = ccx.tcx().tables.borrow().method_map.get(&method_call).cloned();
|
|
let datum = match method {
|
|
Some(method) => {
|
|
let method_ty = monomorphize_type(bcx, method.ty);
|
|
|
|
// Overloaded. Invoke the deref() method, which basically
|
|
// converts from the `Smaht<T>` pointer that we have into
|
|
// a `&T` pointer. We can then proceed down the normal
|
|
// path (below) to dereference that `&T`.
|
|
let datum = if method_call.autoderef == 0 {
|
|
datum
|
|
} else {
|
|
// Always perform an AutoPtr when applying an overloaded auto-deref
|
|
unpack_datum!(bcx, auto_ref(bcx, datum, expr))
|
|
};
|
|
|
|
let ref_ty = // invoked methods have their LB regions instantiated
|
|
ccx.tcx().no_late_bound_regions(&method_ty.fn_ret()).unwrap().unwrap();
|
|
let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_deref");
|
|
|
|
bcx = Callee::method(bcx, method)
|
|
.call(bcx, expr.debug_loc(),
|
|
ArgOverloadedOp(datum, None),
|
|
Some(SaveIn(scratch.val))).bcx;
|
|
scratch.to_expr_datum()
|
|
}
|
|
None => {
|
|
// Not overloaded. We already have a pointer we know how to deref.
|
|
datum
|
|
}
|
|
};
|
|
|
|
let r = match datum.ty.sty {
|
|
ty::TyBox(content_ty) => {
|
|
// Make sure we have an lvalue datum here to get the
|
|
// proper cleanups scheduled
|
|
let datum = unpack_datum!(
|
|
bcx, datum.to_lvalue_datum(bcx, "deref", expr.id));
|
|
|
|
if type_is_sized(bcx.tcx(), content_ty) {
|
|
let ptr = load_ty(bcx, datum.val, datum.ty);
|
|
DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr(datum.kind)))
|
|
} else {
|
|
// A fat pointer and a DST lvalue have the same representation
|
|
// just different types. Since there is no temporary for `*e`
|
|
// here (because it is unsized), we cannot emulate the sized
|
|
// object code path for running drop glue and free. Instead,
|
|
// we schedule cleanup for `e`, turning it into an lvalue.
|
|
|
|
let lval = Lvalue::new("expr::deref_once ty_uniq");
|
|
let datum = Datum::new(datum.val, content_ty, LvalueExpr(lval));
|
|
DatumBlock::new(bcx, datum)
|
|
}
|
|
}
|
|
|
|
ty::TyRawPtr(ty::TypeAndMut { ty: content_ty, .. }) |
|
|
ty::TyRef(_, ty::TypeAndMut { ty: content_ty, .. }) => {
|
|
let lval = Lvalue::new("expr::deref_once ptr");
|
|
if type_is_sized(bcx.tcx(), content_ty) {
|
|
let ptr = datum.to_llscalarish(bcx);
|
|
|
|
// Always generate an lvalue datum, even if datum.mode is
|
|
// an rvalue. This is because datum.mode is only an
|
|
// rvalue for non-owning pointers like &T or *T, in which
|
|
// case cleanup *is* scheduled elsewhere, by the true
|
|
// owner (or, in the case of *T, by the user).
|
|
DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr(lval)))
|
|
} else {
|
|
// A fat pointer and a DST lvalue have the same representation
|
|
// just different types.
|
|
DatumBlock::new(bcx, Datum::new(datum.val, content_ty, LvalueExpr(lval)))
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
span_bug!(
|
|
expr.span,
|
|
"deref invoked on expr of invalid type {:?}",
|
|
datum.ty);
|
|
}
|
|
};
|
|
|
|
debug!("deref_once(expr={}, method_call={:?}, result={:?})",
|
|
expr.id, method_call, r.datum);
|
|
|
|
return r;
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum OverflowOp {
|
|
Add,
|
|
Sub,
|
|
Mul,
|
|
Shl,
|
|
Shr,
|
|
}
|
|
|
|
impl OverflowOp {
|
|
fn codegen_strategy(&self) -> OverflowCodegen {
|
|
use self::OverflowCodegen::{ViaIntrinsic, ViaInputCheck};
|
|
match *self {
|
|
OverflowOp::Add => ViaIntrinsic(OverflowOpViaIntrinsic::Add),
|
|
OverflowOp::Sub => ViaIntrinsic(OverflowOpViaIntrinsic::Sub),
|
|
OverflowOp::Mul => ViaIntrinsic(OverflowOpViaIntrinsic::Mul),
|
|
|
|
OverflowOp::Shl => ViaInputCheck(OverflowOpViaInputCheck::Shl),
|
|
OverflowOp::Shr => ViaInputCheck(OverflowOpViaInputCheck::Shr),
|
|
}
|
|
}
|
|
}
|
|
|
|
enum OverflowCodegen {
|
|
ViaIntrinsic(OverflowOpViaIntrinsic),
|
|
ViaInputCheck(OverflowOpViaInputCheck),
|
|
}
|
|
|
|
enum OverflowOpViaInputCheck { Shl, Shr, }
|
|
|
|
#[derive(Debug)]
|
|
enum OverflowOpViaIntrinsic { Add, Sub, Mul, }
|
|
|
|
impl OverflowOpViaIntrinsic {
|
|
fn to_intrinsic<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>, lhs_ty: Ty) -> ValueRef {
|
|
let name = self.to_intrinsic_name(bcx.tcx(), lhs_ty);
|
|
bcx.ccx().get_intrinsic(&name)
|
|
}
|
|
fn to_intrinsic_name(&self, tcx: TyCtxt, ty: Ty) -> &'static str {
|
|
use syntax::ast::IntTy::*;
|
|
use syntax::ast::UintTy::*;
|
|
use rustc::ty::{TyInt, TyUint};
|
|
|
|
let new_sty = match ty.sty {
|
|
TyInt(Is) => match &tcx.sess.target.target.target_pointer_width[..] {
|
|
"16" => TyInt(I16),
|
|
"32" => TyInt(I32),
|
|
"64" => TyInt(I64),
|
|
_ => bug!("unsupported target word size")
|
|
},
|
|
TyUint(Us) => match &tcx.sess.target.target.target_pointer_width[..] {
|
|
"16" => TyUint(U16),
|
|
"32" => TyUint(U32),
|
|
"64" => TyUint(U64),
|
|
_ => bug!("unsupported target word size")
|
|
},
|
|
ref t @ TyUint(_) | ref t @ TyInt(_) => t.clone(),
|
|
_ => bug!("tried to get overflow intrinsic for {:?} applied to non-int type",
|
|
*self)
|
|
};
|
|
|
|
match *self {
|
|
OverflowOpViaIntrinsic::Add => match new_sty {
|
|
TyInt(I8) => "llvm.sadd.with.overflow.i8",
|
|
TyInt(I16) => "llvm.sadd.with.overflow.i16",
|
|
TyInt(I32) => "llvm.sadd.with.overflow.i32",
|
|
TyInt(I64) => "llvm.sadd.with.overflow.i64",
|
|
|
|
TyUint(U8) => "llvm.uadd.with.overflow.i8",
|
|
TyUint(U16) => "llvm.uadd.with.overflow.i16",
|
|
TyUint(U32) => "llvm.uadd.with.overflow.i32",
|
|
TyUint(U64) => "llvm.uadd.with.overflow.i64",
|
|
|
|
_ => bug!(),
|
|
},
|
|
OverflowOpViaIntrinsic::Sub => match new_sty {
|
|
TyInt(I8) => "llvm.ssub.with.overflow.i8",
|
|
TyInt(I16) => "llvm.ssub.with.overflow.i16",
|
|
TyInt(I32) => "llvm.ssub.with.overflow.i32",
|
|
TyInt(I64) => "llvm.ssub.with.overflow.i64",
|
|
|
|
TyUint(U8) => "llvm.usub.with.overflow.i8",
|
|
TyUint(U16) => "llvm.usub.with.overflow.i16",
|
|
TyUint(U32) => "llvm.usub.with.overflow.i32",
|
|
TyUint(U64) => "llvm.usub.with.overflow.i64",
|
|
|
|
_ => bug!(),
|
|
},
|
|
OverflowOpViaIntrinsic::Mul => match new_sty {
|
|
TyInt(I8) => "llvm.smul.with.overflow.i8",
|
|
TyInt(I16) => "llvm.smul.with.overflow.i16",
|
|
TyInt(I32) => "llvm.smul.with.overflow.i32",
|
|
TyInt(I64) => "llvm.smul.with.overflow.i64",
|
|
|
|
TyUint(U8) => "llvm.umul.with.overflow.i8",
|
|
TyUint(U16) => "llvm.umul.with.overflow.i16",
|
|
TyUint(U32) => "llvm.umul.with.overflow.i32",
|
|
TyUint(U64) => "llvm.umul.with.overflow.i64",
|
|
|
|
_ => bug!(),
|
|
},
|
|
}
|
|
}
|
|
|
|
fn build_intrinsic_call<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>,
|
|
info: NodeIdAndSpan,
|
|
lhs_t: Ty<'tcx>, lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc)
|
|
-> (Block<'blk, 'tcx>, ValueRef) {
|
|
use rustc_const_math::{ConstMathErr, Op};
|
|
|
|
let llfn = self.to_intrinsic(bcx, lhs_t);
|
|
|
|
let val = Call(bcx, llfn, &[lhs, rhs], binop_debug_loc);
|
|
let result = ExtractValue(bcx, val, 0); // iN operation result
|
|
let overflow = ExtractValue(bcx, val, 1); // i1 "did it overflow?"
|
|
|
|
let cond = ICmp(bcx, llvm::IntEQ, overflow, C_integral(Type::i1(bcx.ccx()), 1, false),
|
|
binop_debug_loc);
|
|
|
|
let expect = bcx.ccx().get_intrinsic(&"llvm.expect.i1");
|
|
let expected = Call(bcx, expect, &[cond, C_bool(bcx.ccx(), false)],
|
|
binop_debug_loc);
|
|
|
|
let op = match *self {
|
|
OverflowOpViaIntrinsic::Add => Op::Add,
|
|
OverflowOpViaIntrinsic::Sub => Op::Sub,
|
|
OverflowOpViaIntrinsic::Mul => Op::Mul
|
|
};
|
|
|
|
let bcx =
|
|
base::with_cond(bcx, expected, |bcx|
|
|
controlflow::trans_fail(bcx, info,
|
|
InternedString::new(ConstMathErr::Overflow(op).description())));
|
|
|
|
(bcx, result)
|
|
}
|
|
}
|
|
|
|
impl OverflowOpViaInputCheck {
|
|
fn build_with_input_check<'blk, 'tcx>(&self,
|
|
bcx: Block<'blk, 'tcx>,
|
|
info: NodeIdAndSpan,
|
|
lhs_t: Ty<'tcx>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc)
|
|
-> (Block<'blk, 'tcx>, ValueRef)
|
|
{
|
|
use rustc_const_math::{ConstMathErr, Op};
|
|
|
|
let lhs_llty = val_ty(lhs);
|
|
let rhs_llty = val_ty(rhs);
|
|
|
|
// Panic if any bits are set outside of bits that we always
|
|
// mask in.
|
|
//
|
|
// Note that the mask's value is derived from the LHS type
|
|
// (since that is where the 32/64 distinction is relevant) but
|
|
// the mask's type must match the RHS type (since they will
|
|
// both be fed into an and-binop)
|
|
let invert_mask = shift_mask_val(bcx, lhs_llty, rhs_llty, true);
|
|
|
|
let outer_bits = And(bcx, rhs, invert_mask, binop_debug_loc);
|
|
let cond = build_nonzero_check(bcx, outer_bits, binop_debug_loc);
|
|
let (result, op) = match *self {
|
|
OverflowOpViaInputCheck::Shl =>
|
|
(build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc), Op::Shl),
|
|
OverflowOpViaInputCheck::Shr =>
|
|
(build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc), Op::Shr)
|
|
};
|
|
let bcx =
|
|
base::with_cond(bcx, cond, |bcx|
|
|
controlflow::trans_fail(bcx, info,
|
|
InternedString::new(ConstMathErr::Overflow(op).description())));
|
|
|
|
(bcx, result)
|
|
}
|
|
}
|
|
|
|
// Check if an integer or vector contains a nonzero element.
|
|
fn build_nonzero_check<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
value: ValueRef,
|
|
binop_debug_loc: DebugLoc) -> ValueRef {
|
|
let llty = val_ty(value);
|
|
let kind = llty.kind();
|
|
match kind {
|
|
TypeKind::Integer => ICmp(bcx, llvm::IntNE, value, C_null(llty), binop_debug_loc),
|
|
TypeKind::Vector => {
|
|
// Check if any elements of the vector are nonzero by treating
|
|
// it as a wide integer and checking if the integer is nonzero.
|
|
let width = llty.vector_length() as u64 * llty.element_type().int_width();
|
|
let int_value = BitCast(bcx, value, Type::ix(bcx.ccx(), width));
|
|
build_nonzero_check(bcx, int_value, binop_debug_loc)
|
|
},
|
|
_ => bug!("build_nonzero_check: expected Integer or Vector, found {:?}", kind),
|
|
}
|
|
}
|
|
|
|
fn with_overflow_check<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, oop: OverflowOp, info: NodeIdAndSpan,
|
|
lhs_t: Ty<'tcx>, lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc)
|
|
-> (Block<'blk, 'tcx>, ValueRef) {
|
|
if bcx.unreachable.get() { return (bcx, _Undef(lhs)); }
|
|
if bcx.ccx().check_overflow() {
|
|
|
|
match oop.codegen_strategy() {
|
|
OverflowCodegen::ViaIntrinsic(oop) =>
|
|
oop.build_intrinsic_call(bcx, info, lhs_t, lhs, rhs, binop_debug_loc),
|
|
OverflowCodegen::ViaInputCheck(oop) =>
|
|
oop.build_with_input_check(bcx, info, lhs_t, lhs, rhs, binop_debug_loc),
|
|
}
|
|
} else {
|
|
let res = match oop {
|
|
OverflowOp::Add => Add(bcx, lhs, rhs, binop_debug_loc),
|
|
OverflowOp::Sub => Sub(bcx, lhs, rhs, binop_debug_loc),
|
|
OverflowOp::Mul => Mul(bcx, lhs, rhs, binop_debug_loc),
|
|
|
|
OverflowOp::Shl =>
|
|
build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc),
|
|
OverflowOp::Shr =>
|
|
build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc),
|
|
};
|
|
(bcx, res)
|
|
}
|
|
}
|
|
|
|
/// We categorize expressions into three kinds. The distinction between
|
|
/// lvalue/rvalue is fundamental to the language. The distinction between the
|
|
/// two kinds of rvalues is an artifact of trans which reflects how we will
|
|
/// generate code for that kind of expression. See trans/expr.rs for more
|
|
/// information.
|
|
#[derive(Copy, Clone)]
|
|
enum ExprKind {
|
|
Lvalue,
|
|
RvalueDps,
|
|
RvalueDatum,
|
|
RvalueStmt
|
|
}
|
|
|
|
fn expr_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, expr: &hir::Expr) -> ExprKind {
|
|
if tcx.is_method_call(expr.id) {
|
|
// Overloaded operations are generally calls, and hence they are
|
|
// generated via DPS, but there are a few exceptions:
|
|
return match expr.node {
|
|
// `a += b` has a unit result.
|
|
hir::ExprAssignOp(..) => ExprKind::RvalueStmt,
|
|
|
|
// the deref method invoked for `*a` always yields an `&T`
|
|
hir::ExprUnary(hir::UnDeref, _) => ExprKind::Lvalue,
|
|
|
|
// the index method invoked for `a[i]` always yields an `&T`
|
|
hir::ExprIndex(..) => ExprKind::Lvalue,
|
|
|
|
// in the general case, result could be any type, use DPS
|
|
_ => ExprKind::RvalueDps
|
|
};
|
|
}
|
|
|
|
match expr.node {
|
|
hir::ExprPath(..) => {
|
|
match tcx.expect_def(expr.id) {
|
|
// Put functions and ctors with the ADTs, as they
|
|
// are zero-sized, so DPS is the cheapest option.
|
|
Def::Struct(..) | Def::Variant(..) |
|
|
Def::Fn(..) | Def::Method(..) => {
|
|
ExprKind::RvalueDps
|
|
}
|
|
|
|
// Note: there is actually a good case to be made that
|
|
// DefArg's, particularly those of immediate type, ought to
|
|
// considered rvalues.
|
|
Def::Static(..) |
|
|
Def::Upvar(..) |
|
|
Def::Local(..) => ExprKind::Lvalue,
|
|
|
|
Def::Const(..) |
|
|
Def::AssociatedConst(..) => ExprKind::RvalueDatum,
|
|
|
|
def => {
|
|
span_bug!(
|
|
expr.span,
|
|
"uncategorized def for expr {}: {:?}",
|
|
expr.id,
|
|
def);
|
|
}
|
|
}
|
|
}
|
|
|
|
hir::ExprType(ref expr, _) => {
|
|
expr_kind(tcx, expr)
|
|
}
|
|
|
|
hir::ExprUnary(hir::UnDeref, _) |
|
|
hir::ExprField(..) |
|
|
hir::ExprTupField(..) |
|
|
hir::ExprIndex(..) => {
|
|
ExprKind::Lvalue
|
|
}
|
|
|
|
hir::ExprCall(..) |
|
|
hir::ExprMethodCall(..) |
|
|
hir::ExprStruct(..) |
|
|
hir::ExprTup(..) |
|
|
hir::ExprIf(..) |
|
|
hir::ExprMatch(..) |
|
|
hir::ExprClosure(..) |
|
|
hir::ExprBlock(..) |
|
|
hir::ExprRepeat(..) |
|
|
hir::ExprVec(..) => {
|
|
ExprKind::RvalueDps
|
|
}
|
|
|
|
hir::ExprLit(ref lit) if lit.node.is_str() => {
|
|
ExprKind::RvalueDps
|
|
}
|
|
|
|
hir::ExprBreak(..) |
|
|
hir::ExprAgain(..) |
|
|
hir::ExprRet(..) |
|
|
hir::ExprWhile(..) |
|
|
hir::ExprLoop(..) |
|
|
hir::ExprAssign(..) |
|
|
hir::ExprInlineAsm(..) |
|
|
hir::ExprAssignOp(..) => {
|
|
ExprKind::RvalueStmt
|
|
}
|
|
|
|
hir::ExprLit(_) | // Note: LitStr is carved out above
|
|
hir::ExprUnary(..) |
|
|
hir::ExprBox(_) |
|
|
hir::ExprAddrOf(..) |
|
|
hir::ExprBinary(..) |
|
|
hir::ExprCast(..) => {
|
|
ExprKind::RvalueDatum
|
|
}
|
|
}
|
|
}
|