rust/src/libsyntax/ast.rs
bors c4501a0f1d Auto merge of #52319 - tinco:issue_12590, r=pnkfelix
Track whether module declarations are inline (fixes #12590)

To track whether module declarations are inline I added a field `inline: bool` to `ast::Mod`. The main use case is for pretty to know whether it should render the items associated with the module, but perhaps there are use cases for this information to not be forgotten in the AST.
2018-09-27 09:51:12 +00:00

2336 lines
67 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust abstract syntax tree.
pub use self::GenericArgs::*;
pub use self::UnsafeSource::*;
pub use symbol::{Ident, Symbol as Name};
pub use util::parser::ExprPrecedence;
use ext::hygiene::{Mark, SyntaxContext};
use print::pprust;
use ptr::P;
use rustc_data_structures::indexed_vec;
use rustc_data_structures::indexed_vec::Idx;
use rustc_target::spec::abi::Abi;
use source_map::{dummy_spanned, respan, Spanned};
use symbol::{keywords, Symbol};
use syntax_pos::{Span, DUMMY_SP};
use tokenstream::{ThinTokenStream, TokenStream};
use ThinVec;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::sync::Lrc;
use serialize::{self, Decoder, Encoder};
use std::fmt;
use std::u32;
pub use rustc_target::abi::FloatTy;
#[derive(Clone, RustcEncodable, RustcDecodable, Copy)]
pub struct Label {
pub ident: Ident,
}
impl fmt::Debug for Label {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "label({:?})", self.ident)
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Copy)]
pub struct Lifetime {
pub id: NodeId,
pub ident: Ident,
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"lifetime({}: {})",
self.id,
pprust::lifetime_to_string(self)
)
}
}
/// A "Path" is essentially Rust's notion of a name.
///
/// It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
///
/// E.g. `std::cmp::PartialEq`
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct Path {
pub span: Span,
/// The segments in the path: the things separated by `::`.
/// Global paths begin with `keywords::CrateRoot`.
pub segments: Vec<PathSegment>,
}
impl<'a> PartialEq<&'a str> for Path {
fn eq(&self, string: &&'a str) -> bool {
self.segments.len() == 1 && self.segments[0].ident.name == *string
}
}
impl fmt::Debug for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "path({})", pprust::path_to_string(self))
}
}
impl fmt::Display for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", pprust::path_to_string(self))
}
}
impl Path {
// convert a span and an identifier to the corresponding
// 1-segment path
pub fn from_ident(ident: Ident) -> Path {
Path {
segments: vec![PathSegment::from_ident(ident)],
span: ident.span,
}
}
// Make a "crate root" segment for this path unless it already has it
// or starts with something like `self`/`super`/`$crate`/etc.
pub fn make_root(&self) -> Option<PathSegment> {
if let Some(ident) = self.segments.get(0).map(|seg| seg.ident) {
if ident.is_path_segment_keyword() {
return None;
}
}
Some(PathSegment::crate_root(self.span.shrink_to_lo()))
}
pub fn is_global(&self) -> bool {
!self.segments.is_empty() && self.segments[0].ident.name == keywords::CrateRoot.name()
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of types.
///
/// E.g. `std`, `String` or `Box<T>`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub ident: Ident,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`.
/// `None` means that no parameter list is supplied (`Path`),
/// `Some` means that parameter list is supplied (`Path<X, Y>`)
/// but it can be empty (`Path<>`).
/// `P` is used as a size optimization for the common case with no parameters.
pub args: Option<P<GenericArgs>>,
}
impl PathSegment {
pub fn from_ident(ident: Ident) -> Self {
PathSegment { ident, args: None }
}
pub fn crate_root(span: Span) -> Self {
PathSegment::from_ident(Ident::new(keywords::CrateRoot.name(), span))
}
}
/// Arguments of a path segment.
///
/// E.g. `<A, B>` as in `Foo<A, B>` or `(A, B)` as in `Foo(A, B)`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum GenericArgs {
/// The `<'a, A,B,C>` in `foo::bar::baz::<'a, A,B,C>`
AngleBracketed(AngleBracketedArgs),
/// The `(A,B)` and `C` in `Foo(A,B) -> C`
Parenthesized(ParenthesisedArgs),
}
impl GenericArgs {
pub fn span(&self) -> Span {
match *self {
AngleBracketed(ref data) => data.span,
Parenthesized(ref data) => data.span,
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum GenericArg {
Lifetime(Lifetime),
Type(P<Ty>),
}
/// A path like `Foo<'a, T>`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Default)]
pub struct AngleBracketedArgs {
/// Overall span
pub span: Span,
/// The arguments for this path segment.
pub args: Vec<GenericArg>,
/// Bindings (equality constraints) on associated types, if present.
///
/// E.g., `Foo<A=Bar>`.
pub bindings: Vec<TypeBinding>,
}
impl Into<Option<P<GenericArgs>>> for AngleBracketedArgs {
fn into(self) -> Option<P<GenericArgs>> {
Some(P(GenericArgs::AngleBracketed(self)))
}
}
impl Into<Option<P<GenericArgs>>> for ParenthesisedArgs {
fn into(self) -> Option<P<GenericArgs>> {
Some(P(GenericArgs::Parenthesized(self)))
}
}
/// A path like `Foo(A,B) -> C`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ParenthesisedArgs {
/// Overall span
pub span: Span,
/// `(A,B)`
pub inputs: Vec<P<Ty>>,
/// `C`
pub output: Option<P<Ty>>,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct NodeId(u32);
impl NodeId {
pub fn new(x: usize) -> NodeId {
assert!(x < (u32::MAX as usize));
NodeId(x as u32)
}
pub fn from_u32(x: u32) -> NodeId {
NodeId(x)
}
pub fn as_usize(&self) -> usize {
self.0 as usize
}
pub fn as_u32(&self) -> u32 {
self.0
}
pub fn placeholder_from_mark(mark: Mark) -> Self {
NodeId(mark.as_u32())
}
pub fn placeholder_to_mark(self) -> Mark {
Mark::from_u32(self.0)
}
}
impl fmt::Display for NodeId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.0, f)
}
}
impl serialize::UseSpecializedEncodable for NodeId {
fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_u32(self.0)
}
}
impl serialize::UseSpecializedDecodable for NodeId {
fn default_decode<D: Decoder>(d: &mut D) -> Result<NodeId, D::Error> {
d.read_u32().map(NodeId)
}
}
impl indexed_vec::Idx for NodeId {
fn new(idx: usize) -> Self {
NodeId::new(idx)
}
fn index(self) -> usize {
self.as_usize()
}
}
/// Node id used to represent the root of the crate.
pub const CRATE_NODE_ID: NodeId = NodeId(0);
/// When parsing and doing expansions, we initially give all AST nodes this AST
/// node value. Then later, in the renumber pass, we renumber them to have
/// small, positive ids.
pub const DUMMY_NODE_ID: NodeId = NodeId(!0);
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)]
pub enum TraitBoundModifier {
None,
Maybe,
}
/// The AST represents all type param bounds as types.
/// typeck::collect::compute_bounds matches these against
/// the "special" built-in traits (see middle::lang_items) and
/// detects Copy, Send and Sync.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum GenericBound {
Trait(PolyTraitRef, TraitBoundModifier),
Outlives(Lifetime),
}
impl GenericBound {
pub fn span(&self) -> Span {
match self {
&GenericBound::Trait(ref t, ..) => t.span,
&GenericBound::Outlives(ref l) => l.ident.span,
}
}
}
pub type GenericBounds = Vec<GenericBound>;
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum GenericParamKind {
/// A lifetime definition, e.g. `'a: 'b+'c+'d`.
Lifetime,
Type {
default: Option<P<Ty>>,
},
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct GenericParam {
pub id: NodeId,
pub ident: Ident,
pub attrs: ThinVec<Attribute>,
pub bounds: GenericBounds,
pub kind: GenericParamKind,
}
/// Represents lifetime, type and const parameters attached to a declaration of
/// a function, enum, trait, etc.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Generics {
pub params: Vec<GenericParam>,
pub where_clause: WhereClause,
pub span: Span,
}
impl Default for Generics {
/// Creates an instance of `Generics`.
fn default() -> Generics {
Generics {
params: Vec::new(),
where_clause: WhereClause {
id: DUMMY_NODE_ID,
predicates: Vec::new(),
span: DUMMY_SP,
},
span: DUMMY_SP,
}
}
}
/// A `where` clause in a definition
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct WhereClause {
pub id: NodeId,
pub predicates: Vec<WherePredicate>,
pub span: Span,
}
/// A single predicate in a `where` clause
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum WherePredicate {
/// A type binding, e.g. `for<'c> Foo: Send+Clone+'c`
BoundPredicate(WhereBoundPredicate),
/// A lifetime predicate, e.g. `'a: 'b+'c`
RegionPredicate(WhereRegionPredicate),
/// An equality predicate (unsupported)
EqPredicate(WhereEqPredicate),
}
impl WherePredicate {
pub fn span(&self) -> Span {
match self {
&WherePredicate::BoundPredicate(ref p) => p.span,
&WherePredicate::RegionPredicate(ref p) => p.span,
&WherePredicate::EqPredicate(ref p) => p.span,
}
}
}
/// A type bound.
///
/// E.g. `for<'c> Foo: Send+Clone+'c`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct WhereBoundPredicate {
pub span: Span,
/// Any generics from a `for` binding
pub bound_generic_params: Vec<GenericParam>,
/// The type being bounded
pub bounded_ty: P<Ty>,
/// Trait and lifetime bounds (`Clone+Send+'static`)
pub bounds: GenericBounds,
}
/// A lifetime predicate.
///
/// E.g. `'a: 'b+'c`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct WhereRegionPredicate {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: GenericBounds,
}
/// An equality predicate (unsupported).
///
/// E.g. `T=int`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct WhereEqPredicate {
pub id: NodeId,
pub span: Span,
pub lhs_ty: P<Ty>,
pub rhs_ty: P<Ty>,
}
/// The set of MetaItems that define the compilation environment of the crate,
/// used to drive conditional compilation
pub type CrateConfig = FxHashSet<(Name, Option<Symbol>)>;
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Crate {
pub module: Mod,
pub attrs: Vec<Attribute>,
pub span: Span,
}
/// A spanned compile-time attribute list item.
pub type NestedMetaItem = Spanned<NestedMetaItemKind>;
/// Possible values inside of compile-time attribute lists.
///
/// E.g. the '..' in `#[name(..)]`.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum NestedMetaItemKind {
/// A full MetaItem, for recursive meta items.
MetaItem(MetaItem),
/// A literal.
///
/// E.g. "foo", 64, true
Literal(Lit),
}
/// A spanned compile-time attribute item.
///
/// E.g. `#[test]`, `#[derive(..)]`, `#[rustfmt::skip]` or `#[feature = "foo"]`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct MetaItem {
pub ident: Path,
pub node: MetaItemKind,
pub span: Span,
}
/// A compile-time attribute item.
///
/// E.g. `#[test]`, `#[derive(..)]` or `#[feature = "foo"]`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum MetaItemKind {
/// Word meta item.
///
/// E.g. `test` as in `#[test]`
Word,
/// List meta item.
///
/// E.g. `derive(..)` as in `#[derive(..)]`
List(Vec<NestedMetaItem>),
/// Name value meta item.
///
/// E.g. `feature = "foo"` as in `#[feature = "foo"]`
NameValue(Lit),
}
/// A Block (`{ .. }`).
///
/// E.g. `{ .. }` as in `fn foo() { .. }`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Block {
/// Statements in a block
pub stmts: Vec<Stmt>,
pub id: NodeId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`
pub rules: BlockCheckMode,
pub span: Span,
pub recovered: bool,
}
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct Pat {
pub id: NodeId,
pub node: PatKind,
pub span: Span,
}
impl fmt::Debug for Pat {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "pat({}: {})", self.id, pprust::pat_to_string(self))
}
}
impl Pat {
pub(super) fn to_ty(&self) -> Option<P<Ty>> {
let node = match &self.node {
PatKind::Wild => TyKind::Infer,
PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), ident, None) => {
TyKind::Path(None, Path::from_ident(*ident))
}
PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
PatKind::Mac(mac) => TyKind::Mac(mac.clone()),
PatKind::Ref(pat, mutbl) => pat
.to_ty()
.map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?,
PatKind::Slice(pats, None, _) if pats.len() == 1 => {
pats[0].to_ty().map(TyKind::Slice)?
}
PatKind::Tuple(pats, None) => {
let mut tys = Vec::with_capacity(pats.len());
// FIXME(#48994) - could just be collected into an Option<Vec>
for pat in pats {
tys.push(pat.to_ty()?);
}
TyKind::Tup(tys)
}
_ => return None,
};
Some(P(Ty {
node,
id: self.id,
span: self.span,
}))
}
pub fn walk<F>(&self, it: &mut F) -> bool
where
F: FnMut(&Pat) -> bool,
{
if !it(self) {
return false;
}
match self.node {
PatKind::Ident(_, _, Some(ref p)) => p.walk(it),
PatKind::Struct(_, ref fields, _) => fields.iter().all(|field| field.node.pat.walk(it)),
PatKind::TupleStruct(_, ref s, _) | PatKind::Tuple(ref s, _) => {
s.iter().all(|p| p.walk(it))
}
PatKind::Box(ref s) | PatKind::Ref(ref s, _) | PatKind::Paren(ref s) => s.walk(it),
PatKind::Slice(ref before, ref slice, ref after) => {
before.iter().all(|p| p.walk(it))
&& slice.iter().all(|p| p.walk(it))
&& after.iter().all(|p| p.walk(it))
}
PatKind::Wild
| PatKind::Lit(_)
| PatKind::Range(..)
| PatKind::Ident(..)
| PatKind::Path(..)
| PatKind::Mac(_) => true,
}
}
}
/// A single field in a struct pattern
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except is_shorthand is true
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct FieldPat {
/// The identifier for the field
pub ident: Ident,
/// The pattern the field is destructured to
pub pat: P<Pat>,
pub is_shorthand: bool,
pub attrs: ThinVec<Attribute>,
}
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum BindingMode {
ByRef(Mutability),
ByValue(Mutability),
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum RangeEnd {
Included(RangeSyntax),
Excluded,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum RangeSyntax {
DotDotDot,
DotDotEq,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum PatKind {
/// Represents a wildcard pattern (`_`)
Wild,
/// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`),
/// or a unit struct/variant pattern, or a const pattern (in the last two cases the third
/// field must be `None`). Disambiguation cannot be done with parser alone, so it happens
/// during name resolution.
Ident(BindingMode, Ident, Option<P<Pat>>),
/// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`.
/// The `bool` is `true` in the presence of a `..`.
Struct(Path, Vec<Spanned<FieldPat>>, bool),
/// A tuple struct/variant pattern `Variant(x, y, .., z)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
TupleStruct(Path, Vec<P<Pat>>, Option<usize>),
/// A possibly qualified path pattern.
/// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants
/// or associated constants. Qualified path patterns `<A>::B::C`/`<A as Trait>::B::C` can
/// only legally refer to associated constants.
Path(Option<QSelf>, Path),
/// A tuple pattern `(a, b)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
Tuple(Vec<P<Pat>>, Option<usize>),
/// A `box` pattern
Box(P<Pat>),
/// A reference pattern, e.g. `&mut (a, b)`
Ref(P<Pat>, Mutability),
/// A literal
Lit(P<Expr>),
/// A range pattern, e.g. `1...2`, `1..=2` or `1..2`
Range(P<Expr>, P<Expr>, Spanned<RangeEnd>),
/// `[a, b, ..i, y, z]` is represented as:
/// `PatKind::Slice(box [a, b], Some(i), box [y, z])`
Slice(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>),
/// Parentheses in patterns used for grouping, i.e. `(PAT)`.
Paren(P<Pat>),
/// A macro pattern; pre-expansion
Mac(Mac),
}
#[derive(
Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, Debug, Copy,
)]
pub enum Mutability {
Mutable,
Immutable,
}
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum BinOpKind {
/// The `+` operator (addition)
Add,
/// The `-` operator (subtraction)
Sub,
/// The `*` operator (multiplication)
Mul,
/// The `/` operator (division)
Div,
/// The `%` operator (modulus)
Rem,
/// The `&&` operator (logical and)
And,
/// The `||` operator (logical or)
Or,
/// The `^` operator (bitwise xor)
BitXor,
/// The `&` operator (bitwise and)
BitAnd,
/// The `|` operator (bitwise or)
BitOr,
/// The `<<` operator (shift left)
Shl,
/// The `>>` operator (shift right)
Shr,
/// The `==` operator (equality)
Eq,
/// The `<` operator (less than)
Lt,
/// The `<=` operator (less than or equal to)
Le,
/// The `!=` operator (not equal to)
Ne,
/// The `>=` operator (greater than or equal to)
Ge,
/// The `>` operator (greater than)
Gt,
}
impl BinOpKind {
pub fn to_string(&self) -> &'static str {
use self::BinOpKind::*;
match *self {
Add => "+",
Sub => "-",
Mul => "*",
Div => "/",
Rem => "%",
And => "&&",
Or => "||",
BitXor => "^",
BitAnd => "&",
BitOr => "|",
Shl => "<<",
Shr => ">>",
Eq => "==",
Lt => "<",
Le => "<=",
Ne => "!=",
Ge => ">=",
Gt => ">",
}
}
pub fn lazy(&self) -> bool {
match *self {
BinOpKind::And | BinOpKind::Or => true,
_ => false,
}
}
pub fn is_shift(&self) -> bool {
match *self {
BinOpKind::Shl | BinOpKind::Shr => true,
_ => false,
}
}
pub fn is_comparison(&self) -> bool {
use self::BinOpKind::*;
match *self {
Eq | Lt | Le | Ne | Gt | Ge => true,
And | Or | Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr => false,
}
}
/// Returns `true` if the binary operator takes its arguments by value
pub fn is_by_value(&self) -> bool {
!self.is_comparison()
}
}
pub type BinOp = Spanned<BinOpKind>;
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum UnOp {
/// The `*` operator for dereferencing
Deref,
/// The `!` operator for logical inversion
Not,
/// The `-` operator for negation
Neg,
}
impl UnOp {
/// Returns `true` if the unary operator takes its argument by value
pub fn is_by_value(u: UnOp) -> bool {
match u {
UnOp::Neg | UnOp::Not => true,
_ => false,
}
}
pub fn to_string(op: UnOp) -> &'static str {
match op {
UnOp::Deref => "*",
UnOp::Not => "!",
UnOp::Neg => "-",
}
}
}
/// A statement
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct Stmt {
pub id: NodeId,
pub node: StmtKind,
pub span: Span,
}
impl Stmt {
pub fn add_trailing_semicolon(mut self) -> Self {
self.node = match self.node {
StmtKind::Expr(expr) => StmtKind::Semi(expr),
StmtKind::Mac(mac) => {
StmtKind::Mac(mac.map(|(mac, _style, attrs)| (mac, MacStmtStyle::Semicolon, attrs)))
}
node => node,
};
self
}
pub fn is_item(&self) -> bool {
match self.node {
StmtKind::Item(_) => true,
_ => false,
}
}
pub fn is_expr(&self) -> bool {
match self.node {
StmtKind::Expr(_) => true,
_ => false,
}
}
}
impl fmt::Debug for Stmt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"stmt({}: {})",
self.id.to_string(),
pprust::stmt_to_string(self)
)
}
}
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub enum StmtKind {
/// A local (let) binding.
Local(P<Local>),
/// An item definition.
Item(P<Item>),
/// Expr without trailing semi-colon.
Expr(P<Expr>),
/// Expr with a trailing semi-colon.
Semi(P<Expr>),
/// Macro.
Mac(P<(Mac, MacStmtStyle, ThinVec<Attribute>)>),
}
#[derive(Clone, Copy, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum MacStmtStyle {
/// The macro statement had a trailing semicolon, e.g. `foo! { ... };`
/// `foo!(...);`, `foo![...];`
Semicolon,
/// The macro statement had braces; e.g. foo! { ... }
Braces,
/// The macro statement had parentheses or brackets and no semicolon; e.g.
/// `foo!(...)`. All of these will end up being converted into macro
/// expressions.
NoBraces,
}
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Local {
pub pat: P<Pat>,
pub ty: Option<P<Ty>>,
/// Initializer expression to set the value, if any
pub init: Option<P<Expr>>,
pub id: NodeId,
pub span: Span,
pub attrs: ThinVec<Attribute>,
}
/// An arm of a 'match'.
///
/// E.g. `0..=10 => { println!("match!") }` as in
///
/// ```
/// match 123 {
/// 0..=10 => { println!("match!") },
/// _ => { println!("no match!") },
/// }
/// ```
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Arm {
pub attrs: Vec<Attribute>,
pub pats: Vec<P<Pat>>,
pub guard: Option<Guard>,
pub body: P<Expr>,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum Guard {
If(P<Expr>),
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Field {
pub ident: Ident,
pub expr: P<Expr>,
pub span: Span,
pub is_shorthand: bool,
pub attrs: ThinVec<Attribute>,
}
pub type SpannedIdent = Spanned<Ident>;
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum BlockCheckMode {
Default,
Unsafe(UnsafeSource),
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
/// A constant (expression) that's not an item or associated item,
/// but needs its own `DefId` for type-checking, const-eval, etc.
/// These are usually found nested inside types (e.g. array lengths)
/// or expressions (e.g. repeat counts), and also used to define
/// explicit discriminant values for enum variants.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct AnonConst {
pub id: NodeId,
pub value: P<Expr>,
}
/// An expression
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct Expr {
pub id: NodeId,
pub node: ExprKind,
pub span: Span,
pub attrs: ThinVec<Attribute>,
}
impl Expr {
/// Whether this expression would be valid somewhere that expects a value, for example, an `if`
/// condition.
pub fn returns(&self) -> bool {
if let ExprKind::Block(ref block, _) = self.node {
match block.stmts.last().map(|last_stmt| &last_stmt.node) {
// implicit return
Some(&StmtKind::Expr(_)) => true,
Some(&StmtKind::Semi(ref expr)) => {
if let ExprKind::Ret(_) = expr.node {
// last statement is explicit return
true
} else {
false
}
}
// This is a block that doesn't end in either an implicit or explicit return
_ => false,
}
} else {
// This is not a block, it is a value
true
}
}
fn to_bound(&self) -> Option<GenericBound> {
match &self.node {
ExprKind::Path(None, path) => Some(GenericBound::Trait(
PolyTraitRef::new(Vec::new(), path.clone(), self.span),
TraitBoundModifier::None,
)),
_ => None,
}
}
pub(super) fn to_ty(&self) -> Option<P<Ty>> {
let node = match &self.node {
ExprKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
ExprKind::Mac(mac) => TyKind::Mac(mac.clone()),
ExprKind::Paren(expr) => expr.to_ty().map(TyKind::Paren)?,
ExprKind::AddrOf(mutbl, expr) => expr
.to_ty()
.map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?,
ExprKind::Repeat(expr, expr_len) => {
expr.to_ty().map(|ty| TyKind::Array(ty, expr_len.clone()))?
}
ExprKind::Array(exprs) if exprs.len() == 1 => exprs[0].to_ty().map(TyKind::Slice)?,
ExprKind::Tup(exprs) => {
let tys = exprs
.iter()
.map(|expr| expr.to_ty())
.collect::<Option<Vec<_>>>()?;
TyKind::Tup(tys)
}
ExprKind::Binary(binop, lhs, rhs) if binop.node == BinOpKind::Add => {
if let (Some(lhs), Some(rhs)) = (lhs.to_bound(), rhs.to_bound()) {
TyKind::TraitObject(vec![lhs, rhs], TraitObjectSyntax::None)
} else {
return None;
}
}
_ => return None,
};
Some(P(Ty {
node,
id: self.id,
span: self.span,
}))
}
pub fn precedence(&self) -> ExprPrecedence {
match self.node {
ExprKind::Box(_) => ExprPrecedence::Box,
ExprKind::ObsoleteInPlace(..) => ExprPrecedence::ObsoleteInPlace,
ExprKind::Array(_) => ExprPrecedence::Array,
ExprKind::Call(..) => ExprPrecedence::Call,
ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
ExprKind::Tup(_) => ExprPrecedence::Tup,
ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node),
ExprKind::Unary(..) => ExprPrecedence::Unary,
ExprKind::Lit(_) => ExprPrecedence::Lit,
ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
ExprKind::If(..) => ExprPrecedence::If,
ExprKind::IfLet(..) => ExprPrecedence::IfLet,
ExprKind::While(..) => ExprPrecedence::While,
ExprKind::WhileLet(..) => ExprPrecedence::WhileLet,
ExprKind::ForLoop(..) => ExprPrecedence::ForLoop,
ExprKind::Loop(..) => ExprPrecedence::Loop,
ExprKind::Match(..) => ExprPrecedence::Match,
ExprKind::Closure(..) => ExprPrecedence::Closure,
ExprKind::Block(..) => ExprPrecedence::Block,
ExprKind::TryBlock(..) => ExprPrecedence::TryBlock,
ExprKind::Async(..) => ExprPrecedence::Async,
ExprKind::Assign(..) => ExprPrecedence::Assign,
ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
ExprKind::Field(..) => ExprPrecedence::Field,
ExprKind::Index(..) => ExprPrecedence::Index,
ExprKind::Range(..) => ExprPrecedence::Range,
ExprKind::Path(..) => ExprPrecedence::Path,
ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
ExprKind::Break(..) => ExprPrecedence::Break,
ExprKind::Continue(..) => ExprPrecedence::Continue,
ExprKind::Ret(..) => ExprPrecedence::Ret,
ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm,
ExprKind::Mac(..) => ExprPrecedence::Mac,
ExprKind::Struct(..) => ExprPrecedence::Struct,
ExprKind::Repeat(..) => ExprPrecedence::Repeat,
ExprKind::Paren(..) => ExprPrecedence::Paren,
ExprKind::Try(..) => ExprPrecedence::Try,
ExprKind::Yield(..) => ExprPrecedence::Yield,
}
}
}
impl fmt::Debug for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "expr({}: {})", self.id, pprust::expr_to_string(self))
}
}
/// Limit types of a range (inclusive or exclusive)
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum RangeLimits {
/// Inclusive at the beginning, exclusive at the end
HalfOpen,
/// Inclusive at the beginning and end
Closed,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum ExprKind {
/// A `box x` expression.
Box(P<Expr>),
/// First expr is the place; second expr is the value.
ObsoleteInPlace(P<Expr>, P<Expr>),
/// An array (`[a, b, c, d]`)
Array(Vec<P<Expr>>),
/// A function call
///
/// The first field resolves to the function itself,
/// and the second field is the list of arguments.
/// This also represents calling the constructor of
/// tuple-like ADTs such as tuple structs and enum variants.
Call(P<Expr>, Vec<P<Expr>>),
/// A method call (`x.foo::<'static, Bar, Baz>(a, b, c, d)`)
///
/// The `PathSegment` represents the method name and its generic arguments
/// (within the angle brackets).
/// The first element of the vector of `Expr`s is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
/// and the remaining elements are the rest of the arguments.
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
/// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`.
MethodCall(PathSegment, Vec<P<Expr>>),
/// A tuple (`(a, b, c ,d)`)
Tup(Vec<P<Expr>>),
/// A binary operation (For example: `a + b`, `a * b`)
Binary(BinOp, P<Expr>, P<Expr>),
/// A unary operation (For example: `!x`, `*x`)
Unary(UnOp, P<Expr>),
/// A literal (For example: `1`, `"foo"`)
Lit(P<Lit>),
/// A cast (`foo as f64`)
Cast(P<Expr>, P<Ty>),
Type(P<Expr>, P<Ty>),
/// An `if` block, with an optional else block
///
/// `if expr { block } else { expr }`
If(P<Expr>, P<Block>, Option<P<Expr>>),
/// An `if let` expression with an optional else block
///
/// `if let pat = expr { block } else { expr }`
///
/// This is desugared to a `match` expression.
IfLet(Vec<P<Pat>>, P<Expr>, P<Block>, Option<P<Expr>>),
/// A while loop, with an optional label
///
/// `'label: while expr { block }`
While(P<Expr>, P<Block>, Option<Label>),
/// A while-let loop, with an optional label
///
/// `'label: while let pat = expr { block }`
///
/// This is desugared to a combination of `loop` and `match` expressions.
WhileLet(Vec<P<Pat>>, P<Expr>, P<Block>, Option<Label>),
/// A for loop, with an optional label
///
/// `'label: for pat in expr { block }`
///
/// This is desugared to a combination of `loop` and `match` expressions.
ForLoop(P<Pat>, P<Expr>, P<Block>, Option<Label>),
/// Conditionless loop (can be exited with break, continue, or return)
///
/// `'label: loop { block }`
Loop(P<Block>, Option<Label>),
/// A `match` block.
Match(P<Expr>, Vec<Arm>),
/// A closure (for example, `move |a, b, c| a + b + c`)
///
/// The final span is the span of the argument block `|...|`
Closure(CaptureBy, IsAsync, Movability, P<FnDecl>, P<Expr>, Span),
/// A block (`'label: { ... }`)
Block(P<Block>, Option<Label>),
/// An async block (`async move { ... }`)
///
/// The `NodeId` is the `NodeId` for the closure that results from
/// desugaring an async block, just like the NodeId field in the
/// `IsAsync` enum. This is necessary in order to create a def for the
/// closure which can be used as a parent of any child defs. Defs
/// created during lowering cannot be made the parent of any other
/// preexisting defs.
Async(CaptureBy, NodeId, P<Block>),
/// A try block (`try { ... }`)
TryBlock(P<Block>),
/// An assignment (`a = foo()`)
Assign(P<Expr>, P<Expr>),
/// An assignment with an operator
///
/// For example, `a += 1`.
AssignOp(BinOp, P<Expr>, P<Expr>),
/// Access of a named (`obj.foo`) or unnamed (`obj.0`) struct field
Field(P<Expr>, Ident),
/// An indexing operation (`foo[2]`)
Index(P<Expr>, P<Expr>),
/// A range (`1..2`, `1..`, `..2`, `1...2`, `1...`, `...2`)
Range(Option<P<Expr>>, Option<P<Expr>>, RangeLimits),
/// Variable reference, possibly containing `::` and/or type
/// parameters, e.g. foo::bar::<baz>.
///
/// Optionally "qualified",
/// E.g. `<Vec<T> as SomeTrait>::SomeType`.
Path(Option<QSelf>, Path),
/// A referencing operation (`&a` or `&mut a`)
AddrOf(Mutability, P<Expr>),
/// A `break`, with an optional label to break, and an optional expression
Break(Option<Label>, Option<P<Expr>>),
/// A `continue`, with an optional label
Continue(Option<Label>),
/// A `return`, with an optional value to be returned
Ret(Option<P<Expr>>),
/// Output of the `asm!()` macro
InlineAsm(P<InlineAsm>),
/// A macro invocation; pre-expansion
Mac(Mac),
/// A struct literal expression.
///
/// For example, `Foo {x: 1, y: 2}`, or
/// `Foo {x: 1, .. base}`, where `base` is the `Option<Expr>`.
Struct(Path, Vec<Field>, Option<P<Expr>>),
/// An array literal constructed from one repeated element.
///
/// For example, `[1; 5]`. The expression is the element to be
/// repeated; the constant is the number of times to repeat it.
Repeat(P<Expr>, AnonConst),
/// No-op: used solely so we can pretty-print faithfully
Paren(P<Expr>),
/// `expr?`
Try(P<Expr>),
/// A `yield`, with an optional value to be yielded
Yield(Option<P<Expr>>),
}
/// The explicit Self type in a "qualified path". The actual
/// path, including the trait and the associated item, is stored
/// separately. `position` represents the index of the associated
/// item qualified with this Self type.
///
/// ```ignore (only-for-syntax-highlight)
/// <Vec<T> as a::b::Trait>::AssociatedItem
/// ^~~~~ ~~~~~~~~~~~~~~^
/// ty position = 3
///
/// <Vec<T>>::AssociatedItem
/// ^~~~~ ^
/// ty position = 0
/// ```
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct QSelf {
pub ty: P<Ty>,
/// The span of `a::b::Trait` in a path like `<Vec<T> as
/// a::b::Trait>::AssociatedItem`; in the case where `position ==
/// 0`, this is an empty span.
pub path_span: Span,
pub position: usize,
}
/// A capture clause
#[derive(Clone, Copy, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum CaptureBy {
Value,
Ref,
}
/// The movability of a generator / closure literal
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum Movability {
Static,
Movable,
}
pub type Mac = Spanned<Mac_>;
/// Represents a macro invocation. The Path indicates which macro
/// is being invoked, and the vector of token-trees contains the source
/// of the macro invocation.
///
/// NB: the additional ident for a macro_rules-style macro is actually
/// stored in the enclosing item. Oog.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Mac_ {
pub path: Path,
pub delim: MacDelimiter,
pub tts: ThinTokenStream,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)]
pub enum MacDelimiter {
Parenthesis,
Bracket,
Brace,
}
impl Mac_ {
pub fn stream(&self) -> TokenStream {
self.tts.clone().into()
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct MacroDef {
pub tokens: ThinTokenStream,
pub legacy: bool,
}
impl MacroDef {
pub fn stream(&self) -> TokenStream {
self.tokens.clone().into()
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Copy, Hash, PartialEq)]
pub enum StrStyle {
/// A regular string, like `"foo"`
Cooked,
/// A raw string, like `r##"foo"##`
///
/// The value is the number of `#` symbols used.
Raw(u16),
}
/// A literal
pub type Lit = Spanned<LitKind>;
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Copy, Hash, PartialEq)]
pub enum LitIntType {
Signed(IntTy),
Unsigned(UintTy),
Unsuffixed,
}
/// Literal kind.
///
/// E.g. `"foo"`, `42`, `12.34` or `bool`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Hash, PartialEq)]
pub enum LitKind {
/// A string literal (`"foo"`)
Str(Symbol, StrStyle),
/// A byte string (`b"foo"`)
ByteStr(Lrc<Vec<u8>>),
/// A byte char (`b'f'`)
Byte(u8),
/// A character literal (`'a'`)
Char(char),
/// An integer literal (`1`)
Int(u128, LitIntType),
/// A float literal (`1f64` or `1E10f64`)
Float(Symbol, FloatTy),
/// A float literal without a suffix (`1.0 or 1.0E10`)
FloatUnsuffixed(Symbol),
/// A boolean literal
Bool(bool),
}
impl LitKind {
/// Returns true if this literal is a string and false otherwise.
pub fn is_str(&self) -> bool {
match *self {
LitKind::Str(..) => true,
_ => false,
}
}
/// Returns true if this is a numeric literal.
pub fn is_numeric(&self) -> bool {
match *self {
LitKind::Int(..) | LitKind::Float(..) | LitKind::FloatUnsuffixed(..) => true,
_ => false,
}
}
/// Returns true if this literal has no suffix. Note: this will return true
/// for literals with prefixes such as raw strings and byte strings.
pub fn is_unsuffixed(&self) -> bool {
match *self {
// unsuffixed variants
LitKind::Str(..)
| LitKind::ByteStr(..)
| LitKind::Byte(..)
| LitKind::Char(..)
| LitKind::Int(_, LitIntType::Unsuffixed)
| LitKind::FloatUnsuffixed(..)
| LitKind::Bool(..) => true,
// suffixed variants
LitKind::Int(_, LitIntType::Signed(..))
| LitKind::Int(_, LitIntType::Unsigned(..))
| LitKind::Float(..) => false,
}
}
/// Returns true if this literal has a suffix.
pub fn is_suffixed(&self) -> bool {
!self.is_unsuffixed()
}
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct MutTy {
pub ty: P<Ty>,
pub mutbl: Mutability,
}
/// Represents a method's signature in a trait declaration,
/// or in an implementation.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct MethodSig {
pub header: FnHeader,
pub decl: P<FnDecl>,
}
/// Represents an item declaration within a trait declaration,
/// possibly including a default implementation. A trait item is
/// either required (meaning it doesn't have an implementation, just a
/// signature) or provided (meaning it has a default implementation).
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct TraitItem {
pub id: NodeId,
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub generics: Generics,
pub node: TraitItemKind,
pub span: Span,
/// See `Item::tokens` for what this is
pub tokens: Option<TokenStream>,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum TraitItemKind {
Const(P<Ty>, Option<P<Expr>>),
Method(MethodSig, Option<P<Block>>),
Type(GenericBounds, Option<P<Ty>>),
Macro(Mac),
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ImplItem {
pub id: NodeId,
pub ident: Ident,
pub vis: Visibility,
pub defaultness: Defaultness,
pub attrs: Vec<Attribute>,
pub generics: Generics,
pub node: ImplItemKind,
pub span: Span,
/// See `Item::tokens` for what this is
pub tokens: Option<TokenStream>,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum ImplItemKind {
Const(P<Ty>, P<Expr>),
Method(MethodSig, P<Block>),
Type(P<Ty>),
Existential(GenericBounds),
Macro(Mac),
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, Copy)]
pub enum IntTy {
Isize,
I8,
I16,
I32,
I64,
I128,
}
impl fmt::Debug for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.ty_to_string())
}
}
impl IntTy {
pub fn ty_to_string(&self) -> &'static str {
match *self {
IntTy::Isize => "isize",
IntTy::I8 => "i8",
IntTy::I16 => "i16",
IntTy::I32 => "i32",
IntTy::I64 => "i64",
IntTy::I128 => "i128",
}
}
pub fn val_to_string(&self, val: i128) -> String {
// cast to a u128 so we can correctly print INT128_MIN. All integral types
// are parsed as u128, so we wouldn't want to print an extra negative
// sign.
format!("{}{}", val as u128, self.ty_to_string())
}
pub fn bit_width(&self) -> Option<usize> {
Some(match *self {
IntTy::Isize => return None,
IntTy::I8 => 8,
IntTy::I16 => 16,
IntTy::I32 => 32,
IntTy::I64 => 64,
IntTy::I128 => 128,
})
}
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, Copy)]
pub enum UintTy {
Usize,
U8,
U16,
U32,
U64,
U128,
}
impl UintTy {
pub fn ty_to_string(&self) -> &'static str {
match *self {
UintTy::Usize => "usize",
UintTy::U8 => "u8",
UintTy::U16 => "u16",
UintTy::U32 => "u32",
UintTy::U64 => "u64",
UintTy::U128 => "u128",
}
}
pub fn val_to_string(&self, val: u128) -> String {
format!("{}{}", val, self.ty_to_string())
}
pub fn bit_width(&self) -> Option<usize> {
Some(match *self {
UintTy::Usize => return None,
UintTy::U8 => 8,
UintTy::U16 => 16,
UintTy::U32 => 32,
UintTy::U64 => 64,
UintTy::U128 => 128,
})
}
}
impl fmt::Debug for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.ty_to_string())
}
}
// Bind a type to an associated type: `A=Foo`.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct TypeBinding {
pub id: NodeId,
pub ident: Ident,
pub ty: P<Ty>,
pub span: Span,
}
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct Ty {
pub id: NodeId,
pub node: TyKind,
pub span: Span,
}
impl fmt::Debug for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "type({})", pprust::ty_to_string(self))
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct BareFnTy {
pub unsafety: Unsafety,
pub abi: Abi,
pub generic_params: Vec<GenericParam>,
pub decl: P<FnDecl>,
}
/// The different kinds of types recognized by the compiler
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum TyKind {
/// A variable-length slice (`[T]`)
Slice(P<Ty>),
/// A fixed length array (`[T; n]`)
Array(P<Ty>, AnonConst),
/// A raw pointer (`*const T` or `*mut T`)
Ptr(MutTy),
/// A reference (`&'a T` or `&'a mut T`)
Rptr(Option<Lifetime>, MutTy),
/// A bare function (e.g. `fn(usize) -> bool`)
BareFn(P<BareFnTy>),
/// The never type (`!`)
Never,
/// A tuple (`(A, B, C, D,...)`)
Tup(Vec<P<Ty>>),
/// A path (`module::module::...::Type`), optionally
/// "qualified", e.g. `<Vec<T> as SomeTrait>::SomeType`.
///
/// Type parameters are stored in the Path itself
Path(Option<QSelf>, Path),
/// A trait object type `Bound1 + Bound2 + Bound3`
/// where `Bound` is a trait or a lifetime.
TraitObject(GenericBounds, TraitObjectSyntax),
/// An `impl Bound1 + Bound2 + Bound3` type
/// where `Bound` is a trait or a lifetime.
///
/// The `NodeId` exists to prevent lowering from having to
/// generate `NodeId`s on the fly, which would complicate
/// the generation of `existential type` items significantly
ImplTrait(NodeId, GenericBounds),
/// No-op; kept solely so that we can pretty-print faithfully
Paren(P<Ty>),
/// Unused for now
Typeof(AnonConst),
/// TyKind::Infer means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
Infer,
/// Inferred type of a `self` or `&self` argument in a method.
ImplicitSelf,
// A macro in the type position.
Mac(Mac),
/// Placeholder for a kind that has failed to be defined.
Err,
}
impl TyKind {
pub fn is_implicit_self(&self) -> bool {
if let TyKind::ImplicitSelf = *self {
true
} else {
false
}
}
pub fn is_unit(&self) -> bool {
if let TyKind::Tup(ref tys) = *self {
tys.is_empty()
} else {
false
}
}
}
/// Syntax used to declare a trait object.
#[derive(Clone, Copy, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum TraitObjectSyntax {
Dyn,
None,
}
/// Inline assembly dialect.
///
/// E.g. `"intel"` as in `asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum AsmDialect {
Att,
Intel,
}
/// Inline assembly.
///
/// E.g. `"={eax}"(result)` as in `asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct InlineAsmOutput {
pub constraint: Symbol,
pub expr: P<Expr>,
pub is_rw: bool,
pub is_indirect: bool,
}
/// Inline assembly.
///
/// E.g. `asm!("NOP");`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct InlineAsm {
pub asm: Symbol,
pub asm_str_style: StrStyle,
pub outputs: Vec<InlineAsmOutput>,
pub inputs: Vec<(Symbol, P<Expr>)>,
pub clobbers: Vec<Symbol>,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect,
pub ctxt: SyntaxContext,
}
/// An argument in a function header.
///
/// E.g. `bar: usize` as in `fn foo(bar: usize)`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Arg {
pub ty: P<Ty>,
pub pat: P<Pat>,
pub id: NodeId,
}
/// Alternative representation for `Arg`s describing `self` parameter of methods.
///
/// E.g. `&mut self` as in `fn foo(&mut self)`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum SelfKind {
/// `self`, `mut self`
Value(Mutability),
/// `&'lt self`, `&'lt mut self`
Region(Option<Lifetime>, Mutability),
/// `self: TYPE`, `mut self: TYPE`
Explicit(P<Ty>, Mutability),
}
pub type ExplicitSelf = Spanned<SelfKind>;
impl Arg {
pub fn to_self(&self) -> Option<ExplicitSelf> {
if let PatKind::Ident(BindingMode::ByValue(mutbl), ident, _) = self.pat.node {
if ident.name == keywords::SelfValue.name() {
return match self.ty.node {
TyKind::ImplicitSelf => Some(respan(self.pat.span, SelfKind::Value(mutbl))),
TyKind::Rptr(lt, MutTy { ref ty, mutbl }) if ty.node.is_implicit_self() => {
Some(respan(self.pat.span, SelfKind::Region(lt, mutbl)))
}
_ => Some(respan(
self.pat.span.to(self.ty.span),
SelfKind::Explicit(self.ty.clone(), mutbl),
)),
};
}
}
None
}
pub fn is_self(&self) -> bool {
if let PatKind::Ident(_, ident, _) = self.pat.node {
ident.name == keywords::SelfValue.name()
} else {
false
}
}
pub fn from_self(eself: ExplicitSelf, eself_ident: Ident) -> Arg {
let span = eself.span.to(eself_ident.span);
let infer_ty = P(Ty {
id: DUMMY_NODE_ID,
node: TyKind::ImplicitSelf,
span,
});
let arg = |mutbl, ty| Arg {
pat: P(Pat {
id: DUMMY_NODE_ID,
node: PatKind::Ident(BindingMode::ByValue(mutbl), eself_ident, None),
span,
}),
ty,
id: DUMMY_NODE_ID,
};
match eself.node {
SelfKind::Explicit(ty, mutbl) => arg(mutbl, ty),
SelfKind::Value(mutbl) => arg(mutbl, infer_ty),
SelfKind::Region(lt, mutbl) => arg(
Mutability::Immutable,
P(Ty {
id: DUMMY_NODE_ID,
node: TyKind::Rptr(
lt,
MutTy {
ty: infer_ty,
mutbl: mutbl,
},
),
span,
}),
),
}
}
}
/// Header (not the body) of a function declaration.
///
/// E.g. `fn foo(bar: baz)`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct FnDecl {
pub inputs: Vec<Arg>,
pub output: FunctionRetTy,
pub variadic: bool,
}
impl FnDecl {
pub fn get_self(&self) -> Option<ExplicitSelf> {
self.inputs.get(0).and_then(Arg::to_self)
}
pub fn has_self(&self) -> bool {
self.inputs.get(0).map(Arg::is_self).unwrap_or(false)
}
}
/// Is the trait definition an auto trait?
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum IsAuto {
Yes,
No,
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum Unsafety {
Unsafe,
Normal,
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum IsAsync {
Async {
closure_id: NodeId,
return_impl_trait_id: NodeId,
},
NotAsync,
}
impl IsAsync {
pub fn is_async(self) -> bool {
if let IsAsync::Async { .. } = self {
true
} else {
false
}
}
/// In case this is an `Async` return the `NodeId` for the generated impl Trait item
pub fn opt_return_id(self) -> Option<NodeId> {
match self {
IsAsync::Async {
return_impl_trait_id,
..
} => Some(return_impl_trait_id),
IsAsync::NotAsync => None,
}
}
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum Constness {
Const,
NotConst,
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub enum Defaultness {
Default,
Final,
}
impl fmt::Display for Unsafety {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(
match *self {
Unsafety::Normal => "normal",
Unsafety::Unsafe => "unsafe",
},
f,
)
}
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable)]
pub enum ImplPolarity {
/// `impl Trait for Type`
Positive,
/// `impl !Trait for Type`
Negative,
}
impl fmt::Debug for ImplPolarity {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ImplPolarity::Positive => "positive".fmt(f),
ImplPolarity::Negative => "negative".fmt(f),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum FunctionRetTy {
/// Return type is not specified.
///
/// Functions default to `()` and
/// closures default to inference. Span points to where return
/// type would be inserted.
Default(Span),
/// Everything else
Ty(P<Ty>),
}
impl FunctionRetTy {
pub fn span(&self) -> Span {
match *self {
FunctionRetTy::Default(span) => span,
FunctionRetTy::Ty(ref ty) => ty.span,
}
}
}
/// Module declaration.
///
/// E.g. `mod foo;` or `mod foo { .. }`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Mod {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub items: Vec<P<Item>>,
/// For `mod foo;` inline is false, for `mod foo { .. }` it is true.
pub inline: bool,
}
/// Foreign module declaration.
///
/// E.g. `extern { .. }` or `extern C { .. }`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ForeignMod {
pub abi: Abi,
pub items: Vec<ForeignItem>,
}
/// Global inline assembly
///
/// aka module-level assembly or file-scoped assembly
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, Copy)]
pub struct GlobalAsm {
pub asm: Symbol,
pub ctxt: SyntaxContext,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct EnumDef {
pub variants: Vec<Variant>,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Variant_ {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub data: VariantData,
/// Explicit discriminant, e.g. `Foo = 1`
pub disr_expr: Option<AnonConst>,
}
pub type Variant = Spanned<Variant_>;
/// Part of `use` item to the right of its prefix.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum UseTreeKind {
/// `use prefix` or `use prefix as rename`
///
/// The extra `NodeId`s are for HIR lowering, when additional statements are created for each
/// namespace.
Simple(Option<Ident>, NodeId, NodeId),
/// `use prefix::{...}`
Nested(Vec<(UseTree, NodeId)>),
/// `use prefix::*`
Glob,
}
/// A tree of paths sharing common prefixes.
/// Used in `use` items both at top-level and inside of braces in import groups.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct UseTree {
pub prefix: Path,
pub kind: UseTreeKind,
pub span: Span,
}
impl UseTree {
pub fn ident(&self) -> Ident {
match self.kind {
UseTreeKind::Simple(Some(rename), ..) => rename,
UseTreeKind::Simple(None, ..) => {
self.prefix
.segments
.last()
.expect("empty prefix in a simple import")
.ident
}
_ => panic!("`UseTree::ident` can only be used on a simple import"),
}
}
}
/// Distinguishes between Attributes that decorate items and Attributes that
/// are contained as statements within items. These two cases need to be
/// distinguished for pretty-printing.
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum AttrStyle {
Outer,
Inner,
}
#[derive(
Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, PartialOrd, Ord, Copy,
)]
pub struct AttrId(pub usize);
impl Idx for AttrId {
fn new(idx: usize) -> Self {
AttrId(idx)
}
fn index(self) -> usize {
self.0
}
}
/// Meta-data associated with an item
/// Doc-comments are promoted to attributes that have is_sugared_doc = true
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Attribute {
pub id: AttrId,
pub style: AttrStyle,
pub path: Path,
pub tokens: TokenStream,
pub is_sugared_doc: bool,
pub span: Span,
}
/// TraitRef's appear in impls.
///
/// resolve maps each TraitRef's ref_id to its defining trait; that's all
/// that the ref_id is for. The impl_id maps to the "self type" of this impl.
/// If this impl is an ItemKind::Impl, the impl_id is redundant (it could be the
/// same as the impl's node id).
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct TraitRef {
pub path: Path,
pub ref_id: NodeId,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct PolyTraitRef {
/// The `'a` in `<'a> Foo<&'a T>`
pub bound_generic_params: Vec<GenericParam>,
/// The `Foo<&'a T>` in `<'a> Foo<&'a T>`
pub trait_ref: TraitRef,
pub span: Span,
}
impl PolyTraitRef {
pub fn new(generic_params: Vec<GenericParam>, path: Path, span: Span) -> Self {
PolyTraitRef {
bound_generic_params: generic_params,
trait_ref: TraitRef {
path: path,
ref_id: DUMMY_NODE_ID,
},
span,
}
}
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum CrateSugar {
/// Source is `pub(crate)`
PubCrate,
/// Source is (just) `crate`
JustCrate,
}
pub type Visibility = Spanned<VisibilityKind>;
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum VisibilityKind {
Public,
Crate(CrateSugar),
Restricted { path: P<Path>, id: NodeId },
Inherited,
}
impl VisibilityKind {
pub fn is_pub(&self) -> bool {
if let VisibilityKind::Public = *self {
true
} else {
false
}
}
}
/// Field of a struct.
///
/// E.g. `bar: usize` as in `struct Foo { bar: usize }`
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct StructField {
pub span: Span,
pub ident: Option<Ident>,
pub vis: Visibility,
pub id: NodeId,
pub ty: P<Ty>,
pub attrs: Vec<Attribute>,
}
/// Fields and Ids of enum variants and structs
///
/// For enum variants: `NodeId` represents both an Id of the variant itself (relevant for all
/// variant kinds) and an Id of the variant's constructor (not relevant for `Struct`-variants).
/// One shared Id can be successfully used for these two purposes.
/// Id of the whole enum lives in `Item`.
///
/// For structs: `NodeId` represents an Id of the structure's constructor, so it is not actually
/// used for `Struct`-structs (but still presents). Structures don't have an analogue of "Id of
/// the variant itself" from enum variants.
/// Id of the whole struct lives in `Item`.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum VariantData {
/// Struct variant.
///
/// E.g. `Bar { .. }` as in `enum Foo { Bar { .. } }`
Struct(Vec<StructField>, NodeId),
/// Tuple variant.
///
/// E.g. `Bar(..)` as in `enum Foo { Bar(..) }`
Tuple(Vec<StructField>, NodeId),
/// Unit variant.
///
/// E.g. `Bar = ..` as in `enum Foo { Bar = .. }`
Unit(NodeId),
}
impl VariantData {
pub fn fields(&self) -> &[StructField] {
match *self {
VariantData::Struct(ref fields, _) | VariantData::Tuple(ref fields, _) => fields,
_ => &[],
}
}
pub fn id(&self) -> NodeId {
match *self {
VariantData::Struct(_, id) | VariantData::Tuple(_, id) | VariantData::Unit(id) => id,
}
}
pub fn is_struct(&self) -> bool {
if let VariantData::Struct(..) = *self {
true
} else {
false
}
}
pub fn is_tuple(&self) -> bool {
if let VariantData::Tuple(..) = *self {
true
} else {
false
}
}
pub fn is_unit(&self) -> bool {
if let VariantData::Unit(..) = *self {
true
} else {
false
}
}
}
/// An item
///
/// The name might be a dummy name in case of anonymous items
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Item {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub id: NodeId,
pub node: ItemKind,
pub vis: Visibility,
pub span: Span,
/// Original tokens this item was parsed from. This isn't necessarily
/// available for all items, although over time more and more items should
/// have this be `Some`. Right now this is primarily used for procedural
/// macros, notably custom attributes.
///
/// Note that the tokens here do not include the outer attributes, but will
/// include inner attributes.
pub tokens: Option<TokenStream>,
}
/// A function header
///
/// All the information between the visibility & the name of the function is
/// included in this struct (e.g. `async unsafe fn` or `const extern "C" fn`)
#[derive(Clone, Copy, RustcEncodable, RustcDecodable, Debug)]
pub struct FnHeader {
pub unsafety: Unsafety,
pub asyncness: IsAsync,
pub constness: Spanned<Constness>,
pub abi: Abi,
}
impl Default for FnHeader {
fn default() -> FnHeader {
FnHeader {
unsafety: Unsafety::Normal,
asyncness: IsAsync::NotAsync,
constness: dummy_spanned(Constness::NotConst),
abi: Abi::Rust,
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum ItemKind {
/// An `extern crate` item, with optional *original* crate name if the crate was renamed.
///
/// E.g. `extern crate foo` or `extern crate foo_bar as foo`
ExternCrate(Option<Name>),
/// A use declaration (`use` or `pub use`) item.
///
/// E.g. `use foo;`, `use foo::bar;` or `use foo::bar as FooBar;`
Use(P<UseTree>),
/// A static item (`static` or `pub static`).
///
/// E.g. `static FOO: i32 = 42;` or `static FOO: &'static str = "bar";`
Static(P<Ty>, Mutability, P<Expr>),
/// A constant item (`const` or `pub const`).
///
/// E.g. `const FOO: i32 = 42;`
Const(P<Ty>, P<Expr>),
/// A function declaration (`fn` or `pub fn`).
///
/// E.g. `fn foo(bar: usize) -> usize { .. }`
Fn(P<FnDecl>, FnHeader, Generics, P<Block>),
/// A module declaration (`mod` or `pub mod`).
///
/// E.g. `mod foo;` or `mod foo { .. }`
Mod(Mod),
/// An external module (`extern` or `pub extern`).
///
/// E.g. `extern {}` or `extern "C" {}`
ForeignMod(ForeignMod),
/// Module-level inline assembly (from `global_asm!()`)
GlobalAsm(P<GlobalAsm>),
/// A type alias (`type` or `pub type`).
///
/// E.g. `type Foo = Bar<u8>;`
Ty(P<Ty>, Generics),
/// An existential type declaration (`existential type`).
///
/// E.g. `existential type Foo: Bar + Boo;`
Existential(GenericBounds, Generics),
/// An enum definition (`enum` or `pub enum`).
///
/// E.g. `enum Foo<A, B> { C<A>, D<B> }`
Enum(EnumDef, Generics),
/// A struct definition (`struct` or `pub struct`).
///
/// E.g. `struct Foo<A> { x: A }`
Struct(VariantData, Generics),
/// A union definition (`union` or `pub union`).
///
/// E.g. `union Foo<A, B> { x: A, y: B }`
Union(VariantData, Generics),
/// A Trait declaration (`trait` or `pub trait`).
///
/// E.g. `trait Foo { .. }`, `trait Foo<T> { .. }` or `auto trait Foo {}`
Trait(IsAuto, Unsafety, Generics, GenericBounds, Vec<TraitItem>),
/// Trait alias
///
/// E.g. `trait Foo = Bar + Quux;`
TraitAlias(Generics, GenericBounds),
/// An implementation.
///
/// E.g. `impl<A> Foo<A> { .. }` or `impl<A> Trait for Foo<A> { .. }`
Impl(
Unsafety,
ImplPolarity,
Defaultness,
Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
Vec<ImplItem>,
),
/// A macro invocation.
///
/// E.g. `macro_rules! foo { .. }` or `foo!(..)`
Mac(Mac),
/// A macro definition.
MacroDef(MacroDef),
}
impl ItemKind {
pub fn descriptive_variant(&self) -> &str {
match *self {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "use",
ItemKind::Static(..) => "static item",
ItemKind::Const(..) => "constant item",
ItemKind::Fn(..) => "function",
ItemKind::Mod(..) => "module",
ItemKind::ForeignMod(..) => "foreign module",
ItemKind::GlobalAsm(..) => "global asm",
ItemKind::Ty(..) => "type alias",
ItemKind::Existential(..) => "existential type",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Mac(..) | ItemKind::MacroDef(..) | ItemKind::Impl(..) => "item",
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ForeignItem {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub node: ForeignItemKind,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
/// An item within an `extern` block
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum ForeignItemKind {
/// A foreign function
Fn(P<FnDecl>, Generics),
/// A foreign static item (`static ext: u8`), with optional mutability
/// (the boolean is true when mutable)
Static(P<Ty>, bool),
/// A foreign type
Ty,
/// A macro invocation
Macro(Mac),
}
impl ForeignItemKind {
pub fn descriptive_variant(&self) -> &str {
match *self {
ForeignItemKind::Fn(..) => "foreign function",
ForeignItemKind::Static(..) => "foreign static item",
ForeignItemKind::Ty => "foreign type",
ForeignItemKind::Macro(..) => "macro in foreign module",
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use serialize;
// are ASTs encodable?
#[test]
fn check_asts_encodable() {
fn assert_encodable<T: serialize::Encodable>() {}
assert_encodable::<Crate>();
}
}