rust/src/bootstrap/step.rs
2017-07-17 17:21:46 +12:00

1821 lines
73 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Definition of steps of the build system.
//!
//! This is where some of the real meat of rustbuild is located, in how we
//! define targets and the dependencies amongst them. This file can sort of be
//! viewed as just defining targets in a makefile which shell out to predefined
//! functions elsewhere about how to execute the target.
//!
//! The primary function here you're likely interested in is the `build_rules`
//! function. This will create a `Rules` structure which basically just lists
//! everything that rustbuild can do. Each rule has a human-readable name, a
//! path associated with it, some dependencies, and then a closure of how to
//! actually perform the rule.
//!
//! All steps below are defined in self-contained units, so adding a new target
//! to the build system should just involve adding the meta information here
//! along with the actual implementation elsewhere. You can find more comments
//! about how to define rules themselves below.
use std::collections::{BTreeMap, HashSet, HashMap};
use std::mem;
use std::path::PathBuf;
use std::process;
use check::{self, TestKind};
use compile;
use dist;
use doc;
use flags::Subcommand;
use install;
use native;
use {Compiler, Build, Mode};
pub fn run(build: &Build) {
let rules = build_rules(build);
let steps = rules.plan();
rules.run(&steps);
}
pub fn build_rules<'a>(build: &'a Build) -> Rules {
let mut rules = Rules::new(build);
// This is the first rule that we're going to define for rustbuild, which is
// used to compile LLVM itself. All rules are added through the `rules`
// structure created above and are configured through a builder-style
// interface.
//
// First up we see the `build` method. This represents a rule that's part of
// the top-level `build` subcommand. For example `./x.py build` is what this
// is associating with. Note that this is normally only relevant if you flag
// a rule as `default`, which we'll talk about later.
//
// Next up we'll see two arguments to this method:
//
// * `llvm` - this is the "human readable" name of this target. This name is
// not accessed anywhere outside this file itself (e.g. not in
// the CLI nor elsewhere in rustbuild). The purpose of this is to
// easily define dependencies between rules. That is, other rules
// will depend on this with the name "llvm".
// * `src/llvm` - this is the relevant path to the rule that we're working
// with. This path is the engine behind how commands like
// `./x.py build src/llvm` work. This should typically point
// to the relevant component, but if there's not really a
// path to be assigned here you can pass something like
// `path/to/nowhere` to ignore it.
//
// After we create the rule with the `build` method we can then configure
// various aspects of it. For example this LLVM rule uses `.host(true)` to
// flag that it's a rule only for host targets. In other words, LLVM isn't
// compiled for targets configured through `--target` (e.g. those we're just
// building a standard library for).
//
// Next up the `dep` method will add a dependency to this rule. The closure
// is yielded the step that represents executing the `llvm` rule itself
// (containing information like stage, host, target, ...) and then it must
// return a target that the step depends on. Here LLVM is actually
// interesting where a cross-compiled LLVM depends on the host LLVM, but
// otherwise it has no dependencies.
//
// To handle this we do a bit of dynamic dispatch to see what the dependency
// is. If we're building a LLVM for the build triple, then we don't actually
// have any dependencies! To do that we return a dependency on the `Step::noop()`
// target which does nothing.
//
// If we're build a cross-compiled LLVM, however, we need to assemble the
// libraries from the previous compiler. This step has the same name as
// ours (llvm) but we want it for a different target, so we use the
// builder-style methods on `Step` to configure this target to the build
// triple.
//
// Finally, to finish off this rule, we define how to actually execute it.
// That logic is all defined in the `native` module so we just delegate to
// the relevant function there. The argument to the closure passed to `run`
// is a `Step` (defined below) which encapsulates information like the
// stage, target, host, etc.
rules.build("llvm", "src/llvm")
.host(true)
.dep(move |s| {
if s.target == build.build {
Step::noop()
} else {
s.target(&build.build)
}
})
.run(move |s| native::llvm(build, s.target));
// Ok! After that example rule that's hopefully enough to explain what's
// going on here. You can check out the API docs below and also see a bunch
// more examples of rules directly below as well.
// the compiler with no target libraries ready to go
rules.build("rustc", "src/rustc")
.dep(|s| s.name("create-sysroot").target(s.host))
.dep(move |s| {
if s.stage == 0 {
Step::noop()
} else {
s.name("librustc")
.host(&build.build)
.stage(s.stage - 1)
}
})
.run(move |s| compile::assemble_rustc(build, s.stage, s.target));
// Helper for loading an entire DAG of crates, rooted at `name`
let krates = |name: &str| {
let mut ret = Vec::new();
let mut list = vec![name];
let mut visited = HashSet::new();
while let Some(krate) = list.pop() {
let default = krate == name;
let krate = &build.crates[krate];
let path = krate.path.strip_prefix(&build.src)
// This handles out of tree paths
.unwrap_or(&krate.path);
ret.push((krate, path.to_str().unwrap(), default));
for dep in krate.deps.iter() {
if visited.insert(dep) && dep != "build_helper" {
list.push(dep);
}
}
}
ret
};
// ========================================================================
// Crate compilations
//
// Tools used during the build system but not shipped
rules.build("create-sysroot", "path/to/nowhere")
.run(move |s| compile::create_sysroot(build, &s.compiler()));
// These rules are "pseudo rules" that don't actually do any work
// themselves, but represent a complete sysroot with the relevant compiler
// linked into place.
//
// That is, depending on "libstd" means that when the rule is completed then
// the `stage` sysroot for the compiler `host` will be available with a
// standard library built for `target` linked in place. Not all rules need
// the compiler itself to be available, just the standard library, so
// there's a distinction between the two.
rules.build("libstd", "src/libstd")
.dep(|s| s.name("rustc").target(s.host))
.dep(|s| s.name("libstd-link"));
rules.build("libtest", "src/libtest")
.dep(|s| s.name("libstd"))
.dep(|s| s.name("libtest-link"))
.default(true);
rules.build("librustc", "src/librustc")
.dep(|s| s.name("libtest"))
.dep(|s| s.name("librustc-link"))
.host(true)
.default(true);
// Helper method to define the rules to link a crate into its place in the
// sysroot.
//
// The logic here is a little subtle as there's a few cases to consider.
// Not all combinations of (stage, host, target) actually require something
// to be compiled, but rather libraries could get propagated from a
// different location. For example:
//
// * Any crate with a `host` that's not the build triple will not actually
// compile something. A different `host` means that the build triple will
// actually compile the libraries, and then we'll copy them over from the
// build triple to the `host` directory.
//
// * Some crates aren't even compiled by the build triple, but may be copied
// from previous stages. For example if we're not doing a full bootstrap
// then we may just depend on the stage1 versions of libraries to be
// available to get linked forward.
//
// * Finally, there are some cases, however, which do indeed comiple crates
// and link them into place afterwards.
//
// The rule definition below mirrors these three cases. The `dep` method
// calculates the correct dependency which either comes from stage1, a
// different compiler, or from actually building the crate itself (the `dep`
// rule). The `run` rule then mirrors these three cases and links the cases
// forward into the compiler sysroot specified from the correct location.
fn crate_rule<'a, 'b>(build: &'a Build,
rules: &'b mut Rules<'a>,
krate: &'a str,
dep: &'a str,
link: fn(&Build, &Compiler, &Compiler, &str))
-> RuleBuilder<'a, 'b> {
let mut rule = rules.build(&krate, "path/to/nowhere");
rule.dep(move |s| {
if build.force_use_stage1(&s.compiler(), s.target) {
s.host(&build.build).stage(1)
} else if s.host == build.build {
s.name(dep)
} else {
s.host(&build.build)
}
})
.run(move |s| {
if build.force_use_stage1(&s.compiler(), s.target) {
link(build,
&s.stage(1).host(&build.build).compiler(),
&s.compiler(),
s.target)
} else if s.host == build.build {
link(build, &s.compiler(), &s.compiler(), s.target)
} else {
link(build,
&s.host(&build.build).compiler(),
&s.compiler(),
s.target)
}
});
rule
}
// Similar to the `libstd`, `libtest`, and `librustc` rules above, except
// these rules only represent the libraries being available in the sysroot,
// not the compiler itself. This is done as not all rules need a compiler in
// the sysroot, but may just need the libraries.
//
// All of these rules use the helper definition above.
crate_rule(build,
&mut rules,
"libstd-link",
"build-crate-std",
compile::std_link)
.dep(|s| s.name("startup-objects"))
.dep(|s| s.name("create-sysroot").target(s.host));
crate_rule(build,
&mut rules,
"libtest-link",
"build-crate-test",
compile::test_link)
.dep(|s| s.name("libstd-link"));
crate_rule(build,
&mut rules,
"librustc-link",
"build-crate-rustc-main",
compile::rustc_link)
.dep(|s| s.name("libtest-link"));
for (krate, path, _default) in krates("std") {
rules.build(&krate.build_step, path)
.dep(|s| s.name("startup-objects"))
.dep(move |s| s.name("rustc").host(&build.build).target(s.host))
.run(move |s| compile::std(build, s.target, &s.compiler()));
}
for (krate, path, _default) in krates("test") {
rules.build(&krate.build_step, path)
.dep(|s| s.name("libstd-link"))
.run(move |s| compile::test(build, s.target, &s.compiler()));
}
for (krate, path, _default) in krates("rustc-main") {
rules.build(&krate.build_step, path)
.dep(|s| s.name("libtest-link"))
.dep(move |s| s.name("llvm").host(&build.build).stage(0))
.dep(|s| s.name("may-run-build-script"))
.run(move |s| compile::rustc(build, s.target, &s.compiler()));
}
// Crates which have build scripts need to rely on this rule to ensure that
// the necessary prerequisites for a build script are linked and located in
// place.
rules.build("may-run-build-script", "path/to/nowhere")
.dep(move |s| {
s.name("libstd-link")
.host(&build.build)
.target(&build.build)
});
rules.build("startup-objects", "src/rtstartup")
.dep(|s| s.name("create-sysroot").target(s.host))
.run(move |s| compile::build_startup_objects(build, &s.compiler(), s.target));
// ========================================================================
// Test targets
//
// Various unit tests and tests suites we can run
{
let mut suite = |name, path, mode, dir| {
rules.test(name, path)
.dep(|s| s.name("libtest"))
.dep(|s| s.name("tool-compiletest").target(s.host).stage(0))
.dep(|s| s.name("test-helpers"))
.dep(|s| s.name("remote-copy-libs"))
.default(mode != "pretty") // pretty tests don't run everywhere
.run(move |s| {
check::compiletest(build, &s.compiler(), s.target, mode, dir)
});
};
suite("check-ui", "src/test/ui", "ui", "ui");
suite("check-rpass", "src/test/run-pass", "run-pass", "run-pass");
suite("check-cfail", "src/test/compile-fail", "compile-fail", "compile-fail");
suite("check-pfail", "src/test/parse-fail", "parse-fail", "parse-fail");
suite("check-rfail", "src/test/run-fail", "run-fail", "run-fail");
suite("check-rpass-valgrind", "src/test/run-pass-valgrind",
"run-pass-valgrind", "run-pass-valgrind");
suite("check-mir-opt", "src/test/mir-opt", "mir-opt", "mir-opt");
if build.config.codegen_tests {
suite("check-codegen", "src/test/codegen", "codegen", "codegen");
}
suite("check-codegen-units", "src/test/codegen-units", "codegen-units",
"codegen-units");
suite("check-incremental", "src/test/incremental", "incremental",
"incremental");
}
if build.build.contains("msvc") {
// nothing to do for debuginfo tests
} else {
rules.test("check-debuginfo-lldb", "src/test/debuginfo-lldb")
.dep(|s| s.name("libtest"))
.dep(|s| s.name("tool-compiletest").target(s.host).stage(0))
.dep(|s| s.name("test-helpers"))
.dep(|s| s.name("debugger-scripts"))
.run(move |s| check::compiletest(build, &s.compiler(), s.target,
"debuginfo-lldb", "debuginfo"));
rules.test("check-debuginfo-gdb", "src/test/debuginfo-gdb")
.dep(|s| s.name("libtest"))
.dep(|s| s.name("tool-compiletest").target(s.host).stage(0))
.dep(|s| s.name("test-helpers"))
.dep(|s| s.name("debugger-scripts"))
.dep(|s| s.name("remote-copy-libs"))
.run(move |s| check::compiletest(build, &s.compiler(), s.target,
"debuginfo-gdb", "debuginfo"));
let mut rule = rules.test("check-debuginfo", "src/test/debuginfo");
rule.default(true);
if build.build.contains("apple") {
rule.dep(|s| s.name("check-debuginfo-lldb"));
} else {
rule.dep(|s| s.name("check-debuginfo-gdb"));
}
}
rules.test("debugger-scripts", "src/etc/lldb_batchmode.py")
.run(move |s| dist::debugger_scripts(build, &build.sysroot(&s.compiler()),
s.target));
{
let mut suite = |name, path, mode, dir| {
rules.test(name, path)
.dep(|s| s.name("librustc"))
.dep(|s| s.name("test-helpers"))
.dep(|s| s.name("tool-compiletest").target(s.host).stage(0))
.default(mode != "pretty")
.host(true)
.run(move |s| {
check::compiletest(build, &s.compiler(), s.target, mode, dir)
});
};
suite("check-ui-full", "src/test/ui-fulldeps", "ui", "ui-fulldeps");
suite("check-rpass-full", "src/test/run-pass-fulldeps",
"run-pass", "run-pass-fulldeps");
suite("check-rfail-full", "src/test/run-fail-fulldeps",
"run-fail", "run-fail-fulldeps");
suite("check-cfail-full", "src/test/compile-fail-fulldeps",
"compile-fail", "compile-fail-fulldeps");
suite("check-rmake", "src/test/run-make", "run-make", "run-make");
suite("check-rustdoc", "src/test/rustdoc", "rustdoc", "rustdoc");
suite("check-pretty", "src/test/pretty", "pretty", "pretty");
suite("check-pretty-rpass", "src/test/run-pass/pretty", "pretty",
"run-pass");
suite("check-pretty-rfail", "src/test/run-fail/pretty", "pretty",
"run-fail");
suite("check-pretty-valgrind", "src/test/run-pass-valgrind/pretty", "pretty",
"run-pass-valgrind");
suite("check-pretty-rpass-full", "src/test/run-pass-fulldeps/pretty",
"pretty", "run-pass-fulldeps");
suite("check-pretty-rfail-full", "src/test/run-fail-fulldeps/pretty",
"pretty", "run-fail-fulldeps");
}
for (krate, path, _default) in krates("std") {
rules.test(&krate.test_step, path)
.dep(|s| s.name("libtest"))
.dep(|s| s.name("remote-copy-libs"))
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Libstd, TestKind::Test,
Some(&krate.name)));
}
rules.test("check-std-all", "path/to/nowhere")
.dep(|s| s.name("libtest"))
.dep(|s| s.name("remote-copy-libs"))
.default(true)
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Libstd, TestKind::Test, None));
// std benchmarks
for (krate, path, _default) in krates("std") {
rules.bench(&krate.bench_step, path)
.dep(|s| s.name("libtest"))
.dep(|s| s.name("remote-copy-libs"))
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Libstd, TestKind::Bench,
Some(&krate.name)));
}
rules.bench("bench-std-all", "path/to/nowhere")
.dep(|s| s.name("libtest"))
.dep(|s| s.name("remote-copy-libs"))
.default(true)
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Libstd, TestKind::Bench, None));
for (krate, path, _default) in krates("test") {
rules.test(&krate.test_step, path)
.dep(|s| s.name("libtest"))
.dep(|s| s.name("remote-copy-libs"))
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Libtest, TestKind::Test,
Some(&krate.name)));
}
rules.test("check-test-all", "path/to/nowhere")
.dep(|s| s.name("libtest"))
.dep(|s| s.name("remote-copy-libs"))
.default(true)
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Libtest, TestKind::Test, None));
for (krate, path, _default) in krates("rustc-main") {
rules.test(&krate.test_step, path)
.dep(|s| s.name("librustc"))
.dep(|s| s.name("remote-copy-libs"))
.host(true)
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Librustc, TestKind::Test,
Some(&krate.name)));
}
rules.test("check-rustc-all", "path/to/nowhere")
.dep(|s| s.name("librustc"))
.dep(|s| s.name("remote-copy-libs"))
.default(true)
.host(true)
.run(move |s| check::krate(build, &s.compiler(), s.target,
Mode::Librustc, TestKind::Test, None));
rules.test("check-linkchecker", "src/tools/linkchecker")
.dep(|s| s.name("tool-linkchecker").stage(0))
.dep(|s| s.name("default:doc"))
.default(build.config.docs)
.host(true)
.run(move |s| check::linkcheck(build, s.target));
rules.test("check-cargotest", "src/tools/cargotest")
.dep(|s| s.name("tool-cargotest").stage(0))
.dep(|s| s.name("librustc"))
.host(true)
.run(move |s| check::cargotest(build, s.stage, s.target));
rules.test("check-cargo", "src/tools/cargo")
.dep(|s| s.name("tool-cargo"))
.host(true)
.run(move |s| check::cargo(build, s.stage, s.target));
rules.test("check-rls", "src/tools/rls")
.dep(|s| s.name("tool-rls"))
.host(true)
.run(move |s| check::rls(build, s.stage, s.target));
rules.test("check-tidy", "src/tools/tidy")
.dep(|s| s.name("tool-tidy").stage(0))
.default(true)
.host(true)
.only_build(true)
.run(move |s| check::tidy(build, s.target));
rules.test("check-error-index", "src/tools/error_index_generator")
.dep(|s| s.name("libstd"))
.dep(|s| s.name("tool-error-index").host(s.host).stage(0))
.default(true)
.host(true)
.run(move |s| check::error_index(build, &s.compiler()));
rules.test("check-docs", "src/doc")
.dep(|s| s.name("libtest"))
.default(true)
.host(true)
.run(move |s| check::docs(build, &s.compiler()));
rules.test("check-distcheck", "distcheck")
.dep(|s| s.name("dist-plain-source-tarball"))
.dep(|s| s.name("dist-src"))
.run(move |_| check::distcheck(build));
rules.build("test-helpers", "src/rt/rust_test_helpers.c")
.run(move |s| native::test_helpers(build, s.target));
rules.build("openssl", "path/to/nowhere")
.run(move |s| native::openssl(build, s.target));
// Some test suites are run inside emulators or on remote devices, and most
// of our test binaries are linked dynamically which means we need to ship
// the standard library and such to the emulator ahead of time. This step
// represents this and is a dependency of all test suites.
//
// Most of the time this step is a noop (the `check::emulator_copy_libs`
// only does work if necessary). For some steps such as shipping data to
// QEMU we have to build our own tools so we've got conditional dependencies
// on those programs as well. Note that the remote test client is built for
// the build target (us) and the server is built for the target.
rules.test("remote-copy-libs", "path/to/nowhere")
.dep(|s| s.name("libtest"))
.dep(move |s| {
if build.remote_tested(s.target) {
s.name("tool-remote-test-client").target(s.host).stage(0)
} else {
Step::noop()
}
})
.dep(move |s| {
if build.remote_tested(s.target) {
s.name("tool-remote-test-server")
} else {
Step::noop()
}
})
.run(move |s| check::remote_copy_libs(build, &s.compiler(), s.target));
rules.test("check-bootstrap", "src/bootstrap")
.default(true)
.host(true)
.only_build(true)
.run(move |_| check::bootstrap(build));
// ========================================================================
// Build tools
//
// Tools used during the build system but not shipped
rules.build("tool-rustbook", "src/tools/rustbook")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("librustc-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "rustbook"));
rules.build("tool-error-index", "src/tools/error_index_generator")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("librustc-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "error_index_generator"));
rules.build("tool-unstable-book-gen", "src/tools/unstable-book-gen")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "unstable-book-gen"));
rules.build("tool-tidy", "src/tools/tidy")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "tidy"));
rules.build("tool-linkchecker", "src/tools/linkchecker")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "linkchecker"));
rules.build("tool-cargotest", "src/tools/cargotest")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "cargotest"));
rules.build("tool-compiletest", "src/tools/compiletest")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libtest-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "compiletest"));
rules.build("tool-build-manifest", "src/tools/build-manifest")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "build-manifest"));
rules.build("tool-remote-test-server", "src/tools/remote-test-server")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "remote-test-server"));
rules.build("tool-remote-test-client", "src/tools/remote-test-client")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "remote-test-client"));
rules.build("tool-rust-installer", "src/tools/rust-installer")
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.run(move |s| compile::tool(build, s.stage, s.target, "rust-installer"));
rules.build("tool-cargo", "src/tools/cargo")
.host(true)
.default(build.config.extended)
.dep(|s| s.name("maybe-clean-tools"))
.dep(|s| s.name("libstd-tool"))
.dep(|s| s.stage(0).host(s.target).name("openssl"))
.dep(move |s| {
// Cargo depends on procedural macros, which requires a full host
// compiler to be available, so we need to depend on that.
s.name("librustc-link")
.target(&build.build)
.host(&build.build)
})
.run(move |s| compile::tool(build, s.stage, s.target, "cargo"));
rules.build("tool-rls", "src/tools/rls")
.host(true)
.default(build.config.extended)
.dep(|s| s.name("librustc-tool"))
.dep(|s| s.stage(0).host(s.target).name("openssl"))
.dep(move |s| {
// rls, like cargo, uses procedural macros
s.name("librustc-link")
.target(&build.build)
.host(&build.build)
})
.run(move |s| compile::tool(build, s.stage, s.target, "rls"));
// "pseudo rule" which represents completely cleaning out the tools dir in
// one stage. This needs to happen whenever a dependency changes (e.g.
// libstd, libtest, librustc) and all of the tool compilations above will
// be sequenced after this rule.
rules.build("maybe-clean-tools", "path/to/nowhere")
.after("librustc-tool")
.after("libtest-tool")
.after("libstd-tool");
rules.build("librustc-tool", "path/to/nowhere")
.dep(|s| s.name("librustc"))
.run(move |s| compile::maybe_clean_tools(build, s.stage, s.target, Mode::Librustc));
rules.build("libtest-tool", "path/to/nowhere")
.dep(|s| s.name("libtest"))
.run(move |s| compile::maybe_clean_tools(build, s.stage, s.target, Mode::Libtest));
rules.build("libstd-tool", "path/to/nowhere")
.dep(|s| s.name("libstd"))
.run(move |s| compile::maybe_clean_tools(build, s.stage, s.target, Mode::Libstd));
// ========================================================================
// Documentation targets
rules.doc("doc-book", "src/doc/book")
.dep(move |s| {
s.name("tool-rustbook")
.host(&build.build)
.target(&build.build)
.stage(0)
})
.default(build.config.docs)
.run(move |s| doc::book(build, s.target, "book"));
rules.doc("doc-nomicon", "src/doc/nomicon")
.dep(move |s| {
s.name("tool-rustbook")
.host(&build.build)
.target(&build.build)
.stage(0)
})
.default(build.config.docs)
.run(move |s| doc::rustbook(build, s.target, "nomicon"));
rules.doc("doc-reference", "src/doc/reference")
.dep(move |s| {
s.name("tool-rustbook")
.host(&build.build)
.target(&build.build)
.stage(0)
})
.default(build.config.docs)
.run(move |s| doc::rustbook(build, s.target, "reference"));
rules.doc("doc-unstable-book", "src/doc/unstable-book")
.dep(move |s| {
s.name("tool-rustbook")
.host(&build.build)
.target(&build.build)
.stage(0)
})
.dep(move |s| s.name("doc-unstable-book-gen"))
.default(build.config.docs)
.run(move |s| doc::rustbook_src(build,
s.target,
"unstable-book",
&build.md_doc_out(s.target)));
rules.doc("doc-standalone", "src/doc")
.dep(move |s| {
s.name("rustc")
.host(&build.build)
.target(&build.build)
.stage(0)
})
.default(build.config.docs)
.run(move |s| doc::standalone(build, s.target));
rules.doc("doc-error-index", "src/tools/error_index_generator")
.dep(move |s| s.name("tool-error-index").target(&build.build).stage(0))
.dep(move |s| s.name("librustc-link"))
.default(build.config.docs)
.host(true)
.run(move |s| doc::error_index(build, s.target));
rules.doc("doc-unstable-book-gen", "src/tools/unstable-book-gen")
.dep(move |s| {
s.name("tool-unstable-book-gen")
.host(&build.build)
.target(&build.build)
.stage(0)
})
.dep(move |s| s.name("libstd-link"))
.default(build.config.docs)
.host(true)
.run(move |s| doc::unstable_book_gen(build, s.target));
for (krate, path, default) in krates("std") {
rules.doc(&krate.doc_step, path)
.dep(|s| s.name("libstd-link"))
.default(default && build.config.docs)
.run(move |s| doc::std(build, s.stage, s.target));
}
for (krate, path, default) in krates("test") {
rules.doc(&krate.doc_step, path)
.dep(|s| s.name("libtest-link"))
// Needed so rustdoc generates relative links to std.
.dep(|s| s.name("doc-crate-std"))
.default(default && build.config.compiler_docs)
.run(move |s| doc::test(build, s.stage, s.target));
}
for (krate, path, default) in krates("rustc-main") {
rules.doc(&krate.doc_step, path)
.dep(|s| s.name("librustc-link"))
// Needed so rustdoc generates relative links to std.
.dep(|s| s.name("doc-crate-std"))
.host(true)
.default(default && build.config.docs)
.run(move |s| doc::rustc(build, s.stage, s.target));
}
// ========================================================================
// Distribution targets
rules.dist("dist-rustc", "src/librustc")
.dep(move |s| s.name("rustc").host(&build.build))
.host(true)
.only_host_build(true)
.default(true)
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| dist::rustc(build, s.stage, s.target));
rules.dist("dist-std", "src/libstd")
.dep(move |s| {
// We want to package up as many target libraries as possible
// for the `rust-std` package, so if this is a host target we
// depend on librustc and otherwise we just depend on libtest.
if build.config.host.iter().any(|t| t == s.target) {
s.name("librustc-link")
} else {
s.name("libtest-link")
}
})
.default(true)
.only_host_build(true)
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| dist::std(build, &s.compiler(), s.target));
rules.dist("dist-mingw", "path/to/nowhere")
.default(true)
.only_host_build(true)
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| {
if s.target.contains("pc-windows-gnu") {
dist::mingw(build, s.target)
}
});
rules.dist("dist-plain-source-tarball", "src")
.default(build.config.rust_dist_src)
.host(true)
.only_build(true)
.only_host_build(true)
.dep(move |s| tool_rust_installer(build, s))
.run(move |_| dist::plain_source_tarball(build));
rules.dist("dist-src", "src")
.default(true)
.host(true)
.only_build(true)
.only_host_build(true)
.dep(move |s| tool_rust_installer(build, s))
.run(move |_| dist::rust_src(build));
rules.dist("dist-docs", "src/doc")
.default(true)
.only_host_build(true)
.dep(|s| s.name("default:doc"))
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| dist::docs(build, s.stage, s.target));
rules.dist("dist-analysis", "analysis")
.default(build.config.extended)
.dep(|s| s.name("dist-std"))
.only_host_build(true)
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| dist::analysis(build, &s.compiler(), s.target));
rules.dist("dist-rls", "rls")
.host(true)
.only_host_build(true)
.dep(|s| s.name("tool-rls"))
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| dist::rls(build, s.stage, s.target));
rules.dist("dist-cargo", "cargo")
.host(true)
.only_host_build(true)
.dep(|s| s.name("tool-cargo"))
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| dist::cargo(build, s.stage, s.target));
rules.dist("dist-extended", "extended")
.default(build.config.extended)
.host(true)
.only_host_build(true)
.dep(|d| d.name("dist-std"))
.dep(|d| d.name("dist-rustc"))
.dep(|d| d.name("dist-mingw"))
.dep(|d| d.name("dist-docs"))
.dep(|d| d.name("dist-cargo"))
.dep(|d| d.name("dist-rls"))
.dep(|d| d.name("dist-analysis"))
.dep(move |s| tool_rust_installer(build, s))
.run(move |s| dist::extended(build, s.stage, s.target));
rules.dist("dist-sign", "hash-and-sign")
.host(true)
.only_build(true)
.only_host_build(true)
.dep(move |s| s.name("tool-build-manifest").target(&build.build).stage(0))
.run(move |_| dist::hash_and_sign(build));
rules.install("install-docs", "src/doc")
.default(build.config.docs)
.only_host_build(true)
.dep(|s| s.name("dist-docs"))
.run(move |s| install::Installer::new(build).install_docs(s.stage, s.target));
rules.install("install-std", "src/libstd")
.default(true)
.only_host_build(true)
.dep(|s| s.name("dist-std"))
.run(move |s| install::Installer::new(build).install_std(s.stage));
rules.install("install-cargo", "cargo")
.default(build.config.extended)
.host(true)
.only_host_build(true)
.dep(|s| s.name("dist-cargo"))
.run(move |s| install::Installer::new(build).install_cargo(s.stage, s.target));
rules.install("install-rls", "rls")
.default(build.config.extended)
.host(true)
.only_host_build(true)
.dep(|s| s.name("dist-rls"))
.run(move |s| install::Installer::new(build).install_rls(s.stage, s.target));
rules.install("install-analysis", "analysis")
.default(build.config.extended)
.only_host_build(true)
.dep(|s| s.name("dist-analysis"))
.run(move |s| install::Installer::new(build).install_analysis(s.stage, s.target));
rules.install("install-src", "src")
.default(build.config.extended)
.host(true)
.only_build(true)
.only_host_build(true)
.dep(|s| s.name("dist-src"))
.run(move |s| install::Installer::new(build).install_src(s.stage));
rules.install("install-rustc", "src/librustc")
.default(true)
.host(true)
.only_host_build(true)
.dep(|s| s.name("dist-rustc"))
.run(move |s| install::Installer::new(build).install_rustc(s.stage, s.target));
rules.verify();
return rules;
/// Helper to depend on a stage0 build-only rust-installer tool.
fn tool_rust_installer<'a>(build: &'a Build, step: &Step<'a>) -> Step<'a> {
step.name("tool-rust-installer")
.host(&build.build)
.target(&build.build)
.stage(0)
}
}
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
struct Step<'a> {
/// Human readable name of the rule this step is executing. Possible names
/// are all defined above in `build_rules`.
name: &'a str,
/// The stage this step is executing in. This is typically 0, 1, or 2.
stage: u32,
/// This step will likely involve a compiler, and the target that compiler
/// itself is built for is called the host, this variable. Typically this is
/// the target of the build machine itself.
host: &'a str,
/// The target that this step represents generating. If you're building a
/// standard library for a new suite of targets, for example, this'll be set
/// to those targets.
target: &'a str,
}
impl<'a> Step<'a> {
fn noop() -> Step<'a> {
Step { name: "", stage: 0, host: "", target: "" }
}
/// Creates a new step which is the same as this, except has a new name.
fn name(&self, name: &'a str) -> Step<'a> {
Step { name: name, ..*self }
}
/// Creates a new step which is the same as this, except has a new stage.
fn stage(&self, stage: u32) -> Step<'a> {
Step { stage: stage, ..*self }
}
/// Creates a new step which is the same as this, except has a new host.
fn host(&self, host: &'a str) -> Step<'a> {
Step { host: host, ..*self }
}
/// Creates a new step which is the same as this, except has a new target.
fn target(&self, target: &'a str) -> Step<'a> {
Step { target: target, ..*self }
}
/// Returns the `Compiler` structure that this step corresponds to.
fn compiler(&self) -> Compiler<'a> {
Compiler::new(self.stage, self.host)
}
}
struct Rule<'a> {
/// The human readable name of this target, defined in `build_rules`.
name: &'a str,
/// The path associated with this target, used in the `./x.py` driver for
/// easy and ergonomic specification of what to do.
path: &'a str,
/// The "kind" of top-level command that this rule is associated with, only
/// relevant if this is a default rule.
kind: Kind,
/// List of dependencies this rule has. Each dependency is a function from a
/// step that's being executed to another step that should be executed.
deps: Vec<Box<Fn(&Step<'a>) -> Step<'a> + 'a>>,
/// How to actually execute this rule. Takes a step with contextual
/// information and then executes it.
run: Box<Fn(&Step<'a>) + 'a>,
/// Whether or not this is a "default" rule. That basically means that if
/// you run, for example, `./x.py test` whether it's included or not.
default: bool,
/// Whether or not this is a "host" rule, or in other words whether this is
/// only intended for compiler hosts and not for targets that are being
/// generated.
host: bool,
/// Whether this rule is only for steps where the host is the build triple,
/// not anything in hosts or targets.
only_host_build: bool,
/// Whether this rule is only for the build triple, not anything in hosts or
/// targets.
only_build: bool,
/// A list of "order only" dependencies. This rules does not actually
/// depend on these rules, but if they show up in the dependency graph then
/// this rule must be executed after all these rules.
after: Vec<&'a str>,
}
#[derive(PartialEq)]
enum Kind {
Build,
Test,
Bench,
Dist,
Doc,
Install,
}
impl<'a> Rule<'a> {
fn new(name: &'a str, path: &'a str, kind: Kind) -> Rule<'a> {
Rule {
name: name,
deps: Vec::new(),
run: Box::new(|_| ()),
path: path,
kind: kind,
default: false,
host: false,
only_host_build: false,
only_build: false,
after: Vec::new(),
}
}
}
/// Builder pattern returned from the various methods on `Rules` which will add
/// the rule to the internal list on `Drop`.
struct RuleBuilder<'a: 'b, 'b> {
rules: &'b mut Rules<'a>,
rule: Rule<'a>,
}
impl<'a, 'b> RuleBuilder<'a, 'b> {
fn dep<F>(&mut self, f: F) -> &mut Self
where F: Fn(&Step<'a>) -> Step<'a> + 'a,
{
self.rule.deps.push(Box::new(f));
self
}
fn after(&mut self, step: &'a str) -> &mut Self {
self.rule.after.push(step);
self
}
fn run<F>(&mut self, f: F) -> &mut Self
where F: Fn(&Step<'a>) + 'a,
{
self.rule.run = Box::new(f);
self
}
fn default(&mut self, default: bool) -> &mut Self {
self.rule.default = default;
self
}
fn host(&mut self, host: bool) -> &mut Self {
self.rule.host = host;
self
}
fn only_build(&mut self, only_build: bool) -> &mut Self {
self.rule.only_build = only_build;
self
}
fn only_host_build(&mut self, only_host_build: bool) -> &mut Self {
self.rule.only_host_build = only_host_build;
self
}
}
impl<'a, 'b> Drop for RuleBuilder<'a, 'b> {
fn drop(&mut self) {
let rule = mem::replace(&mut self.rule, Rule::new("", "", Kind::Build));
let prev = self.rules.rules.insert(rule.name, rule);
if let Some(prev) = prev {
panic!("duplicate rule named: {}", prev.name);
}
}
}
pub struct Rules<'a> {
build: &'a Build,
sbuild: Step<'a>,
rules: BTreeMap<&'a str, Rule<'a>>,
}
impl<'a> Rules<'a> {
fn new(build: &'a Build) -> Rules<'a> {
Rules {
build: build,
sbuild: Step {
stage: build.flags.stage.unwrap_or(2),
target: &build.build,
host: &build.build,
name: "",
},
rules: BTreeMap::new(),
}
}
/// Creates a new rule of `Kind::Build` with the specified human readable
/// name and path associated with it.
///
/// The builder returned should be configured further with information such
/// as how to actually run this rule.
fn build<'b>(&'b mut self, name: &'a str, path: &'a str)
-> RuleBuilder<'a, 'b> {
self.rule(name, path, Kind::Build)
}
/// Same as `build`, but for `Kind::Test`.
fn test<'b>(&'b mut self, name: &'a str, path: &'a str)
-> RuleBuilder<'a, 'b> {
self.rule(name, path, Kind::Test)
}
/// Same as `build`, but for `Kind::Bench`.
fn bench<'b>(&'b mut self, name: &'a str, path: &'a str)
-> RuleBuilder<'a, 'b> {
self.rule(name, path, Kind::Bench)
}
/// Same as `build`, but for `Kind::Doc`.
fn doc<'b>(&'b mut self, name: &'a str, path: &'a str)
-> RuleBuilder<'a, 'b> {
self.rule(name, path, Kind::Doc)
}
/// Same as `build`, but for `Kind::Dist`.
fn dist<'b>(&'b mut self, name: &'a str, path: &'a str)
-> RuleBuilder<'a, 'b> {
self.rule(name, path, Kind::Dist)
}
/// Same as `build`, but for `Kind::Install`.
fn install<'b>(&'b mut self, name: &'a str, path: &'a str)
-> RuleBuilder<'a, 'b> {
self.rule(name, path, Kind::Install)
}
fn rule<'b>(&'b mut self,
name: &'a str,
path: &'a str,
kind: Kind) -> RuleBuilder<'a, 'b> {
RuleBuilder {
rules: self,
rule: Rule::new(name, path, kind),
}
}
/// Verify the dependency graph defined by all our rules are correct, e.g.
/// everything points to a valid something else.
fn verify(&self) {
for rule in self.rules.values() {
for dep in rule.deps.iter() {
let dep = dep(&self.sbuild.name(rule.name));
if self.rules.contains_key(&dep.name) || dep.name.starts_with("default:") {
continue
}
if dep == Step::noop() {
continue
}
panic!("\
invalid rule dependency graph detected, was a rule added and maybe typo'd?
`{}` depends on `{}` which does not exist
", rule.name, dep.name);
}
}
}
pub fn get_help(&self, command: &str) -> Option<String> {
let kind = match command {
"build" => Kind::Build,
"doc" => Kind::Doc,
"test" => Kind::Test,
"bench" => Kind::Bench,
"dist" => Kind::Dist,
"install" => Kind::Install,
_ => return None,
};
let rules = self.rules.values().filter(|r| r.kind == kind);
let rules = rules.filter(|r| !r.path.contains("nowhere"));
let mut rules = rules.collect::<Vec<_>>();
rules.sort_by_key(|r| r.path);
let mut help_string = String::from("Available paths:\n");
for rule in rules {
help_string.push_str(format!(" ./x.py {} {}\n", command, rule.path).as_str());
}
Some(help_string)
}
/// Construct the top-level build steps that we're going to be executing,
/// given the subcommand that our build is performing.
fn plan(&self) -> Vec<Step<'a>> {
// Ok, the logic here is pretty subtle, and involves quite a few
// conditionals. The basic idea here is to:
//
// 1. First, filter all our rules to the relevant ones. This means that
// the command specified corresponds to one of our `Kind` variants,
// and we filter all rules based on that.
//
// 2. Next, we determine which rules we're actually executing. If a
// number of path filters were specified on the command line we look
// for those, otherwise we look for anything tagged `default`.
// Here we also compute the priority of each rule based on how early
// in the command line the matching path filter showed up.
//
// 3. Finally, we generate some steps with host and target information.
//
// The last step is by far the most complicated and subtle. The basic
// thinking here is that we want to take the cartesian product of
// specified hosts and targets and build rules with that. The list of
// hosts and targets, if not specified, come from the how this build was
// configured. If the rule we're looking at is a host-only rule the we
// ignore the list of targets and instead consider the list of hosts
// also the list of targets.
//
// Once the host and target lists are generated we take the cartesian
// product of the two and then create a step based off them. Note that
// the stage each step is associated was specified with the `--step`
// flag on the command line.
let (kind, paths) = match self.build.flags.cmd {
Subcommand::Build { ref paths } => (Kind::Build, &paths[..]),
Subcommand::Doc { ref paths } => (Kind::Doc, &paths[..]),
Subcommand::Test { ref paths, .. } => (Kind::Test, &paths[..]),
Subcommand::Bench { ref paths, .. } => (Kind::Bench, &paths[..]),
Subcommand::Dist { ref paths } => (Kind::Dist, &paths[..]),
Subcommand::Install { ref paths } => (Kind::Install, &paths[..]),
Subcommand::Clean => panic!(),
};
let mut rules: Vec<_> = self.rules.values().filter_map(|rule| {
if rule.kind != kind {
return None;
}
if paths.len() == 0 && rule.default {
Some((rule, 0))
} else {
paths.iter()
.position(|path| path.ends_with(rule.path))
.map(|priority| (rule, priority))
}
}).collect();
if rules.is_empty() &&
!paths.get(0).unwrap_or(&PathBuf::new())
.ends_with("nonexistent/path/to/trigger/cargo/metadata") {
println!("\nNothing to run...\n");
process::exit(1);
}
rules.sort_by_key(|&(_, priority)| priority);
rules.into_iter().flat_map(|(rule, _)| {
let hosts = if rule.only_host_build || rule.only_build {
self.build.build_slice()
} else {
&self.build.hosts
};
// Determine the actual targets participating in this rule.
// NOTE: We should keep the full projection from build triple to
// the hosts for the dist steps, now that the hosts array above is
// truncated to avoid duplication of work in that case. Therefore
// the original non-shadowed hosts array is used below.
let arr = if rule.host {
// If --target was specified but --host wasn't specified,
// don't run any host-only tests.
if self.build.flags.host.len() > 0 {
&self.build.hosts
} else if self.build.flags.target.len() > 0 {
&[]
} else if rule.only_build {
self.build.build_slice()
} else {
&self.build.hosts
}
} else {
&self.build.targets
};
hosts.iter().flat_map(move |host| {
arr.iter().map(move |target| {
self.sbuild.name(rule.name).target(target).host(host)
})
})
}).collect()
}
/// Execute all top-level targets indicated by `steps`.
///
/// This will take the list returned by `plan` and then execute each step
/// along with all required dependencies as it goes up the chain.
fn run(&self, steps: &[Step<'a>]) {
self.build.verbose("bootstrap top targets:");
for step in steps.iter() {
self.build.verbose(&format!("\t{:?}", step));
}
// Using `steps` as the top-level targets, make a topological ordering
// of what we need to do.
let order = self.expand(steps);
// Print out what we're doing for debugging
self.build.verbose("bootstrap build plan:");
for step in order.iter() {
self.build.verbose(&format!("\t{:?}", step));
}
// And finally, iterate over everything and execute it.
for step in order.iter() {
if self.build.flags.keep_stage.map_or(false, |s| step.stage <= s) {
self.build.verbose(&format!("keeping step {:?}", step));
continue;
}
self.build.verbose(&format!("executing step {:?}", step));
(self.rules[step.name].run)(step);
}
// Check for postponed failures from `test --no-fail-fast`.
let failures = self.build.delayed_failures.get();
if failures > 0 {
println!("\n{} command(s) did not execute successfully.\n", failures);
process::exit(1);
}
}
/// From the top level targets `steps` generate a topological ordering of
/// all steps needed to run those steps.
fn expand(&self, steps: &[Step<'a>]) -> Vec<Step<'a>> {
// First up build a graph of steps and their dependencies. The `nodes`
// map is a map from step to a unique number. The `edges` map is a
// map from these unique numbers to a list of other numbers,
// representing dependencies.
let mut nodes = HashMap::new();
nodes.insert(Step::noop(), 0);
let mut edges = HashMap::new();
edges.insert(0, HashSet::new());
for step in steps {
self.build_graph(step.clone(), &mut nodes, &mut edges);
}
// Now that we've built up the actual dependency graph, draw more
// dependency edges to satisfy the `after` dependencies field for each
// rule.
self.satisfy_after_deps(&nodes, &mut edges);
// And finally, perform a topological sort to return a list of steps to
// execute.
let mut order = Vec::new();
let mut visited = HashSet::new();
visited.insert(0);
let idx_to_node = nodes.iter().map(|p| (*p.1, p.0)).collect::<HashMap<_, _>>();
for idx in 0..nodes.len() {
self.topo_sort(idx, &idx_to_node, &edges, &mut visited, &mut order);
}
order
}
/// Builds the dependency graph rooted at `step`.
///
/// The `nodes` and `edges` maps are filled out according to the rule
/// described by `step.name`.
fn build_graph(&self,
step: Step<'a>,
nodes: &mut HashMap<Step<'a>, usize>,
edges: &mut HashMap<usize, HashSet<usize>>) -> usize {
use std::collections::hash_map::Entry;
let idx = nodes.len();
match nodes.entry(step.clone()) {
Entry::Vacant(e) => { e.insert(idx); }
Entry::Occupied(e) => return *e.get(),
}
let mut deps = Vec::new();
for dep in self.rules[step.name].deps.iter() {
let dep = dep(&step);
if dep.name.starts_with("default:") {
let kind = match &dep.name[8..] {
"doc" => Kind::Doc,
"dist" => Kind::Dist,
kind => panic!("unknown kind: `{}`", kind),
};
let host = self.build.config.host.iter().any(|h| h == dep.target);
let rules = self.rules.values().filter(|r| r.default);
for rule in rules.filter(|r| r.kind == kind && (!r.host || host)) {
deps.push(self.build_graph(dep.name(rule.name), nodes, edges));
}
} else {
deps.push(self.build_graph(dep, nodes, edges));
}
}
edges.entry(idx).or_insert(HashSet::new()).extend(deps);
idx
}
/// Given a dependency graph with a finished list of `nodes`, fill out more
/// dependency `edges`.
///
/// This is the step which satisfies all `after` listed dependencies in
/// `Rule` above.
fn satisfy_after_deps(&self,
nodes: &HashMap<Step<'a>, usize>,
edges: &mut HashMap<usize, HashSet<usize>>) {
// Reverse map from the name of a step to the node indices that it
// appears at.
let mut name_to_idx = HashMap::new();
for (step, &idx) in nodes {
name_to_idx.entry(step.name).or_insert(Vec::new()).push(idx);
}
for (step, idx) in nodes {
if *step == Step::noop() {
continue
}
for after in self.rules[step.name].after.iter() {
// This is the critical piece of an `after` dependency. If the
// dependency isn't actually in our graph then no edge is drawn,
// only if it's already present do we draw the edges.
if let Some(idxs) = name_to_idx.get(after) {
edges.get_mut(idx).unwrap()
.extend(idxs.iter().cloned());
}
}
}
}
fn topo_sort(&self,
cur: usize,
nodes: &HashMap<usize, &Step<'a>>,
edges: &HashMap<usize, HashSet<usize>>,
visited: &mut HashSet<usize>,
order: &mut Vec<Step<'a>>) {
if !visited.insert(cur) {
return
}
for dep in edges[&cur].iter() {
self.topo_sort(*dep, nodes, edges, visited, order);
}
order.push(nodes[&cur].clone());
}
}
#[cfg(test)]
mod tests {
use std::env;
use Build;
use config::Config;
use flags::Flags;
fn build(args: &[&str],
extra_host: &[&str],
extra_target: &[&str]) -> Build {
build_(args, extra_host, extra_target, true)
}
fn build_(args: &[&str],
extra_host: &[&str],
extra_target: &[&str],
docs: bool) -> Build {
let mut args = args.iter().map(|s| s.to_string()).collect::<Vec<_>>();
args.push("--build".to_string());
args.push("A".to_string());
let flags = Flags::parse(&args);
let mut config = Config::default();
config.docs = docs;
config.build = "A".to_string();
config.host = vec![config.build.clone()];
config.host.extend(extra_host.iter().map(|s| s.to_string()));
config.target = config.host.clone();
config.target.extend(extra_target.iter().map(|s| s.to_string()));
let mut build = Build::new(flags, config);
let cwd = env::current_dir().unwrap();
build.crates.insert("std".to_string(), ::Crate {
name: "std".to_string(),
deps: Vec::new(),
path: cwd.join("src/std"),
doc_step: "doc-crate-std".to_string(),
build_step: "build-crate-std".to_string(),
test_step: "test-crate-std".to_string(),
bench_step: "bench-crate-std".to_string(),
version: String::new(),
});
build.crates.insert("test".to_string(), ::Crate {
name: "test".to_string(),
deps: Vec::new(),
path: cwd.join("src/test"),
doc_step: "doc-crate-test".to_string(),
build_step: "build-crate-test".to_string(),
test_step: "test-crate-test".to_string(),
bench_step: "bench-crate-test".to_string(),
version: String::new(),
});
build.crates.insert("rustc-main".to_string(), ::Crate {
name: "rustc-main".to_string(),
deps: Vec::new(),
version: String::new(),
path: cwd.join("src/rustc-main"),
doc_step: "doc-crate-rustc-main".to_string(),
build_step: "build-crate-rustc-main".to_string(),
test_step: "test-crate-rustc-main".to_string(),
bench_step: "bench-crate-rustc-main".to_string(),
});
return build
}
#[test]
fn dist_baseline() {
let build = build(&["dist"], &[], &[]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
assert!(plan.iter().all(|s| s.host == "A" ));
assert!(plan.iter().all(|s| s.target == "A" ));
let step = super::Step {
name: "",
stage: 2,
host: &build.build,
target: &build.build,
};
assert!(plan.contains(&step.name("dist-docs")));
assert!(plan.contains(&step.name("dist-mingw")));
assert!(plan.contains(&step.name("dist-rustc")));
assert!(plan.contains(&step.name("dist-std")));
assert!(plan.contains(&step.name("dist-src")));
}
#[test]
fn dist_with_targets() {
let build = build(&["dist"], &[], &["B"]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
assert!(plan.iter().all(|s| s.host == "A" ));
let step = super::Step {
name: "",
stage: 2,
host: &build.build,
target: &build.build,
};
assert!(plan.contains(&step.name("dist-docs")));
assert!(plan.contains(&step.name("dist-mingw")));
assert!(plan.contains(&step.name("dist-rustc")));
assert!(plan.contains(&step.name("dist-std")));
assert!(plan.contains(&step.name("dist-src")));
assert!(plan.contains(&step.target("B").name("dist-docs")));
assert!(plan.contains(&step.target("B").name("dist-mingw")));
assert!(!plan.contains(&step.target("B").name("dist-rustc")));
assert!(plan.contains(&step.target("B").name("dist-std")));
assert!(!plan.contains(&step.target("B").name("dist-src")));
}
#[test]
fn dist_with_hosts() {
let build = build(&["dist"], &["B"], &[]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
let step = super::Step {
name: "",
stage: 2,
host: &build.build,
target: &build.build,
};
assert!(!plan.iter().any(|s| s.host == "B"));
assert!(plan.contains(&step.name("dist-docs")));
assert!(plan.contains(&step.name("dist-mingw")));
assert!(plan.contains(&step.name("dist-rustc")));
assert!(plan.contains(&step.name("dist-std")));
assert!(plan.contains(&step.name("dist-src")));
assert!(plan.contains(&step.target("B").name("dist-docs")));
assert!(plan.contains(&step.target("B").name("dist-mingw")));
assert!(plan.contains(&step.target("B").name("dist-rustc")));
assert!(plan.contains(&step.target("B").name("dist-std")));
assert!(!plan.contains(&step.target("B").name("dist-src")));
}
#[test]
fn dist_with_targets_and_hosts() {
let build = build(&["dist"], &["B"], &["C"]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
let step = super::Step {
name: "",
stage: 2,
host: &build.build,
target: &build.build,
};
assert!(!plan.iter().any(|s| s.host == "B"));
assert!(!plan.iter().any(|s| s.host == "C"));
assert!(plan.contains(&step.name("dist-docs")));
assert!(plan.contains(&step.name("dist-mingw")));
assert!(plan.contains(&step.name("dist-rustc")));
assert!(plan.contains(&step.name("dist-std")));
assert!(plan.contains(&step.name("dist-src")));
assert!(plan.contains(&step.target("B").name("dist-docs")));
assert!(plan.contains(&step.target("B").name("dist-mingw")));
assert!(plan.contains(&step.target("B").name("dist-rustc")));
assert!(plan.contains(&step.target("B").name("dist-std")));
assert!(!plan.contains(&step.target("B").name("dist-src")));
assert!(plan.contains(&step.target("C").name("dist-docs")));
assert!(plan.contains(&step.target("C").name("dist-mingw")));
assert!(!plan.contains(&step.target("C").name("dist-rustc")));
assert!(plan.contains(&step.target("C").name("dist-std")));
assert!(!plan.contains(&step.target("C").name("dist-src")));
}
#[test]
fn dist_target_with_target_flag() {
let build = build(&["dist", "--target=C"], &["B"], &["C"]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
let step = super::Step {
name: "",
stage: 2,
host: &build.build,
target: &build.build,
};
assert!(!plan.iter().any(|s| s.target == "A"));
assert!(!plan.iter().any(|s| s.target == "B"));
assert!(!plan.iter().any(|s| s.host == "B"));
assert!(!plan.iter().any(|s| s.host == "C"));
assert!(plan.contains(&step.target("C").name("dist-docs")));
assert!(plan.contains(&step.target("C").name("dist-mingw")));
assert!(!plan.contains(&step.target("C").name("dist-rustc")));
assert!(plan.contains(&step.target("C").name("dist-std")));
assert!(!plan.contains(&step.target("C").name("dist-src")));
}
#[test]
fn dist_host_with_target_flag() {
let build = build(&["dist", "--host=B", "--target=B"], &["B"], &["C"]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
let step = super::Step {
name: "",
stage: 2,
host: &build.build,
target: &build.build,
};
assert!(!plan.iter().any(|s| s.target == "A"));
assert!(!plan.iter().any(|s| s.target == "C"));
assert!(!plan.iter().any(|s| s.host == "B"));
assert!(!plan.iter().any(|s| s.host == "C"));
assert!(plan.contains(&step.target("B").name("dist-docs")));
assert!(plan.contains(&step.target("B").name("dist-mingw")));
assert!(plan.contains(&step.target("B").name("dist-rustc")));
assert!(plan.contains(&step.target("B").name("dist-std")));
assert!(plan.contains(&step.target("B").name("dist-src")));
let all = rules.expand(&plan);
println!("all rules: {:#?}", all);
assert!(!all.contains(&step.name("rustc")));
assert!(!all.contains(&step.name("build-crate-test").stage(1)));
// all stage0 compiles should be for the build target, A
for step in all.iter().filter(|s| s.stage == 0) {
if !step.name.contains("build-crate") {
continue
}
println!("step: {:?}", step);
assert!(step.host != "B");
assert!(step.target != "B");
assert!(step.host != "C");
assert!(step.target != "C");
}
}
#[test]
fn build_default() {
let build = build(&["build"], &["B"], &["C"]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
let step = super::Step {
name: "",
stage: 2,
host: &build.build,
target: &build.build,
};
// rustc built for all for of (A, B) x (A, B)
assert!(plan.contains(&step.name("librustc")));
assert!(plan.contains(&step.target("B").name("librustc")));
assert!(plan.contains(&step.host("B").target("A").name("librustc")));
assert!(plan.contains(&step.host("B").target("B").name("librustc")));
// rustc never built for C
assert!(!plan.iter().any(|s| {
s.name.contains("rustc") && (s.host == "C" || s.target == "C")
}));
// test built for everything
assert!(plan.contains(&step.name("libtest")));
assert!(plan.contains(&step.target("B").name("libtest")));
assert!(plan.contains(&step.host("B").target("A").name("libtest")));
assert!(plan.contains(&step.host("B").target("B").name("libtest")));
assert!(plan.contains(&step.host("A").target("C").name("libtest")));
assert!(plan.contains(&step.host("B").target("C").name("libtest")));
let all = rules.expand(&plan);
println!("all rules: {:#?}", all);
assert!(all.contains(&step.name("rustc")));
assert!(all.contains(&step.name("libstd")));
}
#[test]
fn build_filtered() {
let build = build(&["build", "--target=C"], &["B"], &["C"]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
assert!(!plan.iter().any(|s| s.name.contains("rustc")));
assert!(plan.iter().all(|s| {
!s.name.contains("test") || s.target == "C"
}));
}
#[test]
fn test_default() {
let build = build(&["test"], &[], &[]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
assert!(plan.iter().all(|s| s.host == "A"));
assert!(plan.iter().all(|s| s.target == "A"));
assert!(plan.iter().any(|s| s.name.contains("-ui")));
assert!(plan.iter().any(|s| s.name.contains("cfail")));
assert!(plan.iter().any(|s| s.name.contains("cfail-full")));
assert!(plan.iter().any(|s| s.name.contains("codegen-units")));
assert!(plan.iter().any(|s| s.name.contains("debuginfo")));
assert!(plan.iter().any(|s| s.name.contains("docs")));
assert!(plan.iter().any(|s| s.name.contains("error-index")));
assert!(plan.iter().any(|s| s.name.contains("incremental")));
assert!(plan.iter().any(|s| s.name.contains("linkchecker")));
assert!(plan.iter().any(|s| s.name.contains("mir-opt")));
assert!(plan.iter().any(|s| s.name.contains("pfail")));
assert!(plan.iter().any(|s| s.name.contains("rfail")));
assert!(plan.iter().any(|s| s.name.contains("rfail-full")));
assert!(plan.iter().any(|s| s.name.contains("rmake")));
assert!(plan.iter().any(|s| s.name.contains("rpass")));
assert!(plan.iter().any(|s| s.name.contains("rpass-full")));
assert!(plan.iter().any(|s| s.name.contains("rustc-all")));
assert!(plan.iter().any(|s| s.name.contains("rustdoc")));
assert!(plan.iter().any(|s| s.name.contains("std-all")));
assert!(plan.iter().any(|s| s.name.contains("test-all")));
assert!(plan.iter().any(|s| s.name.contains("tidy")));
assert!(plan.iter().any(|s| s.name.contains("valgrind")));
}
#[test]
fn test_with_a_target() {
let build = build(&["test", "--target=C"], &[], &["C"]);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(plan.iter().all(|s| s.stage == 2));
assert!(plan.iter().all(|s| s.host == "A"));
assert!(plan.iter().all(|s| s.target == "C"));
assert!(plan.iter().any(|s| s.name.contains("-ui")));
assert!(!plan.iter().any(|s| s.name.contains("ui-full")));
assert!(plan.iter().any(|s| s.name.contains("cfail")));
assert!(!plan.iter().any(|s| s.name.contains("cfail-full")));
assert!(plan.iter().any(|s| s.name.contains("codegen-units")));
assert!(plan.iter().any(|s| s.name.contains("debuginfo")));
assert!(!plan.iter().any(|s| s.name.contains("docs")));
assert!(!plan.iter().any(|s| s.name.contains("error-index")));
assert!(plan.iter().any(|s| s.name.contains("incremental")));
assert!(!plan.iter().any(|s| s.name.contains("linkchecker")));
assert!(plan.iter().any(|s| s.name.contains("mir-opt")));
assert!(plan.iter().any(|s| s.name.contains("pfail")));
assert!(plan.iter().any(|s| s.name.contains("rfail")));
assert!(!plan.iter().any(|s| s.name.contains("rfail-full")));
assert!(!plan.iter().any(|s| s.name.contains("rmake")));
assert!(plan.iter().any(|s| s.name.contains("rpass")));
assert!(!plan.iter().any(|s| s.name.contains("rpass-full")));
assert!(!plan.iter().any(|s| s.name.contains("rustc-all")));
assert!(!plan.iter().any(|s| s.name.contains("rustdoc")));
assert!(plan.iter().any(|s| s.name.contains("std-all")));
assert!(plan.iter().any(|s| s.name.contains("test-all")));
assert!(!plan.iter().any(|s| s.name.contains("tidy")));
assert!(plan.iter().any(|s| s.name.contains("valgrind")));
}
#[test]
fn test_disable_docs() {
let build = build_(&["test"], &[], &[], false);
let rules = super::build_rules(&build);
let plan = rules.plan();
println!("rules: {:#?}", plan);
assert!(!plan.iter().any(|s| {
s.name.contains("doc-") || s.name.contains("default:doc")
}));
// none of the dependencies should be a doc rule either
assert!(!plan.iter().any(|s| {
rules.rules[s.name].deps.iter().any(|dep| {
let dep = dep(&rules.sbuild.name(s.name));
dep.name.contains("doc-") || dep.name.contains("default:doc")
})
}));
}
}