rust/src/interpreter.rs
2016-05-08 19:31:28 -06:00

1255 lines
50 KiB
Rust

use rustc::infer;
use rustc::middle::const_val;
use rustc::hir::def_id::DefId;
use rustc::mir::mir_map::MirMap;
use rustc::mir::repr as mir;
use rustc::traits::{self, ProjectionMode};
use rustc::ty::fold::TypeFoldable;
use rustc::ty::layout::{self, Layout, Size};
use rustc::ty::subst::{self, Subst, Substs};
use rustc::ty::{self, TyCtxt};
use rustc::util::nodemap::DefIdMap;
use std::cell::RefCell;
use std::ops::Deref;
use std::rc::Rc;
use std::{iter, mem};
use syntax::ast;
use syntax::attr;
use syntax::codemap::{self, DUMMY_SP};
use error::{EvalError, EvalResult};
use memory::{Memory, Pointer};
use primval::{self, PrimVal};
const TRACE_EXECUTION: bool = false;
struct Interpreter<'a, 'tcx: 'a> {
/// The results of the type checker, from rustc.
tcx: &'a TyCtxt<'tcx>,
/// A mapping from NodeIds to Mir, from rustc. Only contains MIR for crate-local items.
mir_map: &'a MirMap<'tcx>,
/// A local cache from DefIds to Mir for non-crate-local items.
mir_cache: RefCell<DefIdMap<Rc<mir::Mir<'tcx>>>>,
/// The virtual memory system.
memory: Memory,
/// The virtual call stack.
stack: Vec<Frame<'a, 'tcx>>,
/// Another stack containing the type substitutions for the current function invocation. It
/// exists separately from `stack` because it must contain the `Substs` for a function while
/// *creating* the `Frame` for that same function.
substs_stack: Vec<&'tcx Substs<'tcx>>,
// TODO(tsion): Merge with `substs_stack`. Also try restructuring `Frame` to accomodate.
/// A stack of the things necessary to print good strack traces:
/// * Function DefIds and Substs to print proper substituted function names.
/// * Spans pointing to specific function calls in the source.
name_stack: Vec<(DefId, &'tcx Substs<'tcx>, codemap::Span)>,
}
/// A stack frame.
struct Frame<'a, 'tcx: 'a> {
/// The MIR for the function called on this frame.
mir: CachedMir<'a, 'tcx>,
/// The block this frame will execute when a function call returns back to this frame.
next_block: mir::BasicBlock,
/// A pointer for writing the return value of the current call if it's not a diverging call.
return_ptr: Option<Pointer>,
/// The list of locals for the current function, stored in order as
/// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset`
/// and the temporaries at `self.temp_offset`.
locals: Vec<Pointer>,
/// The offset of the first variable in `self.locals`.
var_offset: usize,
/// The offset of the first temporary in `self.locals`.
temp_offset: usize,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct Lvalue {
ptr: Pointer,
extra: LvalueExtra,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum LvalueExtra {
None,
Length(u64),
// TODO(tsion): Vtable(memory::AllocId),
DowncastVariant(usize),
}
#[derive(Clone)]
enum CachedMir<'mir, 'tcx: 'mir> {
Ref(&'mir mir::Mir<'tcx>),
Owned(Rc<mir::Mir<'tcx>>)
}
/// Represents the action to be taken in the main loop as a result of executing a terminator.
enum TerminatorTarget {
/// Make a local jump to the given block.
Block(mir::BasicBlock),
/// Start executing from the new current frame. (For function calls.)
Call,
/// Stop executing the current frame and resume the previous frame.
Return,
}
impl<'a, 'tcx: 'a> Interpreter<'a, 'tcx> {
fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self {
Interpreter {
tcx: tcx,
mir_map: mir_map,
mir_cache: RefCell::new(DefIdMap()),
memory: Memory::new(),
stack: Vec::new(),
substs_stack: Vec::new(),
name_stack: Vec::new(),
}
}
fn maybe_report<T>(&self, span: codemap::Span, r: EvalResult<T>) -> EvalResult<T> {
if let Err(ref e) = r {
let mut err = self.tcx.sess.struct_span_err(span, &e.to_string());
for &(def_id, substs, span) in self.name_stack.iter().rev() {
// FIXME(tsion): Find a way to do this without this Display impl hack.
use rustc::util::ppaux;
use std::fmt;
struct Instance<'tcx>(DefId, &'tcx Substs<'tcx>);
impl<'tcx> fmt::Display for Instance<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
ppaux::parameterized(f, self.1, self.0, ppaux::Ns::Value, &[],
|tcx| tcx.lookup_item_type(self.0).generics)
}
}
err.span_note(span, &format!("inside call to {}", Instance(def_id, substs)));
}
err.emit();
}
r
}
fn log<F>(&self, extra_indent: usize, f: F) where F: FnOnce() {
let indent = self.stack.len() + extra_indent;
if !TRACE_EXECUTION { return; }
for _ in 0..indent { print!(" "); }
f();
println!("");
}
fn run(&mut self) -> EvalResult<()> {
'outer: while !self.stack.is_empty() {
let mut current_block = self.frame().next_block;
loop {
self.log(0, || print!("// {:?}", current_block));
let current_mir = self.mir().clone(); // Cloning a reference.
let block_data = current_mir.basic_block_data(current_block);
for stmt in &block_data.statements {
self.log(0, || print!("{:?}", stmt));
let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind;
let result = self.eval_assignment(lvalue, rvalue);
try!(self.maybe_report(stmt.span, result));
}
let terminator = block_data.terminator();
self.log(0, || print!("{:?}", terminator.kind));
let result = self.eval_terminator(terminator);
match try!(self.maybe_report(terminator.span, result)) {
TerminatorTarget::Block(block) => current_block = block,
TerminatorTarget::Return => {
self.pop_stack_frame();
self.name_stack.pop();
continue 'outer;
}
TerminatorTarget::Call => continue 'outer,
}
}
}
Ok(())
}
fn push_stack_frame(&mut self, mir: CachedMir<'a, 'tcx>, substs: &'tcx Substs<'tcx>,
return_ptr: Option<Pointer>)
{
self.substs_stack.push(substs);
let arg_tys = mir.arg_decls.iter().map(|a| a.ty);
let var_tys = mir.var_decls.iter().map(|v| v.ty);
let temp_tys = mir.temp_decls.iter().map(|t| t.ty);
let locals: Vec<Pointer> = arg_tys.chain(var_tys).chain(temp_tys).map(|ty| {
let size = self.type_size(ty);
self.memory.allocate(size)
}).collect();
let num_args = mir.arg_decls.len();
let num_vars = mir.var_decls.len();
self.stack.push(Frame {
mir: mir.clone(),
next_block: mir::START_BLOCK,
return_ptr: return_ptr,
locals: locals,
var_offset: num_args,
temp_offset: num_args + num_vars,
});
}
fn pop_stack_frame(&mut self) {
let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none");
// TODO(tsion): Deallocate local variables.
self.substs_stack.pop();
}
fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>)
-> EvalResult<TerminatorTarget> {
use rustc::mir::repr::TerminatorKind::*;
let target = match terminator.kind {
Return => TerminatorTarget::Return,
Goto { target } => TerminatorTarget::Block(target),
If { ref cond, targets: (then_target, else_target) } => {
let cond_ptr = try!(self.eval_operand(cond));
let cond_val = try!(self.memory.read_bool(cond_ptr));
TerminatorTarget::Block(if cond_val { then_target } else { else_target })
}
SwitchInt { ref discr, ref values, ref targets, .. } => {
let discr_ptr = try!(self.eval_lvalue(discr)).to_ptr();
let discr_size = self
.type_layout(self.lvalue_ty(discr))
.size(&self.tcx.data_layout)
.bytes() as usize;
let discr_val = try!(self.memory.read_uint(discr_ptr, discr_size));
// Branch to the `otherwise` case by default, if no match is found.
let mut target_block = targets[targets.len() - 1];
for (index, val_const) in values.iter().enumerate() {
let ptr = try!(self.const_to_ptr(val_const));
let val = try!(self.memory.read_uint(ptr, discr_size));
if discr_val == val {
target_block = targets[index];
break;
}
}
TerminatorTarget::Block(target_block)
}
Switch { ref discr, ref targets, adt_def } => {
let adt_ptr = try!(self.eval_lvalue(discr)).to_ptr();
let adt_layout = self.type_layout(self.lvalue_ty(discr));
match *adt_layout {
Layout::General { discr, .. } | Layout::CEnum { discr, .. } => {
let discr_size = discr.size().bytes();
let discr_val = try!(self.memory.read_uint(adt_ptr, discr_size as usize));
let matching = adt_def.variants.iter()
.position(|v| discr_val == v.disr_val.to_u64_unchecked());
match matching {
Some(i) => TerminatorTarget::Block(targets[i]),
None => return Err(EvalError::InvalidDiscriminant),
}
}
Layout::RawNullablePointer { nndiscr, .. } => {
let is_null = match self.memory.read_usize(adt_ptr) {
Ok(0) => true,
Ok(_) | Err(EvalError::ReadPointerAsBytes) => false,
Err(e) => return Err(e),
};
assert!(nndiscr == 0 || nndiscr == 1);
let target = if is_null { 1 - nndiscr } else { nndiscr };
TerminatorTarget::Block(targets[target as usize])
}
_ => panic!("attempted to switch on non-aggregate type"),
}
}
Call { ref func, ref args, ref destination, .. } => {
let mut return_ptr = None;
if let Some((ref lv, target)) = *destination {
self.frame_mut().next_block = target;
return_ptr = Some(try!(self.eval_lvalue(lv)).to_ptr());
}
let func_ty = self.operand_ty(func);
match func_ty.sty {
ty::TyFnDef(def_id, substs, fn_ty) => {
use syntax::abi::Abi;
match fn_ty.abi {
Abi::RustIntrinsic => {
let name = self.tcx.item_name(def_id).as_str();
match fn_ty.sig.0.output {
ty::FnConverging(ty) => {
let size = self.type_size(ty);
try!(self.call_intrinsic(&name, substs, args,
return_ptr.unwrap(), size))
}
ty::FnDiverging => unimplemented!(),
}
}
Abi::C =>
try!(self.call_c_abi(def_id, args, return_ptr.unwrap())),
Abi::Rust | Abi::RustCall => {
// TODO(tsion): Adjust the first argument when calling a Fn or
// FnMut closure via FnOnce::call_once.
// Only trait methods can have a Self parameter.
let (resolved_def_id, resolved_substs) = if substs.self_ty().is_some() {
self.trait_method(def_id, substs)
} else {
(def_id, substs)
};
let mut arg_srcs = Vec::new();
for arg in args {
let src = try!(self.eval_operand(arg));
let src_ty = self.operand_ty(arg);
arg_srcs.push((src, src_ty));
}
if fn_ty.abi == Abi::RustCall && !args.is_empty() {
arg_srcs.pop();
let last_arg = args.last().unwrap();
let last = try!(self.eval_operand(last_arg));
let last_ty = self.operand_ty(last_arg);
let last_layout = self.type_layout(last_ty);
match (&last_ty.sty, last_layout) {
(&ty::TyTuple(ref fields),
&Layout::Univariant { ref variant, .. }) => {
let offsets = iter::once(0)
.chain(variant.offset_after_field.iter()
.map(|s| s.bytes()));
for (offset, ty) in offsets.zip(fields) {
let src = last.offset(offset as isize);
arg_srcs.push((src, ty));
}
}
ty => panic!("expected tuple as last argument in function with 'rust-call' ABI, got {:?}", ty),
}
}
let mir = self.load_mir(resolved_def_id);
self.name_stack.push((def_id, substs, terminator.span));
self.push_stack_frame(mir, resolved_substs, return_ptr);
for (i, (src, src_ty)) in arg_srcs.into_iter().enumerate() {
let dest = self.frame().locals[i];
try!(self.move_(src, dest, src_ty));
}
TerminatorTarget::Call
}
abi => panic!("can't handle function with {:?} ABI", abi),
}
}
_ => panic!("can't handle callee of type {:?}", func_ty),
}
}
Drop { ref value, target, .. } => {
let ptr = try!(self.eval_lvalue(value)).to_ptr();
let ty = self.lvalue_ty(value);
try!(self.drop(ptr, ty));
TerminatorTarget::Block(target)
}
Resume => unimplemented!(),
};
Ok(target)
}
fn drop(&mut self, ptr: Pointer, ty: ty::Ty<'tcx>) -> EvalResult<()> {
if !self.type_needs_drop(ty) {
self.log(1, || print!("no need to drop {:?}", ty));
return Ok(());
}
self.log(1, || print!("need to drop {:?}", ty));
// TODO(tsion): Call user-defined Drop::drop impls.
match ty.sty {
ty::TyBox(contents_ty) => {
match self.memory.read_ptr(ptr) {
Ok(contents_ptr) => {
try!(self.drop(contents_ptr, contents_ty));
self.log(1, || print!("deallocating box"));
try!(self.memory.deallocate(contents_ptr));
}
Err(EvalError::ReadBytesAsPointer) => {
let size = self.memory.pointer_size;
let possible_drop_fill = try!(self.memory.read_bytes(ptr, size));
if possible_drop_fill.iter().all(|&b| b == mem::POST_DROP_U8) {
return Ok(());
} else {
return Err(EvalError::ReadBytesAsPointer);
}
}
Err(e) => return Err(e),
}
}
// TODO(tsion): Implement drop for other relevant types (e.g. aggregates).
_ => {}
}
// Filling drop.
// FIXME(tsion): Trait objects (with no static size) probably get filled, too.
let size = self.type_size(ty);
try!(self.memory.drop_fill(ptr, size));
Ok(())
}
fn call_intrinsic(
&mut self,
name: &str,
substs: &'tcx Substs<'tcx>,
args: &[mir::Operand<'tcx>],
dest: Pointer,
dest_size: usize
) -> EvalResult<TerminatorTarget> {
let args_res: EvalResult<Vec<Pointer>> = args.iter()
.map(|arg| self.eval_operand(arg))
.collect();
let args = try!(args_res);
match name {
"assume" => {}
"copy_nonoverlapping" => {
let elem_ty = *substs.types.get(subst::FnSpace, 0);
let elem_size = self.type_size(elem_ty);
let src = try!(self.memory.read_ptr(args[0]));
let dest = try!(self.memory.read_ptr(args[1]));
let count = try!(self.memory.read_isize(args[2]));
try!(self.memory.copy(src, dest, count as usize * elem_size));
}
"forget" => {
let arg_ty = *substs.types.get(subst::FnSpace, 0);
let arg_size = self.type_size(arg_ty);
try!(self.memory.drop_fill(args[0], arg_size));
}
"init" => try!(self.memory.write_repeat(dest, 0, dest_size)),
"min_align_of" => {
try!(self.memory.write_int(dest, 1, dest_size));
}
"move_val_init" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let ptr = try!(self.memory.read_ptr(args[0]));
try!(self.move_(args[1], ptr, ty));
}
// FIXME(tsion): Handle different integer types correctly.
"add_with_overflow" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let size = self.type_size(ty);
let left = try!(self.memory.read_int(args[0], size));
let right = try!(self.memory.read_int(args[1], size));
let (n, overflowed) = unsafe {
::std::intrinsics::add_with_overflow::<i64>(left, right)
};
try!(self.memory.write_int(dest, n, size));
try!(self.memory.write_bool(dest.offset(size as isize), overflowed));
}
// FIXME(tsion): Handle different integer types correctly.
"mul_with_overflow" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let size = self.type_size(ty);
let left = try!(self.memory.read_int(args[0], size));
let right = try!(self.memory.read_int(args[1], size));
let (n, overflowed) = unsafe {
::std::intrinsics::mul_with_overflow::<i64>(left, right)
};
try!(self.memory.write_int(dest, n, size));
try!(self.memory.write_bool(dest.offset(size as isize), overflowed));
}
"offset" => {
let pointee_ty = *substs.types.get(subst::FnSpace, 0);
let pointee_size = self.type_size(pointee_ty) as isize;
let ptr_arg = args[0];
let offset = try!(self.memory.read_isize(args[1]));
match self.memory.read_ptr(ptr_arg) {
Ok(ptr) => {
let result_ptr = ptr.offset(offset as isize * pointee_size);
try!(self.memory.write_ptr(dest, result_ptr));
}
Err(EvalError::ReadBytesAsPointer) => {
let addr = try!(self.memory.read_isize(ptr_arg));
let result_addr = addr + offset * pointee_size as i64;
try!(self.memory.write_isize(dest, result_addr));
}
Err(e) => return Err(e),
}
}
// FIXME(tsion): Handle different integer types correctly. Use primvals?
"overflowing_sub" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let size = self.type_size(ty);
let left = try!(self.memory.read_int(args[0], size));
let right = try!(self.memory.read_int(args[1], size));
let n = left.wrapping_sub(right);
try!(self.memory.write_int(dest, n, size));
}
"size_of" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let size = self.type_size(ty) as u64;
try!(self.memory.write_uint(dest, size, dest_size));
}
"transmute" => {
let ty = *substs.types.get(subst::FnSpace, 0);
try!(self.move_(args[0], dest, ty));
}
"uninit" => try!(self.memory.mark_definedness(dest, dest_size, false)),
name => panic!("can't handle intrinsic: {}", name),
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(TerminatorTarget::Call)
}
fn call_c_abi(
&mut self,
def_id: DefId,
args: &[mir::Operand<'tcx>],
dest: Pointer
) -> EvalResult<TerminatorTarget> {
let name = self.tcx.item_name(def_id);
let attrs = self.tcx.get_attrs(def_id);
let link_name = match attr::first_attr_value_str_by_name(&attrs, "link_name") {
Some(ln) => ln.clone(),
None => name.as_str(),
};
let args_res: EvalResult<Vec<Pointer>> = args.iter()
.map(|arg| self.eval_operand(arg))
.collect();
let args = try!(args_res);
match &link_name[..] {
"__rust_allocate" => {
let size = try!(self.memory.read_usize(args[0]));
let ptr = self.memory.allocate(size as usize);
try!(self.memory.write_ptr(dest, ptr));
}
"__rust_reallocate" => {
let ptr = try!(self.memory.read_ptr(args[0]));
let size = try!(self.memory.read_usize(args[2]));
try!(self.memory.reallocate(ptr, size as usize));
try!(self.memory.write_ptr(dest, ptr));
}
_ => panic!("can't call C ABI function: {}", link_name),
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(TerminatorTarget::Call)
}
fn assign_fields<I: IntoIterator<Item = u64>>(
&mut self,
dest: Pointer,
offsets: I,
operands: &[mir::Operand<'tcx>],
) -> EvalResult<()> {
for (offset, operand) in offsets.into_iter().zip(operands) {
let src = try!(self.eval_operand(operand));
let src_ty = self.operand_ty(operand);
let field_dest = dest.offset(offset as isize);
try!(self.move_(src, field_dest, src_ty));
}
Ok(())
}
fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>)
-> EvalResult<()>
{
let dest = try!(self.eval_lvalue(lvalue)).to_ptr();
let dest_ty = self.lvalue_ty(lvalue);
let dest_layout = self.type_layout(dest_ty);
use rustc::mir::repr::Rvalue::*;
match *rvalue {
Use(ref operand) => {
let src = try!(self.eval_operand(operand));
try!(self.move_(src, dest, dest_ty));
}
BinaryOp(bin_op, ref left, ref right) => {
let left_ptr = try!(self.eval_operand(left));
let left_ty = self.operand_ty(left);
let left_val = try!(self.read_primval(left_ptr, left_ty));
let right_ptr = try!(self.eval_operand(right));
let right_ty = self.operand_ty(right);
let right_val = try!(self.read_primval(right_ptr, right_ty));
let val = try!(primval::binary_op(bin_op, left_val, right_val));
try!(self.memory.write_primval(dest, val));
}
UnaryOp(un_op, ref operand) => {
let ptr = try!(self.eval_operand(operand));
let ty = self.operand_ty(operand);
let val = try!(self.read_primval(ptr, ty));
try!(self.memory.write_primval(dest, primval::unary_op(un_op, val)));
}
Aggregate(ref kind, ref operands) => {
use rustc::ty::layout::Layout::*;
match *dest_layout {
Univariant { ref variant, .. } => {
let offsets = iter::once(0)
.chain(variant.offset_after_field.iter().map(|s| s.bytes()));
try!(self.assign_fields(dest, offsets, operands));
}
Array { .. } => {
let elem_size = match dest_ty.sty {
ty::TyArray(elem_ty, _) => self.type_size(elem_ty) as u64,
_ => panic!("tried to assign {:?} to non-array type {:?}",
kind, dest_ty),
};
let offsets = (0..).map(|i| i * elem_size);
try!(self.assign_fields(dest, offsets, operands));
}
General { discr, ref variants, .. } => {
if let mir::AggregateKind::Adt(adt_def, variant, _) = *kind {
let discr_val = adt_def.variants[variant].disr_val.to_u64_unchecked();
let discr_size = discr.size().bytes() as usize;
try!(self.memory.write_uint(dest, discr_val, discr_size));
let offsets = variants[variant].offset_after_field.iter()
.map(|s| s.bytes());
try!(self.assign_fields(dest, offsets, operands));
} else {
panic!("tried to assign {:?} to Layout::General", kind);
}
}
RawNullablePointer { nndiscr, .. } => {
if let mir::AggregateKind::Adt(_, variant, _) = *kind {
if nndiscr == variant as u64 {
assert_eq!(operands.len(), 1);
let operand = &operands[0];
let src = try!(self.eval_operand(operand));
let src_ty = self.operand_ty(operand);
try!(self.move_(src, dest, src_ty));
} else {
assert_eq!(operands.len(), 0);
try!(self.memory.write_isize(dest, 0));
}
} else {
panic!("tried to assign {:?} to Layout::RawNullablePointer", kind);
}
}
CEnum { discr, signed, min, max } => {
assert_eq!(operands.len(), 0);
if let mir::AggregateKind::Adt(adt_def, variant, _) = *kind {
if signed {
unimplemented!()
} else {
let val = adt_def.variants[variant].disr_val.to_u64().unwrap();
let size = discr.size().bytes() as usize;
try!(self.memory.write_uint(dest, val, size));
}
} else {
panic!("tried to assign {:?} to Layout::CEnum", kind);
}
}
_ => panic!("can't handle destination layout {:?} when assigning {:?}",
dest_layout, kind),
}
}
Repeat(ref operand, _) => {
let (elem_size, length) = match dest_ty.sty {
ty::TyArray(elem_ty, n) => (self.type_size(elem_ty), n),
_ => panic!("tried to assign array-repeat to non-array type {:?}", dest_ty),
};
let src = try!(self.eval_operand(operand));
for i in 0..length {
let elem_dest = dest.offset((i * elem_size) as isize);
try!(self.memory.copy(src, elem_dest, elem_size));
}
}
Len(ref lvalue) => {
let src = try!(self.eval_lvalue(lvalue));
let ty = self.lvalue_ty(lvalue);
let len = match ty.sty {
ty::TyArray(_, n) => n as u64,
ty::TySlice(_) => if let LvalueExtra::Length(n) = src.extra {
n
} else {
panic!("Rvalue::Len of a slice given non-slice pointer: {:?}", src);
},
_ => panic!("Rvalue::Len expected array or slice, got {:?}", ty),
};
try!(self.memory.write_usize(dest, len));
}
Ref(_, _, ref lvalue) => {
let lv = try!(self.eval_lvalue(lvalue));
try!(self.memory.write_ptr(dest, lv.ptr));
match lv.extra {
LvalueExtra::None => {},
LvalueExtra::Length(len) => {
let len_ptr = dest.offset(self.memory.pointer_size as isize);
try!(self.memory.write_usize(len_ptr, len));
}
LvalueExtra::DowncastVariant(..) =>
panic!("attempted to take a reference to an enum downcast lvalue"),
}
}
Box(ty) => {
let size = self.type_size(ty);
let ptr = self.memory.allocate(size);
try!(self.memory.write_ptr(dest, ptr));
}
Cast(kind, ref operand, dest_ty) => {
let src = try!(self.eval_operand(operand));
let src_ty = self.operand_ty(operand);
use rustc::mir::repr::CastKind::*;
match kind {
Unsize => {
try!(self.move_(src, dest, src_ty));
let src_pointee_ty = pointee_type(src_ty).unwrap();
let dest_pointee_ty = pointee_type(dest_ty).unwrap();
match (&src_pointee_ty.sty, &dest_pointee_ty.sty) {
(&ty::TyArray(_, length), &ty::TySlice(_)) => {
let len_ptr = dest.offset(self.memory.pointer_size as isize);
try!(self.memory.write_usize(len_ptr, length as u64));
}
_ => panic!("can't handle cast: {:?}", rvalue),
}
}
Misc => {
// FIXME(tsion): Wrong for almost everything.
let size = dest_layout.size(&self.tcx.data_layout).bytes() as usize;
try!(self.memory.copy(src, dest, size));
}
_ => panic!("can't handle cast: {:?}", rvalue),
}
}
Slice { .. } => unimplemented!(),
InlineAsm { .. } => unimplemented!(),
}
Ok(())
}
fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<Pointer> {
use rustc::mir::repr::Operand::*;
match *op {
Consume(ref lvalue) =>
Ok(try!(self.eval_lvalue(lvalue)).to_ptr()),
Constant(mir::Constant { ref literal, .. }) => {
use rustc::mir::repr::Literal::*;
match *literal {
Value { ref value } => Ok(try!(self.const_to_ptr(value))),
Item { .. } => unimplemented!(),
}
}
}
}
fn eval_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult<Lvalue> {
use rustc::mir::repr::Lvalue::*;
let ptr = match *lvalue {
ReturnPointer => self.frame().return_ptr
.expect("ReturnPointer used in a function with no return value"),
Arg(i) => self.frame().locals[i as usize],
Var(i) => self.frame().locals[self.frame().var_offset + i as usize],
Temp(i) => self.frame().locals[self.frame().temp_offset + i as usize],
Static(_def_id) => unimplemented!(),
Projection(ref proj) => {
let base = try!(self.eval_lvalue(&proj.base));
let base_ty = self.lvalue_ty(&proj.base);
let base_layout = self.type_layout(base_ty);
use rustc::mir::repr::ProjectionElem::*;
match proj.elem {
Field(field, _) => {
let variant = match *base_layout {
Layout::Univariant { ref variant, .. } => variant,
Layout::General { ref variants, .. } => {
if let LvalueExtra::DowncastVariant(variant_idx) = base.extra {
&variants[variant_idx]
} else {
panic!("field access on enum had no variant index");
}
}
Layout::RawNullablePointer { .. } => {
assert_eq!(field.index(), 0);
return Ok(base);
}
_ => panic!("field access on non-product type: {:?}", base_layout),
};
let offset = variant.field_offset(field.index()).bytes();
base.ptr.offset(offset as isize)
},
Downcast(_, variant) => match *base_layout {
Layout::General { discr, .. } => {
return Ok(Lvalue {
ptr: base.ptr.offset(discr.size().bytes() as isize),
extra: LvalueExtra::DowncastVariant(variant),
});
}
Layout::RawNullablePointer { .. } => return Ok(base),
_ => panic!("variant downcast on non-aggregate type: {:?}", base_layout),
},
Deref => {
let pointee_ty = pointee_type(base_ty).expect("Deref of non-pointer");
let ptr = try!(self.memory.read_ptr(base.ptr));
let extra = match pointee_ty.sty {
ty::TySlice(_) | ty::TyStr => {
let len_ptr = base.ptr.offset(self.memory.pointer_size as isize);
let len = try!(self.memory.read_usize(len_ptr));
LvalueExtra::Length(len)
}
ty::TyTrait(_) => unimplemented!(),
_ => LvalueExtra::None,
};
return Ok(Lvalue { ptr: ptr, extra: extra });
}
Index(ref operand) => {
let elem_size = match base_ty.sty {
ty::TyArray(elem_ty, _) |
ty::TySlice(elem_ty) => self.type_size(elem_ty),
_ => panic!("indexing expected an array or slice, got {:?}", base_ty),
};
let n_ptr = try!(self.eval_operand(operand));
let n = try!(self.memory.read_usize(n_ptr));
base.ptr.offset(n as isize * elem_size as isize)
}
ConstantIndex { .. } => unimplemented!(),
}
}
};
Ok(Lvalue { ptr: ptr, extra: LvalueExtra::None })
}
// TODO(tsion): Try making const_to_primval instead.
fn const_to_ptr(&mut self, const_val: &const_val::ConstVal) -> EvalResult<Pointer> {
use rustc::middle::const_val::ConstVal::*;
match *const_val {
Float(_f) => unimplemented!(),
Integral(int) => {
// TODO(tsion): Check int constant type.
let ptr = self.memory.allocate(8);
try!(self.memory.write_uint(ptr, int.to_u64_unchecked(), 8));
Ok(ptr)
}
Str(ref s) => {
let psize = self.memory.pointer_size;
let static_ptr = self.memory.allocate(s.len());
let ptr = self.memory.allocate(psize * 2);
try!(self.memory.write_bytes(static_ptr, s.as_bytes()));
try!(self.memory.write_ptr(ptr, static_ptr));
try!(self.memory.write_usize(ptr.offset(psize as isize), s.len() as u64));
Ok(ptr)
}
ByteStr(ref bs) => {
let psize = self.memory.pointer_size;
let static_ptr = self.memory.allocate(bs.len());
let ptr = self.memory.allocate(psize);
try!(self.memory.write_bytes(static_ptr, bs));
try!(self.memory.write_ptr(ptr, static_ptr));
Ok(ptr)
}
Bool(b) => {
let ptr = self.memory.allocate(1);
try!(self.memory.write_bool(ptr, b));
Ok(ptr)
}
Char(_c) => unimplemented!(),
Struct(_node_id) => unimplemented!(),
Tuple(_node_id) => unimplemented!(),
Function(_def_id) => unimplemented!(),
Array(_, _) => unimplemented!(),
Repeat(_, _) => unimplemented!(),
Dummy => unimplemented!(),
}
}
fn lvalue_ty(&self, lvalue: &mir::Lvalue<'tcx>) -> ty::Ty<'tcx> {
self.monomorphize(self.mir().lvalue_ty(self.tcx, lvalue).to_ty(self.tcx))
}
fn operand_ty(&self, operand: &mir::Operand<'tcx>) -> ty::Ty<'tcx> {
self.monomorphize(self.mir().operand_ty(self.tcx, operand))
}
fn monomorphize(&self, ty: ty::Ty<'tcx>) -> ty::Ty<'tcx> {
let substituted = ty.subst(self.tcx, self.substs());
infer::normalize_associated_type(self.tcx, &substituted)
}
fn type_needs_drop(&self, ty: ty::Ty<'tcx>) -> bool {
self.tcx.type_needs_drop_given_env(ty, &self.tcx.empty_parameter_environment())
}
fn move_(&mut self, src: Pointer, dest: Pointer, ty: ty::Ty<'tcx>) -> EvalResult<()> {
let size = self.type_size(ty);
try!(self.memory.copy(src, dest, size));
if self.type_needs_drop(ty) {
try!(self.memory.drop_fill(src, size));
}
Ok(())
}
fn type_is_sized(&self, ty: ty::Ty<'tcx>) -> bool {
ty.is_sized(&self.tcx.empty_parameter_environment(), DUMMY_SP)
}
fn type_size(&self, ty: ty::Ty<'tcx>) -> usize {
self.type_layout(ty).size(&self.tcx.data_layout).bytes() as usize
}
fn type_layout(&self, ty: ty::Ty<'tcx>) -> &'tcx Layout {
// TODO(tsion): Is this inefficient? Needs investigation.
let ty = self.monomorphize(ty);
let infcx = infer::normalizing_infer_ctxt(self.tcx, &self.tcx.tables, ProjectionMode::Any);
// TODO(tsion): Report this error properly.
ty.layout(&infcx).unwrap()
}
pub fn read_primval(&mut self, ptr: Pointer, ty: ty::Ty<'tcx>) -> EvalResult<PrimVal> {
use syntax::ast::{IntTy, UintTy};
let val = match ty.sty {
ty::TyBool => PrimVal::Bool(try!(self.memory.read_bool(ptr))),
ty::TyInt(IntTy::I8) => PrimVal::I8(try!(self.memory.read_int(ptr, 1)) as i8),
ty::TyInt(IntTy::I16) => PrimVal::I16(try!(self.memory.read_int(ptr, 2)) as i16),
ty::TyInt(IntTy::I32) => PrimVal::I32(try!(self.memory.read_int(ptr, 4)) as i32),
ty::TyInt(IntTy::I64) => PrimVal::I64(try!(self.memory.read_int(ptr, 8)) as i64),
ty::TyUint(UintTy::U8) => PrimVal::U8(try!(self.memory.read_uint(ptr, 1)) as u8),
ty::TyUint(UintTy::U16) => PrimVal::U16(try!(self.memory.read_uint(ptr, 2)) as u16),
ty::TyUint(UintTy::U32) => PrimVal::U32(try!(self.memory.read_uint(ptr, 4)) as u32),
ty::TyUint(UintTy::U64) => PrimVal::U64(try!(self.memory.read_uint(ptr, 8)) as u64),
// TODO(tsion): Pick the PrimVal dynamically.
ty::TyInt(IntTy::Is) => PrimVal::I64(try!(self.memory.read_isize(ptr))),
ty::TyUint(UintTy::Us) => PrimVal::U64(try!(self.memory.read_usize(ptr))),
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyRawPtr(ty::TypeAndMut { ty, .. }) => {
if self.type_is_sized(ty) {
match self.memory.read_ptr(ptr) {
Ok(p) => PrimVal::AbstractPtr(p),
Err(EvalError::ReadBytesAsPointer) => {
let n = try!(self.memory.read_usize(ptr));
PrimVal::IntegerPtr(n)
}
Err(e) => return Err(e),
}
} else {
panic!("unimplemented: primitive read of fat pointer type: {:?}", ty);
}
}
_ => panic!("primitive read of non-primitive type: {:?}", ty),
};
Ok(val)
}
fn frame(&self) -> &Frame<'a, 'tcx> {
self.stack.last().expect("no call frames exist")
}
fn frame_mut(&mut self) -> &mut Frame<'a, 'tcx> {
self.stack.last_mut().expect("no call frames exist")
}
fn mir(&self) -> &mir::Mir<'tcx> {
&self.frame().mir
}
fn substs(&self) -> &'tcx Substs<'tcx> {
self.substs_stack.last().cloned().unwrap_or_else(|| self.tcx.mk_substs(Substs::empty()))
}
fn load_mir(&self, def_id: DefId) -> CachedMir<'a, 'tcx> {
match self.tcx.map.as_local_node_id(def_id) {
Some(node_id) => CachedMir::Ref(self.mir_map.map.get(&node_id).unwrap()),
None => {
let mut mir_cache = self.mir_cache.borrow_mut();
if let Some(mir) = mir_cache.get(&def_id) {
return CachedMir::Owned(mir.clone());
}
use rustc::middle::cstore::CrateStore;
let cs = &self.tcx.sess.cstore;
let mir = cs.maybe_get_item_mir(self.tcx, def_id).unwrap_or_else(|| {
panic!("no mir for {:?}", def_id);
});
let cached = Rc::new(mir);
mir_cache.insert(def_id, cached.clone());
CachedMir::Owned(cached)
}
}
}
fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> {
// Do the initial selection for the obligation. This yields the shallow result we are
// looking for -- that is, what specific impl.
let infcx = infer::normalizing_infer_ctxt(self.tcx, &self.tcx.tables, ProjectionMode::Any);
let mut selcx = traits::SelectionContext::new(&infcx);
let obligation = traits::Obligation::new(
traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID),
trait_ref.to_poly_trait_predicate(),
);
let selection = selcx.select(&obligation).unwrap().unwrap();
// Currently, we use a fulfillment context to completely resolve all nested obligations.
// This is because they can inform the inference of the impl's type parameters.
let mut fulfill_cx = traits::FulfillmentContext::new();
let vtable = selection.map(|predicate| {
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
infer::drain_fulfillment_cx_or_panic(
DUMMY_SP, &infcx, &mut fulfill_cx, &vtable
)
}
/// Trait method, which has to be resolved to an impl method.
pub fn trait_method(&self, def_id: DefId, substs: &'tcx Substs<'tcx>)
-> (DefId, &'tcx Substs<'tcx>)
{
let method_item = self.tcx.impl_or_trait_item(def_id);
let trait_id = method_item.container().id();
let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id));
match self.fulfill_obligation(trait_ref) {
traits::VtableImpl(vtable_impl) => {
let impl_did = vtable_impl.impl_def_id;
let mname = self.tcx.item_name(def_id);
// Create a concatenated set of substitutions which includes those from the impl
// and those from the method:
let impl_substs = vtable_impl.substs.with_method_from(substs);
let substs = self.tcx.mk_substs(impl_substs);
let mth = get_impl_method(self.tcx, impl_did, substs, mname);
(mth.method.def_id, mth.substs)
}
traits::VtableClosure(vtable_closure) =>
(vtable_closure.closure_def_id, vtable_closure.substs.func_substs),
traits::VtableFnPointer(_fn_ty) => {
let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap();
unimplemented!()
// let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty);
// let method_ty = def_ty(tcx, def_id, substs);
// let fn_ptr_ty = match method_ty.sty {
// ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)),
// _ => unreachable!("expected fn item type, found {}",
// method_ty)
// };
// Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty))
}
traits::VtableObject(ref _data) => {
unimplemented!()
// Callee {
// data: Virtual(traits::get_vtable_index_of_object_method(
// tcx, data, def_id)),
// ty: def_ty(tcx, def_id, substs)
// }
}
vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable),
}
}
}
fn pointee_type(ptr_ty: ty::Ty) -> Option<ty::Ty> {
match ptr_ty.sty {
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyRawPtr(ty::TypeAndMut { ty, .. }) |
ty::TyBox(ty) => {
Some(ty)
}
_ => None,
}
}
impl Lvalue {
fn to_ptr(self) -> Pointer {
assert_eq!(self.extra, LvalueExtra::None);
self.ptr
}
}
impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> {
type Target = mir::Mir<'tcx>;
fn deref(&self) -> &mir::Mir<'tcx> {
match *self {
CachedMir::Ref(r) => r,
CachedMir::Owned(ref rc) => &rc,
}
}
}
#[derive(Debug)]
pub struct ImplMethod<'tcx> {
pub method: Rc<ty::Method<'tcx>>,
pub substs: &'tcx Substs<'tcx>,
pub is_provided: bool,
}
/// Locates the applicable definition of a method, given its name.
pub fn get_impl_method<'tcx>(
tcx: &TyCtxt<'tcx>,
impl_def_id: DefId,
substs: &'tcx Substs<'tcx>,
name: ast::Name,
) -> ImplMethod<'tcx> {
assert!(!substs.types.needs_infer());
let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
let trait_def = tcx.lookup_trait_def(trait_def_id);
let infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables, ProjectionMode::Any);
match trait_def.ancestors(impl_def_id).fn_defs(tcx, name).next() {
Some(node_item) => {
ImplMethod {
method: node_item.item,
substs: traits::translate_substs(&infcx, impl_def_id, substs, node_item.node),
is_provided: node_item.node.is_from_trait(),
}
}
None => {
bug!("method {:?} not found in {:?}", name, impl_def_id);
}
}
}
pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) {
for (&id, mir) in &mir_map.map {
for attr in tcx.map.attrs(id) {
use syntax::attr::AttrMetaMethods;
if attr.check_name("miri_run") {
let item = tcx.map.expect_item(id);
println!("Interpreting: {}", item.name);
let mut miri = Interpreter::new(tcx, mir_map);
let return_ptr = match mir.return_ty {
ty::FnConverging(ty) => {
let size = miri.type_size(ty);
Some(miri.memory.allocate(size))
}
ty::FnDiverging => None,
};
let substs = miri.tcx.mk_substs(Substs::empty());
miri.push_stack_frame(CachedMir::Ref(mir), substs, return_ptr);
if let Err(_e) = miri.run() {
// TODO(tsion): Detect whether the error was already reported or not.
// tcx.sess.err(&e.to_string());
} else if let Some(ret) = return_ptr {
miri.memory.dump(ret.alloc_id);
}
println!("");
}
}
}
}
// TODO(tsion): Upstream these methods into rustc::ty::layout.
trait IntegerExt {
fn size(self) -> Size;
}
impl IntegerExt for layout::Integer {
fn size(self) -> Size {
use rustc::ty::layout::Integer::*;
match self {
I1 | I8 => Size::from_bits(8),
I16 => Size::from_bits(16),
I32 => Size::from_bits(32),
I64 => Size::from_bits(64),
}
}
}
trait StructExt {
fn field_offset(&self, index: usize) -> Size;
}
impl StructExt for layout::Struct {
fn field_offset(&self, index: usize) -> Size {
if index == 0 {
Size::from_bytes(0)
} else {
self.offset_after_field[index - 1]
}
}
}