rust/clippy_lints/src/manual_let_else.rs
2023-10-23 20:05:10 +00:00

481 lines
19 KiB
Rust

use crate::question_mark::{QuestionMark, QUESTION_MARK};
use clippy_config::msrvs;
use clippy_config::types::MatchLintBehaviour;
use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::higher::IfLetOrMatch;
use clippy_utils::source::snippet_with_context;
use clippy_utils::ty::is_type_diagnostic_item;
use clippy_utils::visitors::{Descend, Visitable};
use clippy_utils::{is_lint_allowed, pat_and_expr_can_be_question_mark, peel_blocks};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::Applicability;
use rustc_hir::intravisit::{walk_expr, Visitor};
use rustc_hir::{Expr, ExprKind, HirId, ItemId, Local, MatchSource, Pat, PatKind, QPath, Stmt, StmtKind, Ty};
use rustc_lint::{LateContext, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_session::declare_tool_lint;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::Span;
use std::ops::ControlFlow;
use std::slice;
declare_clippy_lint! {
/// ### What it does
///
/// Warn of cases where `let...else` could be used
///
/// ### Why is this bad?
///
/// `let...else` provides a standard construct for this pattern
/// that people can easily recognize. It's also more compact.
///
/// ### Example
///
/// ```no_run
/// # let w = Some(0);
/// let v = if let Some(v) = w { v } else { return };
/// ```
///
/// Could be written:
///
/// ```no_run
/// # fn main () {
/// # let w = Some(0);
/// let Some(v) = w else { return };
/// # }
/// ```
#[clippy::version = "1.67.0"]
pub MANUAL_LET_ELSE,
pedantic,
"manual implementation of a let...else statement"
}
impl<'tcx> QuestionMark {
pub(crate) fn check_manual_let_else(&mut self, cx: &LateContext<'_>, stmt: &'tcx Stmt<'tcx>) {
if !self.msrv.meets(msrvs::LET_ELSE) || in_external_macro(cx.sess(), stmt.span) {
return;
}
if let StmtKind::Local(local) = stmt.kind &&
let Some(init) = local.init &&
local.els.is_none() &&
local.ty.is_none() &&
init.span.eq_ctxt(stmt.span) &&
let Some(if_let_or_match) = IfLetOrMatch::parse(cx, init)
{
match if_let_or_match {
IfLetOrMatch::IfLet(if_let_expr, let_pat, if_then, if_else) => {
if
let Some(ident_map) = expr_simple_identity_map(local.pat, let_pat, if_then) &&
let Some(if_else) = if_else &&
expr_diverges(cx, if_else) &&
let qm_allowed = is_lint_allowed(cx, QUESTION_MARK, stmt.hir_id) &&
(qm_allowed || pat_and_expr_can_be_question_mark(cx, let_pat, if_else).is_none())
{
emit_manual_let_else(cx, stmt.span, if_let_expr, &ident_map, let_pat, if_else);
}
},
IfLetOrMatch::Match(match_expr, arms, source) => {
if self.matches_behaviour == MatchLintBehaviour::Never {
return;
}
if source != MatchSource::Normal {
return;
}
// Any other number than two arms doesn't (necessarily)
// have a trivial mapping to let else.
if arms.len() != 2 {
return;
}
// Guards don't give us an easy mapping either
if arms.iter().any(|arm| arm.guard.is_some()) {
return;
}
let check_types = self.matches_behaviour == MatchLintBehaviour::WellKnownTypes;
let diverging_arm_opt = arms
.iter()
.enumerate()
.find(|(_, arm)| expr_diverges(cx, arm.body) && pat_allowed_for_else(cx, arm.pat, check_types));
let Some((idx, diverging_arm)) = diverging_arm_opt else { return; };
// If the non-diverging arm is the first one, its pattern can be reused in a let/else statement.
// However, if it arrives in second position, its pattern may cover some cases already covered
// by the diverging one.
// TODO: accept the non-diverging arm as a second position if patterns are disjointed.
if idx == 0 {
return;
}
let pat_arm = &arms[1 - idx];
let Some(ident_map) = expr_simple_identity_map(local.pat, pat_arm.pat, pat_arm.body) else {
return
};
emit_manual_let_else(cx, stmt.span, match_expr, &ident_map, pat_arm.pat, diverging_arm.body);
},
}
};
}
}
fn emit_manual_let_else(
cx: &LateContext<'_>,
span: Span,
expr: &Expr<'_>,
ident_map: &FxHashMap<Symbol, &Pat<'_>>,
pat: &Pat<'_>,
else_body: &Expr<'_>,
) {
span_lint_and_then(
cx,
MANUAL_LET_ELSE,
span,
"this could be rewritten as `let...else`",
|diag| {
// This is far from perfect, for example there needs to be:
// * renamings of the bindings for many `PatKind`s like slices, etc.
// * limitations in the existing replacement algorithms
// * unused binding collision detection with existing ones
// for this to be machine applicable.
let mut app = Applicability::HasPlaceholders;
let (sn_expr, _) = snippet_with_context(cx, expr.span, span.ctxt(), "", &mut app);
let (sn_else, else_is_mac_call) = snippet_with_context(cx, else_body.span, span.ctxt(), "", &mut app);
let else_bl = if matches!(else_body.kind, ExprKind::Block(..)) && !else_is_mac_call {
sn_else.into_owned()
} else {
format!("{{ {sn_else} }}")
};
let sn_bl = replace_in_pattern(cx, span, ident_map, pat, &mut app, true);
let sugg = format!("let {sn_bl} = {sn_expr} else {else_bl};");
diag.span_suggestion(span, "consider writing", sugg, app);
},
);
}
/// Replaces the locals in the pattern
///
/// For this example:
///
/// ```ignore
/// let (a, FooBar { b, c }) = if let Bar { Some(a_i), b_i } = ex { (a_i, b_i) } else { return };
/// ```
///
/// We have:
///
/// ```ignore
/// pat: Bar { Some(a_i), b_i }
/// ident_map: (a_i) -> (a), (b_i) -> (FooBar { b, c })
/// ```
///
/// We return:
///
/// ```ignore
/// Bar { Some(a), b_i: FooBar { b, c } }
/// ```
fn replace_in_pattern(
cx: &LateContext<'_>,
span: Span,
ident_map: &FxHashMap<Symbol, &Pat<'_>>,
pat: &Pat<'_>,
app: &mut Applicability,
top_level: bool,
) -> String {
// We put a labeled block here so that we can implement the fallback in this function.
// As the function has multiple call sites, implementing the fallback via an Option<T>
// return type and unwrap_or_else would cause repetition. Similarly, the function also
// invokes the fall back multiple times.
'a: {
// If the ident map is empty, there is no replacement to do.
// The code following this if assumes a non-empty ident_map.
if ident_map.is_empty() {
break 'a;
}
match pat.kind {
PatKind::Binding(_ann, _id, binding_name, opt_subpt) => {
let Some(pat_to_put) = ident_map.get(&binding_name.name) else {
break 'a;
};
let (sn_ptp, _) = snippet_with_context(cx, pat_to_put.span, span.ctxt(), "", app);
if let Some(subpt) = opt_subpt {
let subpt = replace_in_pattern(cx, span, ident_map, subpt, app, false);
return format!("{sn_ptp} @ {subpt}");
}
return sn_ptp.to_string();
},
PatKind::Or(pats) => {
let patterns = pats
.iter()
.map(|pat| replace_in_pattern(cx, span, ident_map, pat, app, false))
.collect::<Vec<_>>();
let or_pat = patterns.join(" | ");
if top_level {
return format!("({or_pat})");
}
return or_pat;
},
PatKind::Struct(path, fields, has_dot_dot) => {
let fields = fields
.iter()
.map(|fld| {
if let PatKind::Binding(_, _, name, None) = fld.pat.kind &&
let Some(pat_to_put) = ident_map.get(&name.name)
{
let (sn_fld_name, _) = snippet_with_context(cx, fld.ident.span, span.ctxt(), "", app);
let (sn_ptp, _) = snippet_with_context(cx, pat_to_put.span, span.ctxt(), "", app);
// TODO: this is a bit of a hack, but it does its job. Ideally, we'd check if pat_to_put is
// a PatKind::Binding but that is also hard to get right.
if sn_fld_name == sn_ptp {
// Field init shorthand
return format!("{sn_fld_name}");
}
return format!("{sn_fld_name}: {sn_ptp}");
}
let (sn_fld, _) = snippet_with_context(cx, fld.span, span.ctxt(), "", app);
sn_fld.into_owned()
})
.collect::<Vec<_>>();
let fields_string = fields.join(", ");
let dot_dot_str = if has_dot_dot { " .." } else { "" };
let (sn_pth, _) = snippet_with_context(cx, path.span(), span.ctxt(), "", app);
return format!("{sn_pth} {{ {fields_string}{dot_dot_str} }}");
},
// Replace the variable name iff `TupleStruct` has one argument like `Variant(v)`.
PatKind::TupleStruct(ref w, args, dot_dot_pos) => {
let mut args = args
.iter()
.map(|pat| replace_in_pattern(cx, span, ident_map, pat, app, false))
.collect::<Vec<_>>();
if let Some(pos) = dot_dot_pos.as_opt_usize() {
args.insert(pos, "..".to_owned());
}
let args = args.join(", ");
let sn_wrapper = cx.sess().source_map().span_to_snippet(w.span()).unwrap_or_default();
return format!("{sn_wrapper}({args})");
},
PatKind::Tuple(args, dot_dot_pos) => {
let mut args = args
.iter()
.map(|pat| replace_in_pattern(cx, span, ident_map, pat, app, false))
.collect::<Vec<_>>();
if let Some(pos) = dot_dot_pos.as_opt_usize() {
args.insert(pos, "..".to_owned());
}
let args = args.join(", ");
return format!("({args})");
},
_ => {},
}
}
let (sn_pat, _) = snippet_with_context(cx, pat.span, span.ctxt(), "", app);
sn_pat.into_owned()
}
/// Check whether an expression is divergent. May give false negatives.
fn expr_diverges(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
struct V<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
res: ControlFlow<(), Descend>,
}
impl<'tcx> Visitor<'tcx> for V<'_, '_> {
fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) {
fn is_never(cx: &LateContext<'_>, expr: &'_ Expr<'_>) -> bool {
if let Some(ty) = cx.typeck_results().expr_ty_opt(expr) {
return ty.is_never();
}
false
}
if self.res.is_break() {
return;
}
// We can't just call is_never on expr and be done, because the type system
// sometimes coerces the ! type to something different before we can get
// our hands on it. So instead, we do a manual search. We do fall back to
// is_never in some places when there is no better alternative.
self.res = match e.kind {
ExprKind::Continue(_) | ExprKind::Break(_, _) | ExprKind::Ret(_) => ControlFlow::Break(()),
ExprKind::Call(call, _) => {
if is_never(self.cx, e) || is_never(self.cx, call) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(Descend::Yes)
}
},
ExprKind::MethodCall(..) => {
if is_never(self.cx, e) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(Descend::Yes)
}
},
ExprKind::If(if_expr, if_then, if_else) => {
let else_diverges = if_else.map_or(false, |ex| expr_diverges(self.cx, ex));
let diverges =
expr_diverges(self.cx, if_expr) || (else_diverges && expr_diverges(self.cx, if_then));
if diverges {
ControlFlow::Break(())
} else {
ControlFlow::Continue(Descend::No)
}
},
ExprKind::Match(match_expr, match_arms, _) => {
let diverges = expr_diverges(self.cx, match_expr)
|| match_arms.iter().all(|arm| {
let guard_diverges = arm.guard.as_ref().map_or(false, |g| expr_diverges(self.cx, g.body()));
guard_diverges || expr_diverges(self.cx, arm.body)
});
if diverges {
ControlFlow::Break(())
} else {
ControlFlow::Continue(Descend::No)
}
},
// Don't continue into loops or labeled blocks, as they are breakable,
// and we'd have to start checking labels.
ExprKind::Block(_, Some(_)) | ExprKind::Loop(..) => ControlFlow::Continue(Descend::No),
// Default: descend
_ => ControlFlow::Continue(Descend::Yes),
};
if let ControlFlow::Continue(Descend::Yes) = self.res {
walk_expr(self, e);
}
}
fn visit_local(&mut self, local: &'tcx Local<'_>) {
// Don't visit the else block of a let/else statement as it will not make
// the statement divergent even though the else block is divergent.
if let Some(init) = local.init {
self.visit_expr(init);
}
}
// Avoid unnecessary `walk_*` calls.
fn visit_ty(&mut self, _: &'tcx Ty<'tcx>) {}
fn visit_pat(&mut self, _: &'tcx Pat<'tcx>) {}
fn visit_qpath(&mut self, _: &'tcx QPath<'tcx>, _: HirId, _: Span) {}
// Avoid monomorphising all `visit_*` functions.
fn visit_nested_item(&mut self, _: ItemId) {}
}
let mut v = V {
cx,
res: ControlFlow::Continue(Descend::Yes),
};
expr.visit(&mut v);
v.res.is_break()
}
fn pat_allowed_for_else(cx: &LateContext<'_>, pat: &'_ Pat<'_>, check_types: bool) -> bool {
// Check whether the pattern contains any bindings, as the
// binding might potentially be used in the body.
// TODO: only look for *used* bindings.
let mut has_bindings = false;
pat.each_binding_or_first(&mut |_, _, _, _| has_bindings = true);
if has_bindings {
return false;
}
// If we shouldn't check the types, exit early.
if !check_types {
return true;
}
// Check whether any possibly "unknown" patterns are included,
// because users might not know which values some enum has.
// Well-known enums are excepted, as we assume people know them.
// We do a deep check, to be able to disallow Err(En::Foo(_))
// for usage of the En::Foo variant, as we disallow En::Foo(_),
// but we allow Err(_).
let typeck_results = cx.typeck_results();
let mut has_disallowed = false;
pat.walk_always(|pat| {
// Only do the check if the type is "spelled out" in the pattern
if !matches!(
pat.kind,
PatKind::Struct(..) | PatKind::TupleStruct(..) | PatKind::Path(..)
) {
return;
};
let ty = typeck_results.pat_ty(pat);
// Option and Result are allowed, everything else isn't.
if !(is_type_diagnostic_item(cx, ty, sym::Option) || is_type_diagnostic_item(cx, ty, sym::Result)) {
has_disallowed = true;
}
});
!has_disallowed
}
/// Checks if the passed block is a simple identity referring to bindings created by the pattern,
/// and if yes, returns a mapping between the relevant sub-pattern and the identifier it corresponds
/// to.
///
/// We support patterns with multiple bindings and tuples, e.g.:
///
/// ```ignore
/// let (foo_o, bar_o) = if let (Some(foo), bar) = g() { (foo, bar) } else { ... }
/// ```
///
/// The expected params would be:
///
/// ```ignore
/// local_pat: (foo_o, bar_o)
/// let_pat: (Some(foo), bar)
/// expr: (foo, bar)
/// ```
///
/// We build internal `sub_pats` so that it looks like `[foo_o, bar_o]` and `paths` so that it looks
/// like `[foo, bar]`. Then we turn that into `FxHashMap [(foo) -> (foo_o), (bar) -> (bar_o)]` which
/// we return.
fn expr_simple_identity_map<'a, 'hir>(
local_pat: &'a Pat<'hir>,
let_pat: &'_ Pat<'hir>,
expr: &'_ Expr<'hir>,
) -> Option<FxHashMap<Symbol, &'a Pat<'hir>>> {
let peeled = peel_blocks(expr);
let (sub_pats, paths) = match (local_pat.kind, peeled.kind) {
(PatKind::Tuple(pats, _), ExprKind::Tup(exprs)) | (PatKind::Slice(pats, ..), ExprKind::Array(exprs)) => {
(pats, exprs)
},
(_, ExprKind::Path(_)) => (slice::from_ref(local_pat), slice::from_ref(peeled)),
_ => return None,
};
// There is some length mismatch, which indicates usage of .. in the patterns above e.g.:
// let (a, ..) = if let [a, b, _c] = ex { (a, b) } else { ... };
// We bail in these cases as they should be rare.
if paths.len() != sub_pats.len() {
return None;
}
let mut pat_bindings = FxHashSet::default();
let_pat.each_binding_or_first(&mut |_ann, _hir_id, _sp, ident| {
pat_bindings.insert(ident);
});
if pat_bindings.len() < paths.len() {
// This rebinds some bindings from the outer scope, or it repeats some copy-able bindings multiple
// times. We don't support these cases so we bail here. E.g.:
// let foo = 0;
// let (new_foo, bar, bar_copied) = if let Some(bar) = Some(0) { (foo, bar, bar) } else { .. };
return None;
}
let mut ident_map = FxHashMap::default();
for (sub_pat, path) in sub_pats.iter().zip(paths.iter()) {
if let ExprKind::Path(QPath::Resolved(_ty, path)) = path.kind &&
let [path_seg] = path.segments
{
let ident = path_seg.ident;
if !pat_bindings.remove(&ident) {
return None;
}
ident_map.insert(ident.name, sub_pat);
} else {
return None;
}
}
Some(ident_map)
}