rust/src/libfmt_macros/lib.rs
wickerwaka 2bc4a5e92a Center alignment for fmt
Use '^' to specify center alignment in format strings.

fmt!( "[{:^5s}]", "Hi" ) -> "[ Hi  ]"
fmt!( "[{:^5s}]", "H" )  -> "[  H  ]"
fmt!( "[{:^5d}]", 1i )   -> "[  1  ]"
fmt!( "[{:^5d}]", -1i )  -> "[ -1  ]"
fmt!( "[{:^6d}]", 1i )   -> "[  1   ]"
fmt!( "[{:^6d}]", -1i )  -> "[  -1  ]"

If the padding is odd then the padding on the right will be one
character longer than the padding on the left.

Tuples squashed
2014-09-04 07:38:53 -07:00

639 lines
20 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Macro support for format strings
//!
//! These structures are used when parsing format strings for the compiler.
//! Parsing does not happen at runtime: structures of `std::fmt::rt` are
//! generated instead.
#![crate_name = "fmt_macros"]
#![experimental]
#![license = "MIT/ASL2"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![feature(macro_rules, globs, import_shadowing)]
use std::char;
use std::str;
/// A piece is a portion of the format string which represents the next part
/// to emit. These are emitted as a stream by the `Parser` class.
#[deriving(PartialEq)]
pub enum Piece<'a> {
/// A literal string which should directly be emitted
String(&'a str),
/// This describes that formatting should process the next argument (as
/// specified inside) for emission.
Argument(Argument<'a>),
}
/// Representation of an argument specification.
#[deriving(PartialEq)]
pub struct Argument<'a> {
/// Where to find this argument
pub position: Position<'a>,
/// How to format the argument
pub format: FormatSpec<'a>,
}
/// Specification for the formatting of an argument in the format string.
#[deriving(PartialEq)]
pub struct FormatSpec<'a> {
/// Optionally specified character to fill alignment with
pub fill: Option<char>,
/// Optionally specified alignment
pub align: Alignment,
/// Packed version of various flags provided
pub flags: uint,
/// The integer precision to use
pub precision: Count<'a>,
/// The string width requested for the resulting format
pub width: Count<'a>,
/// The descriptor string representing the name of the format desired for
/// this argument, this can be empty or any number of characters, although
/// it is required to be one word.
pub ty: &'a str
}
/// Enum describing where an argument for a format can be located.
#[deriving(PartialEq)]
pub enum Position<'a> {
/// The argument will be in the next position. This is the default.
ArgumentNext,
/// The argument is located at a specific index.
ArgumentIs(uint),
/// The argument has a name.
ArgumentNamed(&'a str),
}
/// Enum of alignments which are supported.
#[deriving(PartialEq)]
pub enum Alignment {
/// The value will be aligned to the left.
AlignLeft,
/// The value will be aligned to the right.
AlignRight,
/// The value will be aligned in the center.
AlignCenter,
/// The value will take on a default alignment.
AlignUnknown,
}
/// Various flags which can be applied to format strings. The meaning of these
/// flags is defined by the formatters themselves.
#[deriving(PartialEq)]
pub enum Flag {
/// A `+` will be used to denote positive numbers.
FlagSignPlus,
/// A `-` will be used to denote negative numbers. This is the default.
FlagSignMinus,
/// An alternate form will be used for the value. In the case of numbers,
/// this means that the number will be prefixed with the supplied string.
FlagAlternate,
/// For numbers, this means that the number will be padded with zeroes,
/// and the sign (`+` or `-`) will precede them.
FlagSignAwareZeroPad,
}
/// A count is used for the precision and width parameters of an integer, and
/// can reference either an argument or a literal integer.
#[deriving(PartialEq)]
pub enum Count<'a> {
/// The count is specified explicitly.
CountIs(uint),
/// The count is specified by the argument with the given name.
CountIsName(&'a str),
/// The count is specified by the argument at the given index.
CountIsParam(uint),
/// The count is specified by the next parameter.
CountIsNextParam,
/// The count is implied and cannot be explicitly specified.
CountImplied,
}
/// The parser structure for interpreting the input format string. This is
/// modelled as an iterator over `Piece` structures to form a stream of tokens
/// being output.
///
/// This is a recursive-descent parser for the sake of simplicity, and if
/// necessary there's probably lots of room for improvement performance-wise.
pub struct Parser<'a> {
input: &'a str,
cur: str::CharOffsets<'a>,
/// Error messages accumulated during parsing
pub errors: Vec<String>,
}
impl<'a> Iterator<Piece<'a>> for Parser<'a> {
fn next(&mut self) -> Option<Piece<'a>> {
match self.cur.clone().next() {
Some((pos, '{')) => {
self.cur.next();
if self.consume('{') {
Some(String(self.string(pos + 1)))
} else {
let ret = Some(Argument(self.argument()));
self.must_consume('}');
ret
}
}
Some((pos, '}')) => {
self.cur.next();
if self.consume('}') {
Some(String(self.string(pos + 1)))
} else {
self.err("unmatched `}` found");
None
}
}
Some((pos, _)) => { Some(String(self.string(pos))) }
None => None
}
}
}
impl<'a> Parser<'a> {
/// Creates a new parser for the given format string
pub fn new<'a>(s: &'a str) -> Parser<'a> {
Parser {
input: s,
cur: s.char_indices(),
errors: vec!(),
}
}
/// Notifies of an error. The message doesn't actually need to be of type
/// String, but I think it does when this eventually uses conditions so it
/// might as well start using it now.
fn err(&mut self, msg: &str) {
self.errors.push(msg.to_string());
}
/// Optionally consumes the specified character. If the character is not at
/// the current position, then the current iterator isn't moved and false is
/// returned, otherwise the character is consumed and true is returned.
fn consume(&mut self, c: char) -> bool {
match self.cur.clone().next() {
Some((_, maybe)) if c == maybe => {
self.cur.next();
true
}
Some(..) | None => false,
}
}
/// Forces consumption of the specified character. If the character is not
/// found, an error is emitted.
fn must_consume(&mut self, c: char) {
self.ws();
match self.cur.clone().next() {
Some((_, maybe)) if c == maybe => {
self.cur.next();
}
Some((_, other)) => {
self.err(format!("expected `{}`, found `{}`",
c,
other).as_slice());
}
None => {
self.err(format!("expected `{}` but string was terminated",
c).as_slice());
}
}
}
/// Consumes all whitespace characters until the first non-whitespace
/// character
fn ws(&mut self) {
loop {
match self.cur.clone().next() {
Some((_, c)) if char::is_whitespace(c) => { self.cur.next(); }
Some(..) | None => { return }
}
}
}
/// Parses all of a string which is to be considered a "raw literal" in a
/// format string. This is everything outside of the braces.
fn string(&mut self, start: uint) -> &'a str {
loop {
// we may not consume the character, so clone the iterator
match self.cur.clone().next() {
Some((pos, '}')) | Some((pos, '{')) => {
return self.input.slice(start, pos);
}
Some(..) => { self.cur.next(); }
None => {
self.cur.next();
return self.input.slice(start, self.input.len());
}
}
}
}
/// Parses an Argument structure, or what's contained within braces inside
/// the format string
fn argument(&mut self) -> Argument<'a> {
Argument {
position: self.position(),
format: self.format(),
}
}
/// Parses a positional argument for a format. This could either be an
/// integer index of an argument, a named argument, or a blank string.
fn position(&mut self) -> Position<'a> {
match self.integer() {
Some(i) => { ArgumentIs(i) }
None => {
match self.cur.clone().next() {
Some((_, c)) if char::is_alphabetic(c) => {
ArgumentNamed(self.word())
}
_ => ArgumentNext
}
}
}
}
/// Parses a format specifier at the current position, returning all of the
/// relevant information in the FormatSpec struct.
fn format(&mut self) -> FormatSpec<'a> {
let mut spec = FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: self.input.slice(0, 0),
};
if !self.consume(':') { return spec }
// fill character
match self.cur.clone().next() {
Some((_, c)) => {
match self.cur.clone().skip(1).next() {
Some((_, '>')) | Some((_, '<')) | Some((_, '^')) => {
spec.fill = Some(c);
self.cur.next();
}
Some(..) | None => {}
}
}
None => {}
}
// Alignment
if self.consume('<') {
spec.align = AlignLeft;
} else if self.consume('>') {
spec.align = AlignRight;
} else if self.consume('^') {
spec.align = AlignCenter;
}
// Sign flags
if self.consume('+') {
spec.flags |= 1 << (FlagSignPlus as uint);
} else if self.consume('-') {
spec.flags |= 1 << (FlagSignMinus as uint);
}
// Alternate marker
if self.consume('#') {
spec.flags |= 1 << (FlagAlternate as uint);
}
// Width and precision
let mut havewidth = false;
if self.consume('0') {
// small ambiguity with '0$' as a format string. In theory this is a
// '0' flag and then an ill-formatted format string with just a '$'
// and no count, but this is better if we instead interpret this as
// no '0' flag and '0$' as the width instead.
if self.consume('$') {
spec.width = CountIsParam(0);
havewidth = true;
} else {
spec.flags |= 1 << (FlagSignAwareZeroPad as uint);
}
}
if !havewidth {
spec.width = self.count();
}
if self.consume('.') {
if self.consume('*') {
spec.precision = CountIsNextParam;
} else {
spec.precision = self.count();
}
}
// Finally the actual format specifier
if self.consume('?') {
spec.ty = "?";
} else {
spec.ty = self.word();
}
return spec;
}
/// Parses a Count parameter at the current position. This does not check
/// for 'CountIsNextParam' because that is only used in precision, not
/// width.
fn count(&mut self) -> Count<'a> {
match self.integer() {
Some(i) => {
if self.consume('$') {
CountIsParam(i)
} else {
CountIs(i)
}
}
None => {
let tmp = self.cur.clone();
match self.word() {
word if word.len() > 0 => {
if self.consume('$') {
CountIsName(word)
} else {
self.cur = tmp;
CountImplied
}
}
_ => {
self.cur = tmp;
CountImplied
}
}
}
}
}
/// Parses a word starting at the current position. A word is considered to
/// be an alphabetic character followed by any number of alphanumeric
/// characters.
fn word(&mut self) -> &'a str {
let start = match self.cur.clone().next() {
Some((pos, c)) if char::is_XID_start(c) => {
self.cur.next();
pos
}
Some(..) | None => { return self.input.slice(0, 0); }
};
let mut end;
loop {
match self.cur.clone().next() {
Some((_, c)) if char::is_XID_continue(c) => {
self.cur.next();
}
Some((pos, _)) => { end = pos; break }
None => { end = self.input.len(); break }
}
}
self.input.slice(start, end)
}
/// Optionally parses an integer at the current position. This doesn't deal
/// with overflow at all, it's just accumulating digits.
fn integer(&mut self) -> Option<uint> {
let mut cur = 0;
let mut found = false;
loop {
match self.cur.clone().next() {
Some((_, c)) => {
match char::to_digit(c, 10) {
Some(i) => {
cur = cur * 10 + i;
found = true;
self.cur.next();
}
None => { break }
}
}
None => { break }
}
}
if found {
return Some(cur);
} else {
return None;
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn same(fmt: &'static str, p: &[Piece<'static>]) {
let mut parser = Parser::new(fmt);
assert!(p == parser.collect::<Vec<Piece<'static>>>().as_slice());
}
fn fmtdflt() -> FormatSpec<'static> {
return FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
}
}
fn musterr(s: &str) {
let mut p = Parser::new(s);
p.next();
assert!(p.errors.len() != 0);
}
#[test]
fn simple() {
same("asdf", [String("asdf")]);
same("a{{b", [String("a"), String("{b")]);
same("a}}b", [String("a"), String("}b")]);
same("a}}", [String("a"), String("}")]);
same("}}", [String("}")]);
same("\\}}", [String("\\"), String("}")]);
}
#[test] fn invalid01() { musterr("{") }
#[test] fn invalid02() { musterr("}") }
#[test] fn invalid04() { musterr("{3a}") }
#[test] fn invalid05() { musterr("{:|}") }
#[test] fn invalid06() { musterr("{:>>>}") }
#[test]
fn format_nothing() {
same("{}", [Argument(Argument {
position: ArgumentNext,
format: fmtdflt(),
})]);
}
#[test]
fn format_position() {
same("{3}", [Argument(Argument {
position: ArgumentIs(3),
format: fmtdflt(),
})]);
}
#[test]
fn format_position_nothing_else() {
same("{3:}", [Argument(Argument {
position: ArgumentIs(3),
format: fmtdflt(),
})]);
}
#[test]
fn format_type() {
same("{3:a}", [Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "a",
},
})]);
}
#[test]
fn format_align_fill() {
same("{3:>}", [Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignRight,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
same("{3:0<}", [Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('0'),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
same("{3:*<abcd}", [Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('*'),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "abcd",
},
})]);
}
#[test]
fn format_counts() {
same("{:10s}", [Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountIs(10),
ty: "s",
},
})]);
same("{:10$.10s}", [Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIs(10),
width: CountIsParam(10),
ty: "s",
},
})]);
same("{:.*s}", [Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsNextParam,
width: CountImplied,
ty: "s",
},
})]);
same("{:.10$s}", [Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsParam(10),
width: CountImplied,
ty: "s",
},
})]);
same("{:a$.b$s}", [Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsName("b"),
width: CountIsName("a"),
ty: "s",
},
})]);
}
#[test]
fn format_flags() {
same("{:-}", [Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: (1 << FlagSignMinus as uint),
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
same("{:+#}", [Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: (1 << FlagSignPlus as uint) | (1 << FlagAlternate as uint),
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
}
#[test]
fn format_mixture() {
same("abcd {3:a} efg", [String("abcd "), Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "a",
},
}), String(" efg")]);
}
}