ad8271dd56
It's hyper-optimized, we don't need our own unsafe code here. This requires getting rid of all the `Allocator` stuff, which isn't needed anyway.
720 lines
19 KiB
Rust
720 lines
19 KiB
Rust
//! Support code for encoding and decoding types.
|
|
|
|
use smallvec::{Array, SmallVec};
|
|
use std::borrow::Cow;
|
|
use std::cell::{Cell, RefCell};
|
|
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque};
|
|
use std::hash::{BuildHasher, Hash};
|
|
use std::marker::PhantomData;
|
|
use std::path;
|
|
use std::rc::Rc;
|
|
use std::sync::Arc;
|
|
use thin_vec::ThinVec;
|
|
|
|
/// A byte that [cannot occur in UTF8 sequences][utf8]. Used to mark the end of a string.
|
|
/// This way we can skip validation and still be relatively sure that deserialization
|
|
/// did not desynchronize.
|
|
///
|
|
/// [utf8]: https://en.wikipedia.org/w/index.php?title=UTF-8&oldid=1058865525#Codepage_layout
|
|
const STR_SENTINEL: u8 = 0xC1;
|
|
|
|
/// A note about error handling.
|
|
///
|
|
/// Encoders may be fallible, but in practice failure is rare and there are so
|
|
/// many nested calls that typical Rust error handling (via `Result` and `?`)
|
|
/// is pervasive and has non-trivial cost. Instead, impls of this trait must
|
|
/// implement a delayed error handling strategy. If a failure occurs, they
|
|
/// should record this internally, and all subsequent encoding operations can
|
|
/// be processed or ignored, whichever is appropriate. Then they should provide
|
|
/// a `finish` method that finishes up encoding. If the encoder is fallible,
|
|
/// `finish` should return a `Result` that indicates success or failure.
|
|
///
|
|
/// This current does not support `f32` nor `f64`, as they're not needed in any
|
|
/// serialized data structures. That could be changed, but consider whether it
|
|
/// really makes sense to store floating-point values at all.
|
|
/// (If you need it, revert <https://github.com/rust-lang/rust/pull/109984>.)
|
|
pub trait Encoder {
|
|
fn emit_usize(&mut self, v: usize);
|
|
fn emit_u128(&mut self, v: u128);
|
|
fn emit_u64(&mut self, v: u64);
|
|
fn emit_u32(&mut self, v: u32);
|
|
fn emit_u16(&mut self, v: u16);
|
|
fn emit_u8(&mut self, v: u8);
|
|
|
|
fn emit_isize(&mut self, v: isize);
|
|
fn emit_i128(&mut self, v: i128);
|
|
fn emit_i64(&mut self, v: i64);
|
|
fn emit_i32(&mut self, v: i32);
|
|
fn emit_i16(&mut self, v: i16);
|
|
|
|
#[inline]
|
|
fn emit_i8(&mut self, v: i8) {
|
|
self.emit_u8(v as u8);
|
|
}
|
|
|
|
#[inline]
|
|
fn emit_bool(&mut self, v: bool) {
|
|
self.emit_u8(if v { 1 } else { 0 });
|
|
}
|
|
|
|
#[inline]
|
|
fn emit_char(&mut self, v: char) {
|
|
self.emit_u32(v as u32);
|
|
}
|
|
|
|
#[inline]
|
|
fn emit_str(&mut self, v: &str) {
|
|
self.emit_usize(v.len());
|
|
self.emit_raw_bytes(v.as_bytes());
|
|
self.emit_u8(STR_SENTINEL);
|
|
}
|
|
|
|
fn emit_raw_bytes(&mut self, s: &[u8]);
|
|
|
|
fn emit_enum_variant<F>(&mut self, v_id: usize, f: F)
|
|
where
|
|
F: FnOnce(&mut Self),
|
|
{
|
|
self.emit_usize(v_id);
|
|
f(self);
|
|
}
|
|
}
|
|
|
|
// Note: all the methods in this trait are infallible, which may be surprising.
|
|
// They used to be fallible (i.e. return a `Result`) but many of the impls just
|
|
// panicked when something went wrong, and for the cases that didn't the
|
|
// top-level invocation would also just panic on failure. Switching to
|
|
// infallibility made things faster and lots of code a little simpler and more
|
|
// concise.
|
|
///
|
|
/// This current does not support `f32` nor `f64`, as they're not needed in any
|
|
/// serialized data structures. That could be changed, but consider whether it
|
|
/// really makes sense to store floating-point values at all.
|
|
/// (If you need it, revert <https://github.com/rust-lang/rust/pull/109984>.)
|
|
pub trait Decoder {
|
|
fn read_usize(&mut self) -> usize;
|
|
fn read_u128(&mut self) -> u128;
|
|
fn read_u64(&mut self) -> u64;
|
|
fn read_u32(&mut self) -> u32;
|
|
fn read_u16(&mut self) -> u16;
|
|
fn read_u8(&mut self) -> u8;
|
|
|
|
fn read_isize(&mut self) -> isize;
|
|
fn read_i128(&mut self) -> i128;
|
|
fn read_i64(&mut self) -> i64;
|
|
fn read_i32(&mut self) -> i32;
|
|
fn read_i16(&mut self) -> i16;
|
|
|
|
#[inline]
|
|
fn read_i8(&mut self) -> i8 {
|
|
self.read_u8() as i8
|
|
}
|
|
|
|
#[inline]
|
|
fn read_bool(&mut self) -> bool {
|
|
let value = self.read_u8();
|
|
value != 0
|
|
}
|
|
|
|
#[inline]
|
|
fn read_char(&mut self) -> char {
|
|
let bits = self.read_u32();
|
|
std::char::from_u32(bits).unwrap()
|
|
}
|
|
|
|
#[inline]
|
|
fn read_str(&mut self) -> &str {
|
|
let len = self.read_usize();
|
|
let bytes = self.read_raw_bytes(len + 1);
|
|
assert!(bytes[len] == STR_SENTINEL);
|
|
unsafe { std::str::from_utf8_unchecked(&bytes[..len]) }
|
|
}
|
|
|
|
fn read_raw_bytes(&mut self, len: usize) -> &[u8];
|
|
|
|
// Although there is an `emit_enum_variant` method in `Encoder`, the code
|
|
// patterns in decoding are different enough to encoding that there is no
|
|
// need for a corresponding `read_enum_variant` method here.
|
|
|
|
fn peek_byte(&self) -> u8;
|
|
fn position(&self) -> usize;
|
|
}
|
|
|
|
/// Trait for types that can be serialized
|
|
///
|
|
/// This can be implemented using the `Encodable`, `TyEncodable` and
|
|
/// `MetadataEncodable` macros.
|
|
///
|
|
/// * `Encodable` should be used in crates that don't depend on
|
|
/// `rustc_middle`.
|
|
/// * `MetadataEncodable` is used in `rustc_metadata` for types that contain
|
|
/// `rustc_metadata::rmeta::Lazy`.
|
|
/// * `TyEncodable` should be used for types that are only serialized in crate
|
|
/// metadata or the incremental cache. This is most types in `rustc_middle`.
|
|
pub trait Encodable<S: Encoder> {
|
|
fn encode(&self, s: &mut S);
|
|
}
|
|
|
|
/// Trait for types that can be deserialized
|
|
///
|
|
/// This can be implemented using the `Decodable`, `TyDecodable` and
|
|
/// `MetadataDecodable` macros.
|
|
///
|
|
/// * `Decodable` should be used in crates that don't depend on
|
|
/// `rustc_middle`.
|
|
/// * `MetadataDecodable` is used in `rustc_metadata` for types that contain
|
|
/// `rustc_metadata::rmeta::Lazy`.
|
|
/// * `TyDecodable` should be used for types that are only serialized in crate
|
|
/// metadata or the incremental cache. This is most types in `rustc_middle`.
|
|
pub trait Decodable<D: Decoder>: Sized {
|
|
fn decode(d: &mut D) -> Self;
|
|
}
|
|
|
|
macro_rules! direct_serialize_impls {
|
|
($($ty:ident $emit_method:ident $read_method:ident),*) => {
|
|
$(
|
|
impl<S: Encoder> Encodable<S> for $ty {
|
|
fn encode(&self, s: &mut S) {
|
|
s.$emit_method(*self);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder> Decodable<D> for $ty {
|
|
fn decode(d: &mut D) -> $ty {
|
|
d.$read_method()
|
|
}
|
|
}
|
|
)*
|
|
}
|
|
}
|
|
|
|
direct_serialize_impls! {
|
|
usize emit_usize read_usize,
|
|
u8 emit_u8 read_u8,
|
|
u16 emit_u16 read_u16,
|
|
u32 emit_u32 read_u32,
|
|
u64 emit_u64 read_u64,
|
|
u128 emit_u128 read_u128,
|
|
|
|
isize emit_isize read_isize,
|
|
i8 emit_i8 read_i8,
|
|
i16 emit_i16 read_i16,
|
|
i32 emit_i32 read_i32,
|
|
i64 emit_i64 read_i64,
|
|
i128 emit_i128 read_i128,
|
|
|
|
bool emit_bool read_bool,
|
|
char emit_char read_char
|
|
}
|
|
|
|
impl<S: Encoder, T: ?Sized> Encodable<S> for &T
|
|
where
|
|
T: Encodable<S>,
|
|
{
|
|
fn encode(&self, s: &mut S) {
|
|
(**self).encode(s)
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder> Encodable<S> for ! {
|
|
fn encode(&self, _s: &mut S) {
|
|
unreachable!();
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder> Decodable<D> for ! {
|
|
fn decode(_d: &mut D) -> ! {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder> Encodable<S> for ::std::num::NonZeroU32 {
|
|
fn encode(&self, s: &mut S) {
|
|
s.emit_u32(self.get());
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder> Decodable<D> for ::std::num::NonZeroU32 {
|
|
fn decode(d: &mut D) -> Self {
|
|
::std::num::NonZeroU32::new(d.read_u32()).unwrap()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder> Encodable<S> for str {
|
|
fn encode(&self, s: &mut S) {
|
|
s.emit_str(self);
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder> Encodable<S> for String {
|
|
fn encode(&self, s: &mut S) {
|
|
s.emit_str(&self[..]);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder> Decodable<D> for String {
|
|
fn decode(d: &mut D) -> String {
|
|
d.read_str().to_owned()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder> Encodable<S> for () {
|
|
fn encode(&self, _s: &mut S) {}
|
|
}
|
|
|
|
impl<D: Decoder> Decodable<D> for () {
|
|
fn decode(_: &mut D) -> () {}
|
|
}
|
|
|
|
impl<S: Encoder, T> Encodable<S> for PhantomData<T> {
|
|
fn encode(&self, _s: &mut S) {}
|
|
}
|
|
|
|
impl<D: Decoder, T> Decodable<D> for PhantomData<T> {
|
|
fn decode(_: &mut D) -> PhantomData<T> {
|
|
PhantomData
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Box<[T]> {
|
|
fn decode(d: &mut D) -> Box<[T]> {
|
|
let v: Vec<T> = Decodable::decode(d);
|
|
v.into_boxed_slice()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Rc<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
(**self).encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Rc<T> {
|
|
fn decode(d: &mut D) -> Rc<T> {
|
|
Rc::new(Decodable::decode(d))
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for [T] {
|
|
default fn encode(&self, s: &mut S) {
|
|
s.emit_usize(self.len());
|
|
for e in self.iter() {
|
|
e.encode(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Vec<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
self.as_slice().encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Vec<T> {
|
|
default fn decode(d: &mut D) -> Vec<T> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| Decodable::decode(d)).collect()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>, const N: usize> Encodable<S> for [T; N] {
|
|
fn encode(&self, s: &mut S) {
|
|
self.as_slice().encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, const N: usize> Decodable<D> for [u8; N] {
|
|
fn decode(d: &mut D) -> [u8; N] {
|
|
let len = d.read_usize();
|
|
assert!(len == N);
|
|
let mut v = [0u8; N];
|
|
for i in 0..len {
|
|
v[i] = Decodable::decode(d);
|
|
}
|
|
v
|
|
}
|
|
}
|
|
|
|
impl<'a, S: Encoder, T: Encodable<S>> Encodable<S> for Cow<'a, [T]>
|
|
where
|
|
[T]: ToOwned<Owned = Vec<T>>,
|
|
{
|
|
fn encode(&self, s: &mut S) {
|
|
let slice: &[T] = self;
|
|
slice.encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D> + ToOwned> Decodable<D> for Cow<'static, [T]>
|
|
where
|
|
[T]: ToOwned<Owned = Vec<T>>,
|
|
{
|
|
fn decode(d: &mut D) -> Cow<'static, [T]> {
|
|
let v: Vec<T> = Decodable::decode(d);
|
|
Cow::Owned(v)
|
|
}
|
|
}
|
|
|
|
impl<'a, S: Encoder> Encodable<S> for Cow<'a, str> {
|
|
fn encode(&self, s: &mut S) {
|
|
let val: &str = self;
|
|
val.encode(s)
|
|
}
|
|
}
|
|
|
|
impl<'a, D: Decoder> Decodable<D> for Cow<'a, str> {
|
|
fn decode(d: &mut D) -> Cow<'static, str> {
|
|
let v: String = Decodable::decode(d);
|
|
Cow::Owned(v)
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Option<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
match *self {
|
|
None => s.emit_enum_variant(0, |_| {}),
|
|
Some(ref v) => s.emit_enum_variant(1, |s| v.encode(s)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Option<T> {
|
|
fn decode(d: &mut D) -> Option<T> {
|
|
match d.read_usize() {
|
|
0 => None,
|
|
1 => Some(Decodable::decode(d)),
|
|
_ => panic!("Encountered invalid discriminant while decoding `Option`."),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T1: Encodable<S>, T2: Encodable<S>> Encodable<S> for Result<T1, T2> {
|
|
fn encode(&self, s: &mut S) {
|
|
match *self {
|
|
Ok(ref v) => s.emit_enum_variant(0, |s| v.encode(s)),
|
|
Err(ref v) => s.emit_enum_variant(1, |s| v.encode(s)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T1: Decodable<D>, T2: Decodable<D>> Decodable<D> for Result<T1, T2> {
|
|
fn decode(d: &mut D) -> Result<T1, T2> {
|
|
match d.read_usize() {
|
|
0 => Ok(T1::decode(d)),
|
|
1 => Err(T2::decode(d)),
|
|
_ => panic!("Encountered invalid discriminant while decoding `Result`."),
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! peel {
|
|
($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
|
|
}
|
|
|
|
macro_rules! tuple {
|
|
() => ();
|
|
( $($name:ident,)+ ) => (
|
|
impl<D: Decoder, $($name: Decodable<D>),+> Decodable<D> for ($($name,)+) {
|
|
fn decode(d: &mut D) -> ($($name,)+) {
|
|
($({ let element: $name = Decodable::decode(d); element },)+)
|
|
}
|
|
}
|
|
impl<S: Encoder, $($name: Encodable<S>),+> Encodable<S> for ($($name,)+) {
|
|
#[allow(non_snake_case)]
|
|
fn encode(&self, s: &mut S) {
|
|
let ($(ref $name,)+) = *self;
|
|
$($name.encode(s);)+
|
|
}
|
|
}
|
|
peel! { $($name,)+ }
|
|
)
|
|
}
|
|
|
|
tuple! { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, }
|
|
|
|
impl<S: Encoder> Encodable<S> for path::Path {
|
|
fn encode(&self, e: &mut S) {
|
|
self.to_str().unwrap().encode(e);
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder> Encodable<S> for path::PathBuf {
|
|
fn encode(&self, e: &mut S) {
|
|
path::Path::encode(self, e);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder> Decodable<D> for path::PathBuf {
|
|
fn decode(d: &mut D) -> path::PathBuf {
|
|
let bytes: String = Decodable::decode(d);
|
|
path::PathBuf::from(bytes)
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S> + Copy> Encodable<S> for Cell<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
self.get().encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D> + Copy> Decodable<D> for Cell<T> {
|
|
fn decode(d: &mut D) -> Cell<T> {
|
|
Cell::new(Decodable::decode(d))
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for RefCell<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
self.borrow().encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for RefCell<T> {
|
|
fn decode(d: &mut D) -> RefCell<T> {
|
|
RefCell::new(Decodable::decode(d))
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Arc<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
(**self).encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Arc<T> {
|
|
fn decode(d: &mut D) -> Arc<T> {
|
|
Arc::new(Decodable::decode(d))
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: ?Sized + Encodable<S>> Encodable<S> for Box<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
(**self).encode(s)
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Box<T> {
|
|
fn decode(d: &mut D) -> Box<T> {
|
|
Box::new(Decodable::decode(d))
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, A: Array<Item: Encodable<S>>> Encodable<S> for SmallVec<A> {
|
|
fn encode(&self, s: &mut S) {
|
|
self.as_slice().encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, A: Array<Item: Decodable<D>>> Decodable<D> for SmallVec<A> {
|
|
fn decode(d: &mut D) -> SmallVec<A> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| Decodable::decode(d)).collect()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for ThinVec<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
self.as_slice().encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for ThinVec<T> {
|
|
fn decode(d: &mut D) -> ThinVec<T> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| Decodable::decode(d)).collect()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T: Encodable<S>> Encodable<S> for VecDeque<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
s.emit_usize(self.len());
|
|
for e in self.iter() {
|
|
e.encode(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for VecDeque<T> {
|
|
fn decode(d: &mut D) -> VecDeque<T> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| Decodable::decode(d)).collect()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, K, V> Encodable<S> for BTreeMap<K, V>
|
|
where
|
|
K: Encodable<S> + PartialEq + Ord,
|
|
V: Encodable<S>,
|
|
{
|
|
fn encode(&self, e: &mut S) {
|
|
e.emit_usize(self.len());
|
|
for (key, val) in self.iter() {
|
|
key.encode(e);
|
|
val.encode(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, K, V> Decodable<D> for BTreeMap<K, V>
|
|
where
|
|
K: Decodable<D> + PartialEq + Ord,
|
|
V: Decodable<D>,
|
|
{
|
|
fn decode(d: &mut D) -> BTreeMap<K, V> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| (Decodable::decode(d), Decodable::decode(d))).collect()
|
|
}
|
|
}
|
|
|
|
impl<S: Encoder, T> Encodable<S> for BTreeSet<T>
|
|
where
|
|
T: Encodable<S> + PartialEq + Ord,
|
|
{
|
|
fn encode(&self, s: &mut S) {
|
|
s.emit_usize(self.len());
|
|
for e in self.iter() {
|
|
e.encode(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T> Decodable<D> for BTreeSet<T>
|
|
where
|
|
T: Decodable<D> + PartialEq + Ord,
|
|
{
|
|
fn decode(d: &mut D) -> BTreeSet<T> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| Decodable::decode(d)).collect()
|
|
}
|
|
}
|
|
|
|
impl<E: Encoder, K, V, S> Encodable<E> for HashMap<K, V, S>
|
|
where
|
|
K: Encodable<E> + Eq,
|
|
V: Encodable<E>,
|
|
S: BuildHasher,
|
|
{
|
|
fn encode(&self, e: &mut E) {
|
|
e.emit_usize(self.len());
|
|
for (key, val) in self.iter() {
|
|
key.encode(e);
|
|
val.encode(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, K, V, S> Decodable<D> for HashMap<K, V, S>
|
|
where
|
|
K: Decodable<D> + Hash + Eq,
|
|
V: Decodable<D>,
|
|
S: BuildHasher + Default,
|
|
{
|
|
fn decode(d: &mut D) -> HashMap<K, V, S> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| (Decodable::decode(d), Decodable::decode(d))).collect()
|
|
}
|
|
}
|
|
|
|
impl<E: Encoder, T, S> Encodable<E> for HashSet<T, S>
|
|
where
|
|
T: Encodable<E> + Eq,
|
|
S: BuildHasher,
|
|
{
|
|
fn encode(&self, s: &mut E) {
|
|
s.emit_usize(self.len());
|
|
for e in self.iter() {
|
|
e.encode(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T, S> Decodable<D> for HashSet<T, S>
|
|
where
|
|
T: Decodable<D> + Hash + Eq,
|
|
S: BuildHasher + Default,
|
|
{
|
|
fn decode(d: &mut D) -> HashSet<T, S> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| Decodable::decode(d)).collect()
|
|
}
|
|
}
|
|
|
|
impl<E: Encoder, K, V, S> Encodable<E> for indexmap::IndexMap<K, V, S>
|
|
where
|
|
K: Encodable<E> + Hash + Eq,
|
|
V: Encodable<E>,
|
|
S: BuildHasher,
|
|
{
|
|
fn encode(&self, e: &mut E) {
|
|
e.emit_usize(self.len());
|
|
for (key, val) in self.iter() {
|
|
key.encode(e);
|
|
val.encode(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, K, V, S> Decodable<D> for indexmap::IndexMap<K, V, S>
|
|
where
|
|
K: Decodable<D> + Hash + Eq,
|
|
V: Decodable<D>,
|
|
S: BuildHasher + Default,
|
|
{
|
|
fn decode(d: &mut D) -> indexmap::IndexMap<K, V, S> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| (Decodable::decode(d), Decodable::decode(d))).collect()
|
|
}
|
|
}
|
|
|
|
impl<E: Encoder, T, S> Encodable<E> for indexmap::IndexSet<T, S>
|
|
where
|
|
T: Encodable<E> + Hash + Eq,
|
|
S: BuildHasher,
|
|
{
|
|
fn encode(&self, s: &mut E) {
|
|
s.emit_usize(self.len());
|
|
for e in self.iter() {
|
|
e.encode(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T, S> Decodable<D> for indexmap::IndexSet<T, S>
|
|
where
|
|
T: Decodable<D> + Hash + Eq,
|
|
S: BuildHasher + Default,
|
|
{
|
|
fn decode(d: &mut D) -> indexmap::IndexSet<T, S> {
|
|
let len = d.read_usize();
|
|
(0..len).map(|_| Decodable::decode(d)).collect()
|
|
}
|
|
}
|
|
|
|
impl<E: Encoder, T: Encodable<E>> Encodable<E> for Rc<[T]> {
|
|
fn encode(&self, s: &mut E) {
|
|
let slice: &[T] = self;
|
|
slice.encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Rc<[T]> {
|
|
fn decode(d: &mut D) -> Rc<[T]> {
|
|
let vec: Vec<T> = Decodable::decode(d);
|
|
vec.into()
|
|
}
|
|
}
|
|
|
|
impl<E: Encoder, T: Encodable<E>> Encodable<E> for Arc<[T]> {
|
|
fn encode(&self, s: &mut E) {
|
|
let slice: &[T] = self;
|
|
slice.encode(s);
|
|
}
|
|
}
|
|
|
|
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Arc<[T]> {
|
|
fn decode(d: &mut D) -> Arc<[T]> {
|
|
let vec: Vec<T> = Decodable::decode(d);
|
|
vec.into()
|
|
}
|
|
}
|