rust/clippy_lints/src/methods/unnecessary_to_owned.rs

502 lines
21 KiB
Rust

use super::implicit_clone::is_clone_like;
use super::unnecessary_iter_cloned::{self, is_into_iter};
use clippy_utils::diagnostics::span_lint_and_sugg;
use clippy_utils::source::snippet_opt;
use clippy_utils::ty::{get_associated_type, get_iterator_item_ty, implements_trait, is_copy, peel_mid_ty_refs};
use clippy_utils::visitors::find_all_ret_expressions;
use clippy_utils::{fn_def_id, get_parent_expr, is_diag_item_method, is_diag_trait_item, return_ty};
use clippy_utils::{meets_msrv, msrvs};
use rustc_errors::Applicability;
use rustc_hir::{def_id::DefId, BorrowKind, Expr, ExprKind, ItemKind, LangItem, Node};
use rustc_hir_analysis::check::{FnCtxt, Inherited};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_lint::LateContext;
use rustc_middle::mir::Mutability;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, OverloadedDeref};
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, SubstsRef};
use rustc_middle::ty::EarlyBinder;
use rustc_middle::ty::{self, ParamTy, PredicateKind, ProjectionPredicate, TraitPredicate, Ty};
use rustc_semver::RustcVersion;
use rustc_span::{sym, Symbol};
use rustc_trait_selection::traits::{query::evaluate_obligation::InferCtxtExt as _, Obligation, ObligationCause};
use std::cmp::max;
use super::UNNECESSARY_TO_OWNED;
pub fn check<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx Expr<'tcx>,
method_name: Symbol,
receiver: &'tcx Expr<'_>,
args: &'tcx [Expr<'_>],
msrv: Option<RustcVersion>,
) {
if_chain! {
if let Some(method_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id);
if args.is_empty();
then {
if is_cloned_or_copied(cx, method_name, method_def_id) {
unnecessary_iter_cloned::check(cx, expr, method_name, receiver);
} else if is_to_owned_like(cx, expr, method_name, method_def_id) {
// At this point, we know the call is of a `to_owned`-like function. The functions
// `check_addr_of_expr` and `check_call_arg` determine whether the call is unnecessary
// based on its context, that is, whether it is a referent in an `AddrOf` expression, an
// argument in a `into_iter` call, or an argument in the call of some other function.
if check_addr_of_expr(cx, expr, method_name, method_def_id, receiver) {
return;
}
if check_into_iter_call_arg(cx, expr, method_name, receiver, msrv) {
return;
}
check_other_call_arg(cx, expr, method_name, receiver);
}
}
}
}
/// Checks whether `expr` is a referent in an `AddrOf` expression and, if so, determines whether its
/// call of a `to_owned`-like function is unnecessary.
#[allow(clippy::too_many_lines)]
fn check_addr_of_expr(
cx: &LateContext<'_>,
expr: &Expr<'_>,
method_name: Symbol,
method_def_id: DefId,
receiver: &Expr<'_>,
) -> bool {
if_chain! {
if let Some(parent) = get_parent_expr(cx, expr);
if let ExprKind::AddrOf(BorrowKind::Ref, Mutability::Not, _) = parent.kind;
let adjustments = cx.typeck_results().expr_adjustments(parent).iter().collect::<Vec<_>>();
if let
// For matching uses of `Cow::from`
[
Adjustment {
kind: Adjust::Deref(None),
target: referent_ty,
},
Adjustment {
kind: Adjust::Borrow(_),
target: target_ty,
},
]
// For matching uses of arrays
| [
Adjustment {
kind: Adjust::Deref(None),
target: referent_ty,
},
Adjustment {
kind: Adjust::Borrow(_),
..
},
Adjustment {
kind: Adjust::Pointer(_),
target: target_ty,
},
]
// For matching everything else
| [
Adjustment {
kind: Adjust::Deref(None),
target: referent_ty,
},
Adjustment {
kind: Adjust::Deref(Some(OverloadedDeref { .. })),
..
},
Adjustment {
kind: Adjust::Borrow(_),
target: target_ty,
},
] = adjustments[..];
let receiver_ty = cx.typeck_results().expr_ty(receiver);
let (target_ty, n_target_refs) = peel_mid_ty_refs(*target_ty);
let (receiver_ty, n_receiver_refs) = peel_mid_ty_refs(receiver_ty);
// Only flag cases satisfying at least one of the following three conditions:
// * the referent and receiver types are distinct
// * the referent/receiver type is a copyable array
// * the method is `Cow::into_owned`
// This restriction is to ensure there is no overlap between `redundant_clone` and this
// lint. It also avoids the following false positive:
// https://github.com/rust-lang/rust-clippy/issues/8759
// Arrays are a bit of a corner case. Non-copyable arrays are handled by
// `redundant_clone`, but copyable arrays are not.
if *referent_ty != receiver_ty
|| (matches!(referent_ty.kind(), ty::Array(..)) && is_copy(cx, *referent_ty))
|| is_cow_into_owned(cx, method_name, method_def_id);
if let Some(receiver_snippet) = snippet_opt(cx, receiver.span);
then {
if receiver_ty == target_ty && n_target_refs >= n_receiver_refs {
span_lint_and_sugg(
cx,
UNNECESSARY_TO_OWNED,
parent.span,
&format!("unnecessary use of `{method_name}`"),
"use",
format!(
"{:&>width$}{receiver_snippet}",
"",
width = n_target_refs - n_receiver_refs
),
Applicability::MachineApplicable,
);
return true;
}
if_chain! {
if let Some(deref_trait_id) = cx.tcx.get_diagnostic_item(sym::Deref);
if implements_trait(cx, receiver_ty, deref_trait_id, &[]);
if get_associated_type(cx, receiver_ty, deref_trait_id, "Target") == Some(target_ty);
then {
if n_receiver_refs > 0 {
span_lint_and_sugg(
cx,
UNNECESSARY_TO_OWNED,
parent.span,
&format!("unnecessary use of `{method_name}`"),
"use",
receiver_snippet,
Applicability::MachineApplicable,
);
} else {
span_lint_and_sugg(
cx,
UNNECESSARY_TO_OWNED,
expr.span.with_lo(receiver.span.hi()),
&format!("unnecessary use of `{method_name}`"),
"remove this",
String::new(),
Applicability::MachineApplicable,
);
}
return true;
}
}
if_chain! {
if let Some(as_ref_trait_id) = cx.tcx.get_diagnostic_item(sym::AsRef);
if implements_trait(cx, receiver_ty, as_ref_trait_id, &[GenericArg::from(target_ty)]);
then {
span_lint_and_sugg(
cx,
UNNECESSARY_TO_OWNED,
parent.span,
&format!("unnecessary use of `{method_name}`"),
"use",
format!("{receiver_snippet}.as_ref()"),
Applicability::MachineApplicable,
);
return true;
}
}
}
}
false
}
/// Checks whether `expr` is an argument in an `into_iter` call and, if so, determines whether its
/// call of a `to_owned`-like function is unnecessary.
fn check_into_iter_call_arg(
cx: &LateContext<'_>,
expr: &Expr<'_>,
method_name: Symbol,
receiver: &Expr<'_>,
msrv: Option<RustcVersion>,
) -> bool {
if_chain! {
if let Some(parent) = get_parent_expr(cx, expr);
if let Some(callee_def_id) = fn_def_id(cx, parent);
if is_into_iter(cx, callee_def_id);
if let Some(iterator_trait_id) = cx.tcx.get_diagnostic_item(sym::Iterator);
let parent_ty = cx.typeck_results().expr_ty(parent);
if implements_trait(cx, parent_ty, iterator_trait_id, &[]);
if let Some(item_ty) = get_iterator_item_ty(cx, parent_ty);
if let Some(receiver_snippet) = snippet_opt(cx, receiver.span);
then {
if unnecessary_iter_cloned::check_for_loop_iter(cx, parent, method_name, receiver, true) {
return true;
}
let cloned_or_copied = if is_copy(cx, item_ty) && meets_msrv(msrv, msrvs::ITERATOR_COPIED) {
"copied"
} else {
"cloned"
};
// The next suggestion may be incorrect because the removal of the `to_owned`-like
// function could cause the iterator to hold a reference to a resource that is used
// mutably. See https://github.com/rust-lang/rust-clippy/issues/8148.
span_lint_and_sugg(
cx,
UNNECESSARY_TO_OWNED,
parent.span,
&format!("unnecessary use of `{method_name}`"),
"use",
format!("{receiver_snippet}.iter().{cloned_or_copied}()"),
Applicability::MaybeIncorrect,
);
return true;
}
}
false
}
/// Checks whether `expr` is an argument in a function call and, if so, determines whether its call
/// of a `to_owned`-like function is unnecessary.
fn check_other_call_arg<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx Expr<'tcx>,
method_name: Symbol,
receiver: &'tcx Expr<'tcx>,
) -> bool {
if_chain! {
if let Some((maybe_call, maybe_arg)) = skip_addr_of_ancestors(cx, expr);
if let Some((callee_def_id, _, recv, call_args)) = get_callee_substs_and_args(cx, maybe_call);
let fn_sig = cx.tcx.fn_sig(callee_def_id).skip_binder();
if let Some(i) = recv.into_iter().chain(call_args).position(|arg| arg.hir_id == maybe_arg.hir_id);
if let Some(input) = fn_sig.inputs().get(i);
let (input, n_refs) = peel_mid_ty_refs(*input);
if let (trait_predicates, _) = get_input_traits_and_projections(cx, callee_def_id, input);
if let Some(sized_def_id) = cx.tcx.lang_items().sized_trait();
if let [trait_predicate] = trait_predicates
.iter()
.filter(|trait_predicate| trait_predicate.def_id() != sized_def_id)
.collect::<Vec<_>>()[..];
if let Some(deref_trait_id) = cx.tcx.get_diagnostic_item(sym::Deref);
if let Some(as_ref_trait_id) = cx.tcx.get_diagnostic_item(sym::AsRef);
if trait_predicate.def_id() == deref_trait_id || trait_predicate.def_id() == as_ref_trait_id;
let receiver_ty = cx.typeck_results().expr_ty(receiver);
if can_change_type(cx, maybe_arg, receiver_ty);
// We can't add an `&` when the trait is `Deref` because `Target = &T` won't match
// `Target = T`.
if n_refs > 0 || is_copy(cx, receiver_ty) || trait_predicate.def_id() != deref_trait_id;
let n_refs = max(n_refs, usize::from(!is_copy(cx, receiver_ty)));
if let Some(receiver_snippet) = snippet_opt(cx, receiver.span);
then {
span_lint_and_sugg(
cx,
UNNECESSARY_TO_OWNED,
maybe_arg.span,
&format!("unnecessary use of `{method_name}`"),
"use",
format!("{:&>n_refs$}{receiver_snippet}", ""),
Applicability::MachineApplicable,
);
return true;
}
}
false
}
/// Walks an expression's ancestors until it finds a non-`AddrOf` expression. Returns the first such
/// expression found (if any) along with the immediately prior expression.
fn skip_addr_of_ancestors<'tcx>(
cx: &LateContext<'tcx>,
mut expr: &'tcx Expr<'tcx>,
) -> Option<(&'tcx Expr<'tcx>, &'tcx Expr<'tcx>)> {
while let Some(parent) = get_parent_expr(cx, expr) {
if let ExprKind::AddrOf(BorrowKind::Ref, Mutability::Not, _) = parent.kind {
expr = parent;
} else {
return Some((parent, expr));
}
}
None
}
/// Checks whether an expression is a function or method call and, if so, returns its `DefId`,
/// `Substs`, and arguments.
fn get_callee_substs_and_args<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx Expr<'tcx>,
) -> Option<(DefId, SubstsRef<'tcx>, Option<&'tcx Expr<'tcx>>, &'tcx [Expr<'tcx>])> {
if_chain! {
if let ExprKind::Call(callee, args) = expr.kind;
let callee_ty = cx.typeck_results().expr_ty(callee);
if let ty::FnDef(callee_def_id, _) = callee_ty.kind();
then {
let substs = cx.typeck_results().node_substs(callee.hir_id);
return Some((*callee_def_id, substs, None, args));
}
}
if_chain! {
if let ExprKind::MethodCall(_, recv, args, _) = expr.kind;
if let Some(method_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id);
then {
let substs = cx.typeck_results().node_substs(expr.hir_id);
return Some((method_def_id, substs, Some(recv), args));
}
}
None
}
/// Returns the `TraitPredicate`s and `ProjectionPredicate`s for a function's input type.
fn get_input_traits_and_projections<'tcx>(
cx: &LateContext<'tcx>,
callee_def_id: DefId,
input: Ty<'tcx>,
) -> (Vec<TraitPredicate<'tcx>>, Vec<ProjectionPredicate<'tcx>>) {
let mut trait_predicates = Vec::new();
let mut projection_predicates = Vec::new();
for predicate in cx.tcx.param_env(callee_def_id).caller_bounds() {
match predicate.kind().skip_binder() {
PredicateKind::Trait(trait_predicate) => {
if trait_predicate.trait_ref.self_ty() == input {
trait_predicates.push(trait_predicate);
}
},
PredicateKind::Projection(projection_predicate) => {
if projection_predicate.projection_ty.self_ty() == input {
projection_predicates.push(projection_predicate);
}
},
_ => {},
}
}
(trait_predicates, projection_predicates)
}
fn can_change_type<'a>(cx: &LateContext<'a>, mut expr: &'a Expr<'a>, mut ty: Ty<'a>) -> bool {
for (_, node) in cx.tcx.hir().parent_iter(expr.hir_id) {
match node {
Node::Stmt(_) => return true,
Node::Block(..) => continue,
Node::Item(item) => {
if let ItemKind::Fn(_, _, body_id) = &item.kind
&& let output_ty = return_ty(cx, item.hir_id())
&& let local_def_id = cx.tcx.hir().local_def_id(item.hir_id())
&& Inherited::build(cx.tcx, local_def_id).enter(|inherited| {
let fn_ctxt = FnCtxt::new(&inherited, cx.param_env, item.hir_id());
fn_ctxt.can_coerce(ty, output_ty)
}) {
if has_lifetime(output_ty) && has_lifetime(ty) {
return false;
}
let body = cx.tcx.hir().body(*body_id);
let body_expr = &body.value;
let mut count = 0;
return find_all_ret_expressions(cx, body_expr, |_| { count += 1; count <= 1 });
}
}
Node::Expr(parent_expr) => {
if let Some((callee_def_id, call_substs, recv, call_args)) = get_callee_substs_and_args(cx, parent_expr)
{
if cx.tcx.lang_items().require(LangItem::IntoFutureIntoFuture) == Ok(callee_def_id) {
return false;
}
let fn_sig = cx.tcx.fn_sig(callee_def_id).skip_binder();
if let Some(arg_index) = recv.into_iter().chain(call_args).position(|arg| arg.hir_id == expr.hir_id)
&& let Some(param_ty) = fn_sig.inputs().get(arg_index)
&& let ty::Param(ParamTy { index: param_index , ..}) = param_ty.kind()
{
if fn_sig
.inputs()
.iter()
.enumerate()
.filter(|(i, _)| *i != arg_index)
.any(|(_, ty)| ty.contains(*param_ty))
{
return false;
}
let mut trait_predicates = cx.tcx.param_env(callee_def_id)
.caller_bounds().iter().filter(|predicate| {
if let PredicateKind::Trait(trait_predicate) = predicate.kind().skip_binder()
&& trait_predicate.trait_ref.self_ty() == *param_ty {
true
} else {
false
}
});
let new_subst = cx.tcx.mk_substs(
call_substs.iter()
.enumerate()
.map(|(i, t)|
if i == (*param_index as usize) {
GenericArg::from(ty)
} else {
t
}));
if trait_predicates.any(|predicate| {
let predicate = EarlyBinder(predicate).subst(cx.tcx, new_subst);
let obligation = Obligation::new(ObligationCause::dummy(), cx.param_env, predicate);
!cx.tcx
.infer_ctxt()
.enter(|infcx| infcx.predicate_must_hold_modulo_regions(&obligation))
}) {
return false;
}
let output_ty = fn_sig.output();
if output_ty.contains(*param_ty) {
if let Ok(new_ty) = cx.tcx.try_subst_and_normalize_erasing_regions(
new_subst, cx.param_env, output_ty) {
expr = parent_expr;
ty = new_ty;
continue;
}
return false;
}
return true;
}
} else if let ExprKind::Block(..) = parent_expr.kind {
continue;
}
return false;
},
_ => return false,
}
}
false
}
fn has_lifetime(ty: Ty<'_>) -> bool {
ty.walk().any(|t| matches!(t.unpack(), GenericArgKind::Lifetime(_)))
}
/// Returns true if the named method is `Iterator::cloned` or `Iterator::copied`.
fn is_cloned_or_copied(cx: &LateContext<'_>, method_name: Symbol, method_def_id: DefId) -> bool {
(method_name.as_str() == "cloned" || method_name.as_str() == "copied")
&& is_diag_trait_item(cx, method_def_id, sym::Iterator)
}
/// Returns true if the named method can be used to convert the receiver to its "owned"
/// representation.
fn is_to_owned_like<'a>(cx: &LateContext<'a>, call_expr: &Expr<'a>, method_name: Symbol, method_def_id: DefId) -> bool {
is_clone_like(cx, method_name.as_str(), method_def_id)
|| is_cow_into_owned(cx, method_name, method_def_id)
|| is_to_string_on_string_like(cx, call_expr, method_name, method_def_id)
}
/// Returns true if the named method is `Cow::into_owned`.
fn is_cow_into_owned(cx: &LateContext<'_>, method_name: Symbol, method_def_id: DefId) -> bool {
method_name.as_str() == "into_owned" && is_diag_item_method(cx, method_def_id, sym::Cow)
}
/// Returns true if the named method is `ToString::to_string` and it's called on a type that
/// is string-like i.e. implements `AsRef<str>` or `Deref<str>`.
fn is_to_string_on_string_like<'a>(
cx: &LateContext<'_>,
call_expr: &'a Expr<'a>,
method_name: Symbol,
method_def_id: DefId,
) -> bool {
if method_name != sym::to_string || !is_diag_trait_item(cx, method_def_id, sym::ToString) {
return false;
}
if let Some(substs) = cx.typeck_results().node_substs_opt(call_expr.hir_id)
&& let [generic_arg] = substs.as_slice()
&& let GenericArgKind::Type(ty) = generic_arg.unpack()
&& let Some(deref_trait_id) = cx.tcx.get_diagnostic_item(sym::Deref)
&& let Some(as_ref_trait_id) = cx.tcx.get_diagnostic_item(sym::AsRef)
&& (implements_trait(cx, ty, deref_trait_id, &[cx.tcx.types.str_.into()]) ||
implements_trait(cx, ty, as_ref_trait_id, &[cx.tcx.types.str_.into()])) {
true
} else {
false
}
}