rust/src/rustc/middle/resolve3.rs
2012-08-07 17:18:14 -07:00

4871 lines
183 KiB
Rust

import driver::session::session;
import metadata::csearch::{each_path, get_impls_for_mod};
import metadata::csearch::{get_method_names_if_trait, lookup_defs};
import metadata::cstore::find_use_stmt_cnum;
import metadata::decoder::{def_like, dl_def, dl_field, dl_impl};
import middle::lang_items::LanguageItems;
import middle::lint::{deny, allow, forbid, level, unused_imports, warn};
import middle::pat_util::{pat_bindings};
import syntax::ast::{_mod, add, arm};
import syntax::ast::{bind_by_ref, bind_by_implicit_ref, bind_by_value};
import syntax::ast::{bitand, bitor, bitxor};
import syntax::ast::{blk, bound_const, bound_copy, bound_owned, bound_send};
import syntax::ast::{bound_trait, binding_mode,
capture_clause, class_ctor, class_dtor};
import syntax::ast::{class_member, class_method, crate, crate_num, decl_item};
import syntax::ast::{def, def_arg, def_binding, def_class, def_const, def_fn};
import syntax::ast::{def_foreign_mod, def_id, def_local, def_mod};
import syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param};
import syntax::ast::{def_typaram_binder, def_static_method};
import syntax::ast::{def_upvar, def_use, def_variant, expr, expr_assign_op};
import syntax::ast::{expr_binary, expr_cast, expr_field, expr_fn};
import syntax::ast::{expr_fn_block, expr_index, expr_path};
import syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param};
import syntax::ast::{def_upvar, def_use, def_variant, div, eq, expr};
import syntax::ast::{expr_assign_op, expr_binary, expr_cast, expr_field};
import syntax::ast::{expr_fn, expr_fn_block, expr_index, expr_path};
import syntax::ast::{expr_struct, expr_unary, fn_decl, foreign_item};
import syntax::ast::{foreign_item_fn, ge, gt, ident, trait_ref, impure_fn};
import syntax::ast::{instance_var, item, item_class, item_const, item_enum};
import syntax::ast::{item_fn, item_mac, item_foreign_mod, item_impl};
import syntax::ast::{item_mod, item_trait, item_ty, le, local, local_crate};
import syntax::ast::{lt, method, mul, ne, neg, node_id, pat, pat_enum};
import syntax::ast::{pat_ident, path, prim_ty, pat_box, pat_uniq, pat_lit};
import syntax::ast::{pat_range, pat_rec, pat_struct, pat_tup, pat_wild};
import syntax::ast::{provided, required, rem, self_ty_, shl, stmt_decl};
import syntax::ast::{sty_static, subtract, ty};
import syntax::ast::{ty_bool, ty_char, ty_f, ty_f32, ty_f64, ty_float, ty_i};
import syntax::ast::{ty_i16, ty_i32, ty_i64, ty_i8, ty_int, ty_param};
import syntax::ast::{ty_path, ty_str, ty_u, ty_u16, ty_u32, ty_u64, ty_u8};
import syntax::ast::{ty_uint, variant, view_item, view_item_export};
import syntax::ast::{view_item_import, view_item_use, view_path_glob};
import syntax::ast::{view_path_list, view_path_simple};
import syntax::ast_util::{def_id_of_def, dummy_sp, local_def, new_def_hash};
import syntax::ast_util::{path_to_ident, walk_pat, trait_method_to_ty_method};
import syntax::attr::{attr_metas, contains_name};
import syntax::print::pprust::{pat_to_str, path_to_str};
import syntax::codemap::span;
import syntax::visit::{default_visitor, fk_method, mk_vt, visit_block};
import syntax::visit::{visit_crate, visit_expr, visit_expr_opt, visit_fn};
import syntax::visit::{visit_foreign_item, visit_item, visit_method_helper};
import syntax::visit::{visit_mod, visit_ty, vt};
import box::ptr_eq;
import dvec::{dvec, extensions};
import option::{get, is_some};
import str::{connect, split_str};
import vec::pop;
import std::list::{cons, list, nil};
import std::map::{hashmap, int_hash, box_str_hash};
import str_eq = str::eq;
// Definition mapping
type DefMap = hashmap<node_id,def>;
struct binding_info {
span: span;
binding_mode: binding_mode;
}
// Map from the name in a pattern to its binding mode.
type BindingMap = hashmap<ident,binding_info>;
// Implementation resolution
// XXX: This kind of duplicates information kept in ty::method. Maybe it
// should go away.
type MethodInfo = {
did: def_id,
n_tps: uint,
ident: ident,
self_type: self_ty_
};
type Impl = { did: def_id, ident: ident, methods: ~[@MethodInfo] };
type ImplScope = @~[@Impl];
type ImplScopes = @list<ImplScope>;
type ImplMap = hashmap<node_id,ImplScopes>;
// Trait method resolution
type TraitMap = @hashmap<node_id,@dvec<def_id>>;
// Export mapping
type Export = { reexp: bool, id: def_id };
type ExportMap = hashmap<node_id, ~[Export]>;
enum PatternBindingMode {
RefutableMode,
IrrefutableMode
}
enum Namespace {
ModuleNS,
TypeNS,
ValueNS,
ImplNS
}
enum NamespaceResult {
UnknownResult,
UnboundResult,
BoundResult(@Module, @NameBindings)
}
enum ImplNamespaceResult {
UnknownImplResult,
UnboundImplResult,
BoundImplResult(@dvec<@Target>)
}
enum NameDefinition {
NoNameDefinition, //< The name was unbound.
ChildNameDefinition(def), //< The name identifies an immediate child.
ImportNameDefinition(def) //< The name identifies an import.
}
enum Mutability {
Mutable,
Immutable
}
enum SelfBinding {
NoSelfBinding,
HasSelfBinding(node_id)
}
enum CaptureClause {
NoCaptureClause,
HasCaptureClause(capture_clause)
}
type ResolveVisitor = vt<()>;
enum ModuleDef {
NoModuleDef, // Does not define a module.
ModuleDef(@Module), // Defines a module.
}
/// Contains data for specific types of import directives.
enum ImportDirectiveSubclass {
SingleImport(Atom /* target */, Atom /* source */),
GlobImport
}
/// The context that we thread through while building the reduced graph.
enum ReducedGraphParent {
ModuleReducedGraphParent(@Module)
}
enum ResolveResult<T> {
Failed, // Failed to resolve the name.
Indeterminate, // Couldn't determine due to unresolved globs.
Success(T) // Successfully resolved the import.
}
enum TypeParameters/& {
NoTypeParameters, //< No type parameters.
HasTypeParameters(&~[ty_param], //< Type parameters.
node_id, //< ID of the enclosing item
// The index to start numbering the type parameters at.
// This is zero if this is the outermost set of type
// parameters, or equal to the number of outer type
// parameters. For example, if we have:
//
// impl I<T> {
// fn method<U>() { ... }
// }
//
// The index at the method site will be 1, because the
// outer T had index 0.
uint,
// The kind of the rib used for type parameters.
RibKind)
}
// The rib kind controls the translation of argument or local definitions
// (`def_arg` or `def_local`) to upvars (`def_upvar`).
enum RibKind {
// No translation needs to be applied.
NormalRibKind,
// We passed through a function scope at the given node ID. Translate
// upvars as appropriate.
FunctionRibKind(node_id),
// We passed through a class, impl, or trait and are now in one of its
// methods. Allow references to ty params that that class, impl or trait
// binds. Disallow any other upvars (including other ty params that are
// upvars).
// parent; method itself
MethodRibKind(node_id, MethodSort),
// We passed through a function *item* scope. Disallow upvars.
OpaqueFunctionRibKind
}
// Methods can be required or provided. Required methods only occur in traits.
enum MethodSort {
Required,
Provided(node_id)
}
// The X-ray flag indicates that a context has the X-ray privilege, which
// allows it to reference private names. Currently, this is used for the test
// runner.
//
// XXX: The X-ray flag is kind of questionable in the first place. It might
// be better to introduce an expr_xray_path instead.
enum XrayFlag {
NoXray, //< Private items cannot be accessed.
Xray //< Private items can be accessed.
}
enum AllowCapturingSelfFlag {
AllowCapturingSelf, //< The "self" definition can be captured.
DontAllowCapturingSelf, //< The "self" definition cannot be captured.
}
enum EnumVariantOrConstResolution {
FoundEnumVariant(def),
FoundConst,
EnumVariantOrConstNotFound
}
// FIXME (issue #2550): Should be a class but then it becomes not implicitly
// copyable due to a kind bug.
type Atom = uint;
fn Atom(n: uint) -> Atom {
return n;
}
class AtomTable {
let atoms: hashmap<@~str,Atom>;
let strings: dvec<@~str>;
let mut atom_count: uint;
new() {
self.atoms = hashmap::<@~str,Atom>(|x| str::hash(*x),
|x, y| str::eq(*x, *y));
self.strings = dvec();
self.atom_count = 0u;
}
fn intern(string: @~str) -> Atom {
match self.atoms.find(string) {
none => { /* fall through */ }
some(atom) => return atom
}
let atom = Atom(self.atom_count);
self.atom_count += 1u;
self.atoms.insert(string, atom);
self.strings.push(string);
return atom;
}
fn atom_to_str(atom: Atom) -> @~str {
return self.strings.get_elt(atom);
}
fn atoms_to_strs(atoms: ~[Atom], f: fn(@~str) -> bool) {
for atoms.each |atom| {
if !f(self.atom_to_str(atom)) {
return;
}
}
}
fn atoms_to_str(atoms: ~[Atom]) -> @~str {
// XXX: str::connect should do this.
let mut result = ~"";
let mut first = true;
for self.atoms_to_strs(atoms) |string| {
if first {
first = false;
} else {
result += ~"::";
}
result += *string;
}
// XXX: Shouldn't copy here. We need string builder functionality.
return @result;
}
}
/// Creates a hash table of atoms.
fn atom_hashmap<V:copy>() -> hashmap<Atom,V> {
hashmap::<Atom,V>(uint::hash, uint::eq)
}
/**
* One local scope. In Rust, local scopes can only contain value bindings.
* Therefore, we don't have to worry about the other namespaces here.
*/
class Rib {
let bindings: hashmap<Atom,def_like>;
let kind: RibKind;
new(kind: RibKind) {
self.bindings = atom_hashmap();
self.kind = kind;
}
}
/// One import directive.
class ImportDirective {
let module_path: @dvec<Atom>;
let subclass: @ImportDirectiveSubclass;
let span: span;
new(module_path: @dvec<Atom>,
subclass: @ImportDirectiveSubclass,
span: span) {
self.module_path = module_path;
self.subclass = subclass;
self.span = span;
}
}
/// The item that an import resolves to.
class Target {
let target_module: @Module;
let bindings: @NameBindings;
new(target_module: @Module, bindings: @NameBindings) {
self.target_module = target_module;
self.bindings = bindings;
}
}
class ImportResolution {
let span: span;
// The number of outstanding references to this name. When this reaches
// zero, outside modules can count on the targets being correct. Before
// then, all bets are off; future imports could override this name.
let mut outstanding_references: uint;
let mut module_target: option<Target>;
let mut value_target: option<Target>;
let mut type_target: option<Target>;
let mut impl_target: @dvec<@Target>;
let mut used: bool;
new(span: span) {
self.span = span;
self.outstanding_references = 0u;
self.module_target = none;
self.value_target = none;
self.type_target = none;
self.impl_target = @dvec();
self.used = false;
}
fn target_for_namespace(namespace: Namespace) -> option<Target> {
match namespace {
ModuleNS => return copy self.module_target,
TypeNS => return copy self.type_target,
ValueNS => return copy self.value_target,
ImplNS => {
if (*self.impl_target).len() > 0u {
return some(copy *(*self.impl_target).get_elt(0u));
}
return none;
}
}
}
}
/// The link from a module up to its nearest parent node.
enum ParentLink {
NoParentLink,
ModuleParentLink(@Module, Atom),
BlockParentLink(@Module, node_id)
}
/// One node in the tree of modules.
class Module {
let parent_link: ParentLink;
let mut def_id: option<def_id>;
let children: hashmap<Atom,@NameBindings>;
let imports: dvec<@ImportDirective>;
// The anonymous children of this node. Anonymous children are pseudo-
// modules that are implicitly created around items contained within
// blocks.
//
// For example, if we have this:
//
// fn f() {
// fn g() {
// ...
// }
// }
//
// There will be an anonymous module created around `g` with the ID of the
// entry block for `f`.
let anonymous_children: hashmap<node_id,@Module>;
// XXX: This is about to be reworked so that exports are on individual
// items, not names.
//
// The atom is the name of the exported item, while the node ID is the
// ID of the export path.
let exported_names: hashmap<Atom,node_id>;
// The status of resolving each import in this module.
let import_resolutions: hashmap<Atom,@ImportResolution>;
// The number of unresolved globs that this module exports.
let mut glob_count: uint;
// The index of the import we're resolving.
let mut resolved_import_count: uint;
// The list of implementation scopes, rooted from this module.
let mut impl_scopes: ImplScopes;
new(parent_link: ParentLink, def_id: option<def_id>) {
self.parent_link = parent_link;
self.def_id = def_id;
self.children = atom_hashmap();
self.imports = dvec();
self.anonymous_children = int_hash();
self.exported_names = atom_hashmap();
self.import_resolutions = atom_hashmap();
self.glob_count = 0u;
self.resolved_import_count = 0u;
self.impl_scopes = @nil;
}
fn all_imports_resolved() -> bool {
return self.imports.len() == self.resolved_import_count;
}
}
// XXX: This is a workaround due to is_none in the standard library mistakenly
// requiring a T:copy.
pure fn is_none<T>(x: option<T>) -> bool {
match x {
none => return true,
some(_) => return false
}
}
fn unused_import_lint_level(session: session) -> level {
for session.opts.lint_opts.each |lint_option_pair| {
let (lint_type, lint_level) = lint_option_pair;
if lint_type == unused_imports {
return lint_level;
}
}
return allow;
}
// Records the definitions (at most one for each namespace) that a name is
// bound to.
class NameBindings {
let mut module_def: ModuleDef; //< Meaning in the module namespace.
let mut type_def: option<def>; //< Meaning in the type namespace.
let mut value_def: option<def>; //< Meaning in the value namespace.
let mut impl_defs: ~[@Impl]; //< Meaning in the impl namespace.
// For error reporting
let mut module_span: option<span>;
let mut type_span: option<span>;
let mut value_span: option<span>;
new() {
self.module_def = NoModuleDef;
self.type_def = none;
self.value_def = none;
self.impl_defs = ~[];
self.module_span = none;
self.type_span = none;
self.value_span = none;
}
/// Creates a new module in this set of name bindings.
fn define_module(parent_link: ParentLink, def_id: option<def_id>,
sp: span) {
if self.module_def == NoModuleDef {
let module_ = @Module(parent_link, def_id);
self.module_def = ModuleDef(module_);
self.module_span = some(sp);
}
}
/// Records a type definition.
fn define_type(def: def, sp: span) {
self.type_def = some(def);
self.type_span = some(sp);
}
/// Records a value definition.
fn define_value(def: def, sp: span) {
self.value_def = some(def);
self.value_span = some(sp);
}
/// Records an impl definition.
fn define_impl(implementation: @Impl) {
self.impl_defs += ~[implementation];
}
/// Returns the module node if applicable.
fn get_module_if_available() -> option<@Module> {
match self.module_def {
NoModuleDef => return none,
ModuleDef(module_) => return some(module_)
}
}
/**
* Returns the module node. Fails if this node does not have a module
* definition.
*/
fn get_module() -> @Module {
match self.module_def {
NoModuleDef => {
fail
~"get_module called on a node with no module definition!";
}
ModuleDef(module_) => {
return module_;
}
}
}
fn defined_in_namespace(namespace: Namespace) -> bool {
match namespace {
ModuleNS => return self.module_def != NoModuleDef,
TypeNS => return self.type_def != none,
ValueNS => return self.value_def != none,
ImplNS => return self.impl_defs.len() >= 1u
}
}
fn def_for_namespace(namespace: Namespace) -> option<def> {
match namespace {
TypeNS => return self.type_def,
ValueNS => return self.value_def,
ModuleNS => match self.module_def {
NoModuleDef => return none,
ModuleDef(module_) => match module_.def_id {
none => return none,
some(def_id) => return some(def_mod(def_id))
}
},
ImplNS => {
// Danger: Be careful what you use this for! def_ty is not
// necessarily the right def.
if self.impl_defs.len() == 0u {
return none;
}
return some(def_ty(self.impl_defs[0].did));
}
}
}
fn span_for_namespace(namespace: Namespace) -> option<span> {
match self.def_for_namespace(namespace) {
some(d) => {
match namespace {
TypeNS => self.type_span,
ValueNS => self.value_span,
ModuleNS => self.module_span,
_ => none
}
}
none => none
}
}
}
/// Interns the names of the primitive types.
class PrimitiveTypeTable {
let primitive_types: hashmap<Atom,prim_ty>;
new(atom_table: @AtomTable) {
self.primitive_types = atom_hashmap();
self.intern(atom_table, @~"bool", ty_bool);
self.intern(atom_table, @~"char", ty_int(ty_char));
self.intern(atom_table, @~"float", ty_float(ty_f));
self.intern(atom_table, @~"f32", ty_float(ty_f32));
self.intern(atom_table, @~"f64", ty_float(ty_f64));
self.intern(atom_table, @~"int", ty_int(ty_i));
self.intern(atom_table, @~"i8", ty_int(ty_i8));
self.intern(atom_table, @~"i16", ty_int(ty_i16));
self.intern(atom_table, @~"i32", ty_int(ty_i32));
self.intern(atom_table, @~"i64", ty_int(ty_i64));
self.intern(atom_table, @~"str", ty_str);
self.intern(atom_table, @~"uint", ty_uint(ty_u));
self.intern(atom_table, @~"u8", ty_uint(ty_u8));
self.intern(atom_table, @~"u16", ty_uint(ty_u16));
self.intern(atom_table, @~"u32", ty_uint(ty_u32));
self.intern(atom_table, @~"u64", ty_uint(ty_u64));
}
fn intern(atom_table: @AtomTable, string: @~str,
primitive_type: prim_ty) {
let atom = (*atom_table).intern(string);
self.primitive_types.insert(atom, primitive_type);
}
}
fn namespace_to_str(ns: Namespace) -> ~str {
match ns {
TypeNS => ~"type",
ValueNS => ~"value",
ModuleNS => ~"module",
ImplNS => ~"implementation"
}
}
/// The main resolver class.
class Resolver {
let session: session;
let lang_items: LanguageItems;
let crate: @crate;
let atom_table: @AtomTable;
let graph_root: @NameBindings;
let unused_import_lint_level: level;
let trait_info: hashmap<def_id,@hashmap<Atom,()>>;
let structs: hashmap<def_id,bool>;
// The number of imports that are currently unresolved.
let mut unresolved_imports: uint;
// The module that represents the current item scope.
let mut current_module: @Module;
// The current set of local scopes, for values.
// XXX: Reuse ribs to avoid allocation.
let value_ribs: @dvec<@Rib>;
// The current set of local scopes, for types.
let type_ribs: @dvec<@Rib>;
// Whether the current context is an X-ray context. An X-ray context is
// allowed to access private names of any module.
let mut xray_context: XrayFlag;
// The trait that the current context can refer to.
let mut current_trait_refs: option<@dvec<def_id>>;
// The atom for the keyword "self".
let self_atom: Atom;
// The atoms for the primitive types.
let primitive_type_table: @PrimitiveTypeTable;
// The four namespaces.
let namespaces: ~[Namespace];
let def_map: DefMap;
let impl_map: ImplMap;
let export_map: ExportMap;
let trait_map: TraitMap;
new(session: session, lang_items: LanguageItems, crate: @crate) {
self.session = session;
self.lang_items = copy lang_items;
self.crate = crate;
self.atom_table = @AtomTable();
// The outermost module has def ID 0; this is not reflected in the
// AST.
self.graph_root = @NameBindings();
(*self.graph_root).define_module(NoParentLink,
some({ crate: 0, node: 0 }),
crate.span);
self.unused_import_lint_level = unused_import_lint_level(session);
self.trait_info = new_def_hash();
self.structs = new_def_hash();
self.unresolved_imports = 0u;
self.current_module = (*self.graph_root).get_module();
self.value_ribs = @dvec();
self.type_ribs = @dvec();
self.xray_context = NoXray;
self.current_trait_refs = none;
self.self_atom = (*self.atom_table).intern(@~"self");
self.primitive_type_table = @PrimitiveTypeTable(self.atom_table);
self.namespaces = ~[ ModuleNS, TypeNS, ValueNS, ImplNS ];
self.def_map = int_hash();
self.impl_map = int_hash();
self.export_map = int_hash();
self.trait_map = @int_hash();
}
/// The main name resolution procedure.
fn resolve(this: @Resolver) {
self.build_reduced_graph(this);
self.session.abort_if_errors();
self.resolve_imports();
self.session.abort_if_errors();
self.record_exports();
self.session.abort_if_errors();
self.build_impl_scopes();
self.session.abort_if_errors();
self.resolve_crate();
self.session.abort_if_errors();
self.check_for_unused_imports_if_necessary();
}
//
// Reduced graph building
//
// Here we build the "reduced graph": the graph of the module tree without
// any imports resolved.
//
/// Constructs the reduced graph for the entire crate.
fn build_reduced_graph(this: @Resolver) {
let initial_parent =
ModuleReducedGraphParent((*self.graph_root).get_module());
visit_crate(*self.crate, initial_parent, mk_vt(@{
visit_item: |item, context, visitor|
(*this).build_reduced_graph_for_item(item, context, visitor),
visit_foreign_item: |foreign_item, context, visitor|
(*this).build_reduced_graph_for_foreign_item(foreign_item,
context,
visitor),
visit_view_item: |view_item, context, visitor|
(*this).build_reduced_graph_for_view_item(view_item,
context,
visitor),
visit_block: |block, context, visitor|
(*this).build_reduced_graph_for_block(block,
context,
visitor)
with *default_visitor()
}));
}
/// Returns the current module tracked by the reduced graph parent.
fn get_module_from_parent(reduced_graph_parent: ReducedGraphParent)
-> @Module {
match reduced_graph_parent {
ModuleReducedGraphParent(module_) => {
return module_;
}
}
}
/**
* Adds a new child item to the module definition of the parent node and
* returns its corresponding name bindings as well as the current parent.
* Or, if we're inside a block, creates (or reuses) an anonymous module
* corresponding to the innermost block ID and returns the name bindings
* as well as the newly-created parent.
*
* If this node does not have a module definition and we are not inside
* a block, fails.
*/
fn add_child(name: Atom,
reduced_graph_parent: ReducedGraphParent,
// Pass in the namespaces for the child item so that we can
// check for duplicate items in the same namespace
ns: ~[Namespace],
// For printing errors
sp: span)
-> (@NameBindings, ReducedGraphParent) {
// If this is the immediate descendant of a module, then we add the
// child name directly. Otherwise, we create or reuse an anonymous
// module and add the child to that.
let mut module_;
match reduced_graph_parent {
ModuleReducedGraphParent(parent_module) => {
module_ = parent_module;
}
}
// Add or reuse the child.
let new_parent = ModuleReducedGraphParent(module_);
match module_.children.find(name) {
none => {
let child = @NameBindings();
module_.children.insert(name, child);
return (child, new_parent);
}
some(child) => {
// We don't want to complain if the multiple definitions
// are in different namespaces. (unless it's the impl namespace,
// since impls can share a name)
match ns.find(|n| n != ImplNS
&& child.defined_in_namespace(n)) {
some(ns) => {
self.session.span_err(sp,
#fmt("Duplicate definition of %s %s",
namespace_to_str(ns),
*(*self.atom_table).atom_to_str(name)));
do child.span_for_namespace(ns).iter() |sp| {
self.session.span_note(sp,
#fmt("First definition of %s %s here:",
namespace_to_str(ns),
*(*self.atom_table).atom_to_str(name)));
}
}
_ => {}
}
return (child, new_parent);
}
}
}
fn block_needs_anonymous_module(block: blk) -> bool {
// If the block has view items, we need an anonymous module.
if block.node.view_items.len() > 0u {
return true;
}
// Check each statement.
for block.node.stmts.each |statement| {
match statement.node {
stmt_decl(declaration, _) => {
match declaration.node {
decl_item(_) => {
return true;
}
_ => {
// Keep searching.
}
}
}
_ => {
// Keep searching.
}
}
}
// If we found neither view items nor items, we don't need to create
// an anonymous module.
return false;
}
fn get_parent_link(parent: ReducedGraphParent, name: Atom) -> ParentLink {
match parent {
ModuleReducedGraphParent(module_) => {
return ModuleParentLink(module_, name);
}
}
}
/// Constructs the reduced graph for one item.
fn build_reduced_graph_for_item(item: @item,
parent: ReducedGraphParent,
&&visitor: vt<ReducedGraphParent>) {
let atom = (*self.atom_table).intern(item.ident);
let sp = item.span;
match item.node {
item_mod(module_) => {
let (name_bindings, new_parent) = self.add_child(atom, parent,
~[ModuleNS], sp);
let parent_link = self.get_parent_link(new_parent, atom);
let def_id = { crate: 0, node: item.id };
(*name_bindings).define_module(parent_link, some(def_id),
sp);
let new_parent =
ModuleReducedGraphParent((*name_bindings).get_module());
visit_mod(module_, sp, item.id, new_parent, visitor);
}
item_foreign_mod(foreign_module) => {
let (name_bindings, new_parent) = self.add_child(atom, parent,
~[ModuleNS], sp);
let parent_link = self.get_parent_link(new_parent, atom);
let def_id = { crate: 0, node: item.id };
(*name_bindings).define_module(parent_link, some(def_id),
sp);
let new_parent =
ModuleReducedGraphParent((*name_bindings).get_module());
visit_item(item, new_parent, visitor);
}
// These items live in the value namespace.
item_const(*) => {
let (name_bindings, _) = self.add_child(atom, parent,
~[ValueNS], sp);
(*name_bindings).define_value(def_const(local_def(item.id)),
sp);
}
item_fn(decl, _, _) => {
let (name_bindings, new_parent) = self.add_child(atom, parent,
~[ValueNS], sp);
let def = def_fn(local_def(item.id), decl.purity);
(*name_bindings).define_value(def, sp);
visit_item(item, new_parent, visitor);
}
// These items live in the type namespace.
item_ty(*) => {
let (name_bindings, _) = self.add_child(atom, parent,
~[TypeNS], sp);
(*name_bindings).define_type(def_ty(local_def(item.id)), sp);
}
// These items live in both the type and value namespaces.
item_enum(variants, _) => {
let (name_bindings, new_parent) = self.add_child(atom, parent,
~[ValueNS, TypeNS], sp);
(*name_bindings).define_type(def_ty(local_def(item.id)), sp);
for variants.each |variant| {
self.build_reduced_graph_for_variant(variant,
local_def(item.id),
new_parent,
visitor);
}
}
item_class(struct_definition, _) => {
let (name_bindings, new_parent) = self.add_child(atom, parent,
~[ValueNS, TypeNS], sp);
(*name_bindings).define_type(def_ty(local_def(item.id)), sp);
match struct_definition.ctor {
none => {
// Nothing to do.
}
some(ctor) => {
let purity = ctor.node.dec.purity;
let ctor_def = def_fn(local_def(ctor.node.id),
purity);
(*name_bindings).define_value(ctor_def, sp);
}
}
// Create the set of implementation information that the
// implementation scopes (ImplScopes) need and write it into
// the implementation definition list for this set of name
// bindings.
let mut method_infos = ~[];
for struct_definition.members.each |class_member| {
match class_member.node {
class_method(method) => {
// XXX: Combine with impl method code below.
method_infos += ~[
@{
did: local_def(method.id),
n_tps: method.tps.len(),
ident: method.ident,
self_type: method.self_ty.node
}
];
}
instance_var(*) => {
// Don't need to do anything with this.
}
}
}
let impl_info = @{
did: local_def(item.id),
ident: /* XXX: bad */ copy item.ident,
methods: method_infos
};
(*name_bindings).define_impl(impl_info);
// Record the def ID of this struct.
self.structs.insert(local_def(item.id),
is_some(struct_definition.ctor));
visit_item(item, new_parent, visitor);
}
item_impl(_, _, _, methods) => {
// Create the set of implementation information that the
// implementation scopes (ImplScopes) need and write it into
// the implementation definition list for this set of name
// bindings.
let (name_bindings, new_parent) = self.add_child(atom, parent,
~[ImplNS], sp);
let mut method_infos = ~[];
for methods.each |method| {
method_infos += ~[
@{
did: local_def(method.id),
n_tps: method.tps.len(),
ident: method.ident,
self_type: method.self_ty.node
}
];
}
let impl_info = @{
did: local_def(item.id),
ident: /* XXX: bad */ copy item.ident,
methods: method_infos
};
(*name_bindings).define_impl(impl_info);
visit_item(item, new_parent, visitor);
}
item_trait(_, _, methods) => {
let (name_bindings, new_parent) = self.add_child(atom, parent,
~[TypeNS], sp);
// Add the names of all the methods to the trait info.
let method_names = @atom_hashmap();
for methods.each |method| {
let ty_m = trait_method_to_ty_method(method);
let atom = (*self.atom_table).intern(ty_m.ident);
// Add it to the trait info if not static,
// add it as a name in the enclosing module otherwise.
match ty_m.self_ty.node {
sty_static => {
// which parent to use??
let (method_name_bindings, _) =
self.add_child(atom, new_parent, ~[ValueNS],
ty_m.span);
let def = def_static_method(local_def(ty_m.id),
ty_m.decl.purity);
(*method_name_bindings).define_value(def, ty_m.span);
}
_ => {
(*method_names).insert(atom, ());
}
}
}
let def_id = local_def(item.id);
self.trait_info.insert(def_id, method_names);
(*name_bindings).define_type(def_ty(def_id), sp);
visit_item(item, new_parent, visitor);
}
item_mac(*) => {
fail ~"item macros unimplemented"
}
}
}
/**
* Constructs the reduced graph for one variant. Variants exist in the
* type namespace.
*/
fn build_reduced_graph_for_variant(variant: variant,
item_id: def_id,
parent: ReducedGraphParent,
&&_visitor: vt<ReducedGraphParent>) {
let atom = (*self.atom_table).intern(variant.node.name);
let (child, _) = self.add_child(atom, parent, ~[ValueNS],
variant.span);
(*child).define_value(def_variant(item_id,
local_def(variant.node.id)), variant.span);
}
/**
* Constructs the reduced graph for one 'view item'. View items consist
* of imports and use directives.
*/
fn build_reduced_graph_for_view_item(view_item: @view_item,
parent: ReducedGraphParent,
&&_visitor: vt<ReducedGraphParent>) {
match view_item.node {
view_item_import(view_paths) => {
for view_paths.each |view_path| {
// Extract and intern the module part of the path. For
// globs and lists, the path is found directly in the AST;
// for simple paths we have to munge the path a little.
let module_path = @dvec();
match view_path.node {
view_path_simple(_, full_path, _) => {
let path_len = full_path.idents.len();
assert path_len != 0u;
for full_path.idents.eachi |i, ident| {
if i != path_len - 1u {
let atom =
(*self.atom_table).intern(ident);
(*module_path).push(atom);
}
}
}
view_path_glob(module_ident_path, _) |
view_path_list(module_ident_path, _, _) => {
for module_ident_path.idents.each |ident| {
let atom = (*self.atom_table).intern(ident);
(*module_path).push(atom);
}
}
}
// Build up the import directives.
let module_ = self.get_module_from_parent(parent);
match view_path.node {
view_path_simple(binding, full_path, _) => {
let target_atom =
(*self.atom_table).intern(binding);
let source_ident = full_path.idents.last();
let source_atom =
(*self.atom_table).intern(source_ident);
let subclass = @SingleImport(target_atom,
source_atom);
self.build_import_directive(module_,
module_path,
subclass,
view_path.span);
}
view_path_list(_, source_idents, _) => {
for source_idents.each |source_ident| {
let name = source_ident.node.name;
let atom = (*self.atom_table).intern(name);
let subclass = @SingleImport(atom, atom);
self.build_import_directive(module_,
module_path,
subclass,
view_path.span);
}
}
view_path_glob(_, _) => {
self.build_import_directive(module_,
module_path,
@GlobImport,
view_path.span);
}
}
}
}
view_item_export(view_paths) => {
let module_ = self.get_module_from_parent(parent);
for view_paths.each |view_path| {
match view_path.node {
view_path_simple(ident, full_path, ident_id) => {
let last_ident = full_path.idents.last();
if last_ident != ident {
self.session.span_err(view_item.span,
~"cannot export under \
a new name");
}
if full_path.idents.len() != 1u {
self.session.span_err(
view_item.span,
~"cannot export an item \
that is not in this \
module");
}
let atom = (*self.atom_table).intern(ident);
module_.exported_names.insert(atom, ident_id);
}
view_path_glob(*) => {
self.session.span_err(view_item.span,
~"export globs are \
unsupported");
}
view_path_list(path, path_list_idents, _) => {
if path.idents.len() == 1u &&
path_list_idents.len() == 0u {
self.session.span_warn(view_item.span,
~"this syntax for \
exporting no \
variants is \
unsupported; export \
variants \
individually");
} else {
if path.idents.len() != 0u {
self.session.span_err(view_item.span,
~"cannot export an \
item that is not \
in this module");
}
for path_list_idents.each |path_list_ident| {
let atom = (*self.atom_table).intern
(path_list_ident.node.name);
let id = path_list_ident.node.id;
module_.exported_names.insert(atom, id);
}
}
}
}
}
}
view_item_use(name, _, node_id) => {
match find_use_stmt_cnum(self.session.cstore, node_id) {
some(crate_id) => {
let atom = (*self.atom_table).intern(name);
let (child_name_bindings, new_parent) =
// should this be in ModuleNS? --tjc
self.add_child(atom, parent, ~[ModuleNS],
view_item.span);
let def_id = { crate: crate_id, node: 0 };
let parent_link = ModuleParentLink
(self.get_module_from_parent(new_parent), atom);
(*child_name_bindings).define_module(parent_link,
some(def_id),
view_item.span);
self.build_reduced_graph_for_external_crate
((*child_name_bindings).get_module());
}
none => {
/* Ignore. */
}
}
}
}
}
/// Constructs the reduced graph for one foreign item.
fn build_reduced_graph_for_foreign_item(foreign_item: @foreign_item,
parent: ReducedGraphParent,
&&visitor:
vt<ReducedGraphParent>) {
let name = (*self.atom_table).intern(foreign_item.ident);
match foreign_item.node {
foreign_item_fn(fn_decl, type_parameters) => {
let (name_bindings, new_parent) = self.add_child(name, parent,
~[ValueNS], foreign_item.span);
let def = def_fn(local_def(foreign_item.id), fn_decl.purity);
(*name_bindings).define_value(def, foreign_item.span);
do self.with_type_parameter_rib
(HasTypeParameters(&type_parameters,
foreign_item.id,
0u,
NormalRibKind)) || {
visit_foreign_item(foreign_item, new_parent, visitor);
}
}
}
}
fn build_reduced_graph_for_block(block: blk,
parent: ReducedGraphParent,
&&visitor: vt<ReducedGraphParent>) {
let mut new_parent;
if self.block_needs_anonymous_module(block) {
let block_id = block.node.id;
debug!{"(building reduced graph for block) creating a new \
anonymous module for block %d",
block_id};
let parent_module = self.get_module_from_parent(parent);
let new_module = @Module(BlockParentLink(parent_module, block_id),
none);
parent_module.anonymous_children.insert(block_id, new_module);
new_parent = ModuleReducedGraphParent(new_module);
} else {
new_parent = parent;
}
visit_block(block, new_parent, visitor);
}
fn handle_external_def(def: def, modules: hashmap<def_id, @Module>,
child_name_bindings: @NameBindings,
final_ident: ~str,
atom: Atom, new_parent: ReducedGraphParent) {
match def {
def_mod(def_id) | def_foreign_mod(def_id) => {
match copy child_name_bindings.module_def {
NoModuleDef => {
debug!("(building reduced graph for \
external crate) building module \
%s", final_ident);
let parent_link = self.get_parent_link(new_parent, atom);
match modules.find(def_id) {
none => {
child_name_bindings.define_module(parent_link,
some(def_id),
dummy_sp());
modules.insert(def_id,
child_name_bindings.get_module());
}
some(existing_module) => {
// Create an import resolution to
// avoid creating cycles in the
// module graph.
let resolution = @ImportResolution(dummy_sp());
resolution.outstanding_references = 0;
match existing_module.parent_link {
NoParentLink |
BlockParentLink(*) => {
fail ~"can't happen";
}
ModuleParentLink(parent_module, atom) => {
let name_bindings = parent_module.children.get(atom);
resolution.module_target =
some(Target(parent_module, name_bindings));
}
}
debug!("(building reduced graph for external crate) \
... creating import resolution");
new_parent.import_resolutions.insert(atom, resolution);
}
}
}
ModuleDef(module_) => {
debug!("(building reduced graph for \
external crate) already created \
module");
module_.def_id = some(def_id);
modules.insert(def_id, module_);
}
}
}
def_fn(def_id, _) | def_static_method(def_id, _) |
def_const(def_id) | def_variant(_, def_id) => {
debug!("(building reduced graph for external \
crate) building value %s", final_ident);
(*child_name_bindings).define_value(def, dummy_sp());
}
def_ty(def_id) => {
debug!("(building reduced graph for external \
crate) building type %s", final_ident);
// If this is a trait, add all the method names
// to the trait info.
match get_method_names_if_trait(self.session.cstore,
def_id) {
none => {
// Nothing to do.
}
some(method_names) => {
let interned_method_names = @atom_hashmap();
for method_names.each |method_data| {
let (method_name, self_ty) = method_data;
debug!("(building reduced graph for \
external crate) ... adding \
trait method '%?'", method_name);
let m_atom = self.atom_table.intern(method_name);
// Add it to the trait info if not static.
if self_ty != sty_static {
interned_method_names.insert(m_atom, ());
}
}
self.trait_info.insert(def_id, interned_method_names);
}
}
child_name_bindings.define_type(def, dummy_sp());
}
def_class(def_id, has_constructor) => {
debug!("(building reduced graph for external \
crate) building type %s (value? %d)",
final_ident,
if has_constructor { 1 } else { 0 });
child_name_bindings.define_type(def, dummy_sp());
if has_constructor {
child_name_bindings.define_value(def, dummy_sp());
}
}
def_self(*) | def_arg(*) | def_local(*) |
def_prim_ty(*) | def_ty_param(*) | def_binding(*) |
def_use(*) | def_upvar(*) | def_region(*) |
def_typaram_binder(*) => {
fail fmt!("didn't expect `%?`", def);
}
}
}
/**
* Builds the reduced graph rooted at the 'use' directive for an external
* crate.
*/
fn build_reduced_graph_for_external_crate(root: @Module) {
let modules = new_def_hash();
// Create all the items reachable by paths.
for each_path(self.session.cstore, get(root.def_id).crate)
|path_entry| {
debug!{"(building reduced graph for external crate) found path \
entry: %s (%?)",
path_entry.path_string,
path_entry.def_like};
let mut pieces = split_str(path_entry.path_string, ~"::");
let final_ident = pop(pieces);
// Find the module we need, creating modules along the way if we
// need to.
let mut current_module = root;
for pieces.each |ident| {
// Create or reuse a graph node for the child.
let atom = (*self.atom_table).intern(@copy ident);
let (child_name_bindings, new_parent) =
self.add_child(atom,
ModuleReducedGraphParent(current_module),
// May want a better span
~[], dummy_sp());
// Define or reuse the module node.
match child_name_bindings.module_def {
NoModuleDef => {
debug!{"(building reduced graph for external crate) \
autovivifying %s", ident};
let parent_link = self.get_parent_link(new_parent,
atom);
(*child_name_bindings).define_module(parent_link,
none, dummy_sp());
}
ModuleDef(_) => { /* Fall through. */ }
}
current_module = (*child_name_bindings).get_module();
}
// Add the new child item.
let atom = (*self.atom_table).intern(@copy final_ident);
let (child_name_bindings, new_parent) =
self.add_child(atom,
ModuleReducedGraphParent(current_module),
~[], dummy_sp());
match path_entry.def_like {
dl_def(def) => {
self.handle_external_def(def, modules,
child_name_bindings,
final_ident, atom, new_parent);
}
dl_impl(_) => {
// Because of the infelicitous way the metadata is
// written, we can't process this impl now. We'll get it
// later.
debug!{"(building reduced graph for external crate) \
ignoring impl %s", final_ident};
}
dl_field => {
debug!{"(building reduced graph for external crate) \
ignoring field %s", final_ident};
}
}
}
// Create nodes for all the impls.
self.build_reduced_graph_for_impls_in_external_module_subtree(root);
}
fn build_reduced_graph_for_impls_in_external_module_subtree(module_:
@Module) {
self.build_reduced_graph_for_impls_in_external_module(module_);
for module_.children.each |_name, child_node| {
match (*child_node).get_module_if_available() {
none => {
// Nothing to do.
}
some(child_module) => {
self.
build_reduced_graph_for_impls_in_external_module_subtree
(child_module);
}
}
}
}
fn build_reduced_graph_for_impls_in_external_module(module_: @Module) {
// XXX: This is really unfortunate. decoder::each_path can produce
// false positives, since, in the crate metadata, a trait named 'bar'
// in module 'foo' defining a method named 'baz' will result in the
// creation of a (bogus) path entry named 'foo::bar::baz', and we will
// create a module node for "bar". We can identify these fake modules
// by the fact that they have no def ID, which we do here in order to
// skip them.
debug!{"(building reduced graph for impls in external crate) looking \
for impls in `%s` (%?)",
self.module_to_str(module_),
copy module_.def_id};
match module_.def_id {
none => {
debug!{"(building reduced graph for impls in external \
module) no def ID for `%s`, skipping",
self.module_to_str(module_)};
return;
}
some(_) => {
// Continue.
}
}
let impls_in_module = get_impls_for_mod(self.session.cstore,
get(module_.def_id),
none);
// Intern def IDs to prevent duplicates.
let def_ids = new_def_hash();
for (*impls_in_module).each |implementation| {
if def_ids.contains_key(implementation.did) {
again;
}
def_ids.insert(implementation.did, ());
debug!{"(building reduced graph for impls in external module) \
added impl `%s` (%?) to `%s`",
*implementation.ident,
implementation.did,
self.module_to_str(module_)};
let name = (*self.atom_table).intern(implementation.ident);
let (name_bindings, _) =
// Might want a better span
self.add_child(name, ModuleReducedGraphParent(module_),
~[ImplNS], dummy_sp());
name_bindings.impl_defs += ~[implementation];
}
}
/// Creates and adds an import directive to the given module.
fn build_import_directive(module_: @Module,
module_path: @dvec<Atom>,
subclass: @ImportDirectiveSubclass,
span: span) {
let directive = @ImportDirective(module_path, subclass, span);
module_.imports.push(directive);
// Bump the reference count on the name. Or, if this is a glob, set
// the appropriate flag.
match *subclass {
SingleImport(target, _) => {
match module_.import_resolutions.find(target) {
some(resolution) => {
resolution.outstanding_references += 1u;
}
none => {
let resolution = @ImportResolution(span);
resolution.outstanding_references = 1u;
module_.import_resolutions.insert(target, resolution);
}
}
}
GlobImport => {
// Set the glob flag. This tells us that we don't know the
// module's exports ahead of time.
module_.glob_count += 1u;
}
}
self.unresolved_imports += 1u;
}
// Import resolution
//
// This is a fixed-point algorithm. We resolve imports until our efforts
// are stymied by an unresolved import; then we bail out of the current
// module and continue. We terminate successfully once no more imports
// remain or unsuccessfully when no forward progress in resolving imports
// is made.
/**
* Resolves all imports for the crate. This method performs the fixed-
* point iteration.
*/
fn resolve_imports() {
let mut i = 0u;
let mut prev_unresolved_imports = 0u;
loop {
debug!{"(resolving imports) iteration %u, %u imports left",
i, self.unresolved_imports};
let module_root = (*self.graph_root).get_module();
self.resolve_imports_for_module_subtree(module_root);
if self.unresolved_imports == 0u {
debug!{"(resolving imports) success"};
break;
}
if self.unresolved_imports == prev_unresolved_imports {
self.session.err(~"failed to resolve imports");
self.report_unresolved_imports(module_root);
break;
}
i += 1u;
prev_unresolved_imports = self.unresolved_imports;
}
}
/**
* Attempts to resolve imports for the given module and all of its
* submodules.
*/
fn resolve_imports_for_module_subtree(module_: @Module) {
debug!{"(resolving imports for module subtree) resolving %s",
self.module_to_str(module_)};
self.resolve_imports_for_module(module_);
for module_.children.each |_name, child_node| {
match (*child_node).get_module_if_available() {
none => {
// Nothing to do.
}
some(child_module) => {
self.resolve_imports_for_module_subtree(child_module);
}
}
}
for module_.anonymous_children.each |_block_id, child_module| {
self.resolve_imports_for_module_subtree(child_module);
}
}
/// Attempts to resolve imports for the given module only.
fn resolve_imports_for_module(module_: @Module) {
if (*module_).all_imports_resolved() {
debug!{"(resolving imports for module) all imports resolved for \
%s",
self.module_to_str(module_)};
return;
}
let import_count = module_.imports.len();
while module_.resolved_import_count < import_count {
let import_index = module_.resolved_import_count;
let import_directive = module_.imports.get_elt(import_index);
match self.resolve_import_for_module(module_, import_directive) {
Failed => {
// We presumably emitted an error. Continue.
self.session.span_err(import_directive.span,
~"failed to resolve import");
}
Indeterminate => {
// Bail out. We'll come around next time.
break;
}
Success(()) => {
// Good. Continue.
}
}
module_.resolved_import_count += 1u;
}
}
/**
* Attempts to resolve the given import. The return value indicates
* failure if we're certain the name does not exist, indeterminate if we
* don't know whether the name exists at the moment due to other
* currently-unresolved imports, or success if we know the name exists.
* If successful, the resolved bindings are written into the module.
*/
fn resolve_import_for_module(module_: @Module,
import_directive: @ImportDirective)
-> ResolveResult<()> {
let mut resolution_result;
let module_path = import_directive.module_path;
debug!{"(resolving import for module) resolving import `%s::...` in \
`%s`",
*(*self.atom_table).atoms_to_str((*module_path).get()),
self.module_to_str(module_)};
// One-level renaming imports of the form `import foo = bar;` are
// handled specially.
if (*module_path).len() == 0u {
resolution_result =
self.resolve_one_level_renaming_import(module_,
import_directive);
} else {
// First, resolve the module path for the directive, if necessary.
match self.resolve_module_path_for_import(module_,
module_path,
NoXray,
import_directive.span) {
Failed => {
resolution_result = Failed;
}
Indeterminate => {
resolution_result = Indeterminate;
}
Success(containing_module) => {
// We found the module that the target is contained
// within. Attempt to resolve the import within it.
match *import_directive.subclass {
SingleImport(target, source) => {
resolution_result =
self.resolve_single_import(module_,
containing_module,
target,
source);
}
GlobImport => {
let span = import_directive.span;
resolution_result =
self.resolve_glob_import(module_,
containing_module,
span);
}
}
}
}
}
// Decrement the count of unresolved imports.
match resolution_result {
Success(()) => {
assert self.unresolved_imports >= 1u;
self.unresolved_imports -= 1u;
}
_ => {
// Nothing to do here; just return the error.
}
}
// Decrement the count of unresolved globs if necessary. But only if
// the resolution result is indeterminate -- otherwise we'll stop
// processing imports here. (See the loop in
// resolve_imports_for_module.)
if resolution_result != Indeterminate {
match *import_directive.subclass {
GlobImport => {
assert module_.glob_count >= 1u;
module_.glob_count -= 1u;
}
SingleImport(*) => {
// Ignore.
}
}
}
return resolution_result;
}
fn resolve_single_import(module_: @Module, containing_module: @Module,
target: Atom, source: Atom)
-> ResolveResult<()> {
debug!{"(resolving single import) resolving `%s` = `%s::%s` from \
`%s`",
*(*self.atom_table).atom_to_str(target),
self.module_to_str(containing_module),
*(*self.atom_table).atom_to_str(source),
self.module_to_str(module_)};
if !self.name_is_exported(containing_module, source) {
debug!{"(resolving single import) name `%s` is unexported",
*(*self.atom_table).atom_to_str(source)};
return Failed;
}
// We need to resolve all four namespaces for this to succeed.
//
// XXX: See if there's some way of handling namespaces in a more
// generic way. We have four of them; it seems worth doing...
let mut module_result = UnknownResult;
let mut value_result = UnknownResult;
let mut type_result = UnknownResult;
let mut impl_result = UnknownImplResult;
// Search for direct children of the containing module.
match containing_module.children.find(source) {
none => {
// Continue.
}
some(child_name_bindings) => {
if (*child_name_bindings).defined_in_namespace(ModuleNS) {
module_result = BoundResult(containing_module,
child_name_bindings);
}
if (*child_name_bindings).defined_in_namespace(ValueNS) {
value_result = BoundResult(containing_module,
child_name_bindings);
}
if (*child_name_bindings).defined_in_namespace(TypeNS) {
type_result = BoundResult(containing_module,
child_name_bindings);
}
if (*child_name_bindings).defined_in_namespace(ImplNS) {
let targets = @dvec();
(*targets).push(@Target(containing_module,
child_name_bindings));
impl_result = BoundImplResult(targets);
}
}
}
// Unless we managed to find a result in all four namespaces
// (exceedingly unlikely), search imports as well.
match (module_result, value_result, type_result, impl_result) {
(BoundResult(*), BoundResult(*), BoundResult(*),
BoundImplResult(*)) => {
// Continue.
}
_ => {
// If there is an unresolved glob at this point in the
// containing module, bail out. We don't know enough to be
// able to resolve this import.
if containing_module.glob_count > 0u {
debug!{"(resolving single import) unresolved glob; \
bailing out"};
return Indeterminate;
}
// Now search the exported imports within the containing
// module.
match containing_module.import_resolutions.find(source) {
none => {
// The containing module definitely doesn't have an
// exported import with the name in question. We can
// therefore accurately report that the names are
// unbound.
if module_result == UnknownResult {
module_result = UnboundResult;
}
if value_result == UnknownResult {
value_result = UnboundResult;
}
if type_result == UnknownResult {
type_result = UnboundResult;
}
if impl_result == UnknownImplResult {
impl_result = UnboundImplResult;
}
}
some(import_resolution)
if import_resolution.outstanding_references
== 0u => {
fn get_binding(import_resolution: @ImportResolution,
namespace: Namespace)
-> NamespaceResult {
match (*import_resolution).
target_for_namespace(namespace) {
none => {
return UnboundResult;
}
some(target) => {
import_resolution.used = true;
return BoundResult(target.target_module,
target.bindings);
}
}
}
fn get_import_binding(import_resolution:
@ImportResolution)
-> ImplNamespaceResult {
if (*import_resolution.impl_target).len() == 0u {
return UnboundImplResult;
}
return BoundImplResult(import_resolution.
impl_target);
}
// The name is an import which has been fully
// resolved. We can, therefore, just follow it.
if module_result == UnknownResult {
module_result = get_binding(import_resolution,
ModuleNS);
}
if value_result == UnknownResult {
value_result = get_binding(import_resolution,
ValueNS);
}
if type_result == UnknownResult {
type_result = get_binding(import_resolution,
TypeNS);
}
if impl_result == UnknownImplResult {
impl_result =
get_import_binding(import_resolution);
}
}
some(_) => {
// The import is unresolved. Bail out.
debug!{"(resolving single import) unresolved import; \
bailing out"};
return Indeterminate;
}
}
}
}
// We've successfully resolved the import. Write the results in.
assert module_.import_resolutions.contains_key(target);
let import_resolution = module_.import_resolutions.get(target);
match module_result {
BoundResult(target_module, name_bindings) => {
debug!{"(resolving single import) found module binding"};
import_resolution.module_target =
some(Target(target_module, name_bindings));
}
UnboundResult => {
debug!{"(resolving single import) didn't find module \
binding"};
}
UnknownResult => {
fail ~"module result should be known at this point";
}
}
match value_result {
BoundResult(target_module, name_bindings) => {
import_resolution.value_target =
some(Target(target_module, name_bindings));
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
fail ~"value result should be known at this point";
}
}
match type_result {
BoundResult(target_module, name_bindings) => {
import_resolution.type_target =
some(Target(target_module, name_bindings));
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
fail ~"type result should be known at this point";
}
}
match impl_result {
BoundImplResult(targets) => {
for (*targets).each |target| {
(*import_resolution.impl_target).push(target);
}
}
UnboundImplResult => { /* Continue. */ }
UnknownImplResult => {
fail ~"impl result should be known at this point";
}
}
let i = import_resolution;
match (i.module_target, i.value_target,
i.type_target, i.impl_target) {
/*
If this name wasn't found in any of the four namespaces, it's
definitely unresolved
*/
(none, none, none, v) if v.len() == 0 => { return Failed; }
_ => {}
}
assert import_resolution.outstanding_references >= 1u;
import_resolution.outstanding_references -= 1u;
debug!{"(resolving single import) successfully resolved import"};
return Success(());
}
/**
* Resolves a glob import. Note that this function cannot fail; it either
* succeeds or bails out (as importing * from an empty module or a module
* that exports nothing is valid).
*/
fn resolve_glob_import(module_: @Module,
containing_module: @Module,
span: span)
-> ResolveResult<()> {
// This function works in a highly imperative manner; it eagerly adds
// everything it can to the list of import resolutions of the module
// node.
// We must bail out if the node has unresolved imports of any kind
// (including globs).
if !(*containing_module).all_imports_resolved() {
debug!{"(resolving glob import) target module has unresolved \
imports; bailing out"};
return Indeterminate;
}
assert containing_module.glob_count == 0u;
// Add all resolved imports from the containing module.
for containing_module.import_resolutions.each
|atom, target_import_resolution| {
if !self.name_is_exported(containing_module, atom) {
debug!{"(resolving glob import) name `%s` is unexported",
*(*self.atom_table).atom_to_str(atom)};
again;
}
debug!{"(resolving glob import) writing module resolution \
%? into `%s`",
is_none(target_import_resolution.module_target),
self.module_to_str(module_)};
// Here we merge two import resolutions.
match module_.import_resolutions.find(atom) {
none => {
// Simple: just copy the old import resolution.
let new_import_resolution =
@ImportResolution(target_import_resolution.span);
new_import_resolution.module_target =
copy target_import_resolution.module_target;
new_import_resolution.value_target =
copy target_import_resolution.value_target;
new_import_resolution.type_target =
copy target_import_resolution.type_target;
new_import_resolution.impl_target =
copy target_import_resolution.impl_target;
module_.import_resolutions.insert
(atom, new_import_resolution);
}
some(dest_import_resolution) => {
// Merge the two import resolutions at a finer-grained
// level.
match copy target_import_resolution.module_target {
none => {
// Continue.
}
some(module_target) => {
dest_import_resolution.module_target =
some(copy module_target);
}
}
match copy target_import_resolution.value_target {
none => {
// Continue.
}
some(value_target) => {
dest_import_resolution.value_target =
some(copy value_target);
}
}
match copy target_import_resolution.type_target {
none => {
// Continue.
}
some(type_target) => {
dest_import_resolution.type_target =
some(copy type_target);
}
}
if (*target_import_resolution.impl_target).len() > 0u &&
!ptr_eq(target_import_resolution.impl_target,
dest_import_resolution.impl_target) {
for (*target_import_resolution.impl_target).each
|impl_target| {
(*dest_import_resolution.impl_target).
push(impl_target);
}
}
}
}
}
// Add all children from the containing module.
for containing_module.children.each |atom, name_bindings| {
if !self.name_is_exported(containing_module, atom) {
debug!{"(resolving glob import) name `%s` is unexported",
*(*self.atom_table).atom_to_str(atom)};
again;
}
let mut dest_import_resolution;
match module_.import_resolutions.find(atom) {
none => {
// Create a new import resolution from this child.
dest_import_resolution = @ImportResolution(span);
module_.import_resolutions.insert
(atom, dest_import_resolution);
}
some(existing_import_resolution) => {
dest_import_resolution = existing_import_resolution;
}
}
debug!{"(resolving glob import) writing resolution `%s` in `%s` \
to `%s`",
*(*self.atom_table).atom_to_str(atom),
self.module_to_str(containing_module),
self.module_to_str(module_)};
// Merge the child item into the import resolution.
if (*name_bindings).defined_in_namespace(ModuleNS) {
debug!{"(resolving glob import) ... for module target"};
dest_import_resolution.module_target =
some(Target(containing_module, name_bindings));
}
if (*name_bindings).defined_in_namespace(ValueNS) {
debug!{"(resolving glob import) ... for value target"};
dest_import_resolution.value_target =
some(Target(containing_module, name_bindings));
}
if (*name_bindings).defined_in_namespace(TypeNS) {
debug!{"(resolving glob import) ... for type target"};
dest_import_resolution.type_target =
some(Target(containing_module, name_bindings));
}
if (*name_bindings).defined_in_namespace(ImplNS) {
debug!{"(resolving glob import) ... for impl target"};
(*dest_import_resolution.impl_target).push
(@Target(containing_module, name_bindings));
}
}
debug!{"(resolving glob import) successfully resolved import"};
return Success(());
}
fn resolve_module_path_from_root(module_: @Module,
module_path: @dvec<Atom>,
index: uint,
xray: XrayFlag,
span: span)
-> ResolveResult<@Module> {
let mut search_module = module_;
let mut index = index;
let module_path_len = (*module_path).len();
// Resolve the module part of the path. This does not involve looking
// upward though scope chains; we simply resolve names directly in
// modules as we go.
while index < module_path_len {
let name = (*module_path).get_elt(index);
match self.resolve_name_in_module(search_module, name, ModuleNS,
xray) {
Failed => {
self.session.span_err(span, ~"unresolved name");
return Failed;
}
Indeterminate => {
debug!{"(resolving module path for import) module \
resolution is indeterminate: %s",
*(*self.atom_table).atom_to_str(name)};
return Indeterminate;
}
Success(target) => {
match target.bindings.module_def {
NoModuleDef => {
// Not a module.
self.session.span_err(span,
fmt!{"not a module: %s",
*(*self.atom_table).
atom_to_str(name)});
return Failed;
}
ModuleDef(module_) => {
search_module = module_;
}
}
}
}
index += 1u;
}
return Success(search_module);
}
/**
* Attempts to resolve the module part of an import directive rooted at
* the given module.
*/
fn resolve_module_path_for_import(module_: @Module,
module_path: @dvec<Atom>,
xray: XrayFlag,
span: span)
-> ResolveResult<@Module> {
let module_path_len = (*module_path).len();
assert module_path_len > 0u;
debug!{"(resolving module path for import) processing `%s` rooted at \
`%s`",
*(*self.atom_table).atoms_to_str((*module_path).get()),
self.module_to_str(module_)};
// The first element of the module path must be in the current scope
// chain.
let first_element = (*module_path).get_elt(0u);
let mut search_module;
match self.resolve_module_in_lexical_scope(module_, first_element) {
Failed => {
self.session.span_err(span, ~"unresolved name");
return Failed;
}
Indeterminate => {
debug!{"(resolving module path for import) indeterminate; \
bailing"};
return Indeterminate;
}
Success(resulting_module) => {
search_module = resulting_module;
}
}
return self.resolve_module_path_from_root(search_module,
module_path,
1u,
xray,
span);
}
fn resolve_item_in_lexical_scope(module_: @Module,
name: Atom,
namespace: Namespace)
-> ResolveResult<Target> {
debug!{"(resolving item in lexical scope) resolving `%s` in \
namespace %? in `%s`",
*(*self.atom_table).atom_to_str(name),
namespace,
self.module_to_str(module_)};
// The current module node is handled specially. First, check for
// its immediate children.
match module_.children.find(name) {
some(name_bindings)
if (*name_bindings).defined_in_namespace(namespace) => {
return Success(Target(module_, name_bindings));
}
some(_) | none => { /* Not found; continue. */ }
}
// Now check for its import directives. We don't have to have resolved
// all its imports in the usual way; this is because chains of
// adjacent import statements are processed as though they mutated the
// current scope.
match module_.import_resolutions.find(name) {
none => {
// Not found; continue.
}
some(import_resolution) => {
match (*import_resolution).target_for_namespace(namespace) {
none => {
// Not found; continue.
debug!{"(resolving item in lexical scope) found \
import resolution, but not in namespace %?",
namespace};
}
some(target) => {
import_resolution.used = true;
return Success(copy target);
}
}
}
}
// Finally, proceed up the scope chain looking for parent modules.
let mut search_module = module_;
loop {
// Go to the next parent.
match search_module.parent_link {
NoParentLink => {
// No more parents. This module was unresolved.
debug!{"(resolving item in lexical scope) unresolved \
module"};
return Failed;
}
ModuleParentLink(parent_module_node, _) |
BlockParentLink(parent_module_node, _) => {
search_module = parent_module_node;
}
}
// Resolve the name in the parent module.
match self.resolve_name_in_module(search_module, name, namespace,
Xray) {
Failed => {
// Continue up the search chain.
}
Indeterminate => {
// We couldn't see through the higher scope because of an
// unresolved import higher up. Bail.
debug!{"(resolving item in lexical scope) indeterminate \
higher scope; bailing"};
return Indeterminate;
}
Success(target) => {
// We found the module.
return Success(copy target);
}
}
}
}
fn resolve_module_in_lexical_scope(module_: @Module, name: Atom)
-> ResolveResult<@Module> {
match self.resolve_item_in_lexical_scope(module_, name, ModuleNS) {
Success(target) => {
match target.bindings.module_def {
NoModuleDef => {
error!{"!!! (resolving module in lexical scope) module
wasn't actually a module!"};
return Failed;
}
ModuleDef(module_) => {
return Success(module_);
}
}
}
Indeterminate => {
debug!{"(resolving module in lexical scope) indeterminate; \
bailing"};
return Indeterminate;
}
Failed => {
debug!{"(resolving module in lexical scope) failed to \
resolve"};
return Failed;
}
}
}
fn name_is_exported(module_: @Module, name: Atom) -> bool {
return module_.exported_names.size() == 0u ||
module_.exported_names.contains_key(name);
}
/**
* Attempts to resolve the supplied name in the given module for the
* given namespace. If successful, returns the target corresponding to
* the name.
*/
fn resolve_name_in_module(module_: @Module,
name: Atom,
namespace: Namespace,
xray: XrayFlag)
-> ResolveResult<Target> {
debug!{"(resolving name in module) resolving `%s` in `%s`",
*(*self.atom_table).atom_to_str(name),
self.module_to_str(module_)};
if xray == NoXray && !self.name_is_exported(module_, name) {
debug!{"(resolving name in module) name `%s` is unexported",
*(*self.atom_table).atom_to_str(name)};
return Failed;
}
// First, check the direct children of the module.
match module_.children.find(name) {
some(name_bindings)
if (*name_bindings).defined_in_namespace(namespace) => {
debug!{"(resolving name in module) found node as child"};
return Success(Target(module_, name_bindings));
}
some(_) | none => {
// Continue.
}
}
// Next, check the module's imports. If the module has a glob, then
// we bail out; we don't know its imports yet.
if module_.glob_count > 0u {
debug!{"(resolving name in module) module has glob; bailing out"};
return Indeterminate;
}
// Otherwise, we check the list of resolved imports.
match module_.import_resolutions.find(name) {
some(import_resolution) => {
if import_resolution.outstanding_references != 0u {
debug!{"(resolving name in module) import unresolved; \
bailing out"};
return Indeterminate;
}
match (*import_resolution).target_for_namespace(namespace) {
none => {
debug!{"(resolving name in module) name found, but \
not in namespace %?",
namespace};
}
some(target) => {
debug!{"(resolving name in module) resolved to \
import"};
import_resolution.used = true;
return Success(copy target);
}
}
}
none => {
// Continue.
}
}
// We're out of luck.
debug!{"(resolving name in module) failed to resolve %s",
*(*self.atom_table).atom_to_str(name)};
return Failed;
}
/**
* Resolves a one-level renaming import of the kind `import foo = bar;`
* This needs special handling, as, unlike all of the other imports, it
* needs to look in the scope chain for modules and non-modules alike.
*/
fn resolve_one_level_renaming_import(module_: @Module,
import_directive: @ImportDirective)
-> ResolveResult<()> {
let mut target_name;
let mut source_name;
match *import_directive.subclass {
SingleImport(target, source) => {
target_name = target;
source_name = source;
}
GlobImport => {
fail ~"found `import *`, which is invalid";
}
}
debug!{"(resolving one-level naming result) resolving import `%s` = \
`%s` in `%s`",
*(*self.atom_table).atom_to_str(target_name),
*(*self.atom_table).atom_to_str(source_name),
self.module_to_str(module_)};
// Find the matching items in the lexical scope chain for every
// namespace. If any of them come back indeterminate, this entire
// import is indeterminate.
let mut module_result;
debug!{"(resolving one-level naming result) searching for module"};
match self.resolve_item_in_lexical_scope(module_,
source_name,
ModuleNS) {
Failed => {
debug!{"(resolving one-level renaming import) didn't find \
module result"};
module_result = none;
}
Indeterminate => {
debug!{"(resolving one-level renaming import) module result \
is indeterminate; bailing"};
return Indeterminate;
}
Success(name_bindings) => {
debug!{"(resolving one-level renaming import) module result \
found"};
module_result = some(copy name_bindings);
}
}
let mut value_result;
debug!{"(resolving one-level naming result) searching for value"};
match self.resolve_item_in_lexical_scope(module_,
source_name,
ValueNS) {
Failed => {
debug!{"(resolving one-level renaming import) didn't find \
value result"};
value_result = none;
}
Indeterminate => {
debug!{"(resolving one-level renaming import) value result \
is indeterminate; bailing"};
return Indeterminate;
}
Success(name_bindings) => {
debug!{"(resolving one-level renaming import) value result \
found"};
value_result = some(copy name_bindings);
}
}
let mut type_result;
debug!{"(resolving one-level naming result) searching for type"};
match self.resolve_item_in_lexical_scope(module_,
source_name,
TypeNS) {
Failed => {
debug!{"(resolving one-level renaming import) didn't find \
type result"};
type_result = none;
}
Indeterminate => {
debug!{"(resolving one-level renaming import) type result is \
indeterminate; bailing"};
return Indeterminate;
}
Success(name_bindings) => {
debug!{"(resolving one-level renaming import) type result \
found"};
type_result = some(copy name_bindings);
}
}
//
// NB: This one results in effects that may be somewhat surprising. It
// means that this:
//
// mod A {
// impl foo for ... { ... }
// mod B {
// impl foo for ... { ... }
// import bar = foo;
// ...
// }
// }
//
// results in only A::B::foo being aliased to A::B::bar, not A::foo
// *and* A::B::foo being aliased to A::B::bar.
//
let mut impl_result;
debug!{"(resolving one-level naming result) searching for impl"};
match self.resolve_item_in_lexical_scope(module_,
source_name,
ImplNS) {
Failed => {
debug!{"(resolving one-level renaming import) didn't find \
impl result"};
impl_result = none;
}
Indeterminate => {
debug!{"(resolving one-level renaming import) impl result is \
indeterminate; bailing"};
return Indeterminate;
}
Success(name_bindings) => {
debug!{"(resolving one-level renaming import) impl result \
found"};
impl_result = some(@copy name_bindings);
}
}
// If nothing at all was found, that's an error.
if is_none(module_result) && is_none(value_result) &&
is_none(type_result) && is_none(impl_result) {
self.session.span_err(import_directive.span,
~"unresolved import");
return Failed;
}
// Otherwise, proceed and write in the bindings.
match module_.import_resolutions.find(target_name) {
none => {
fail ~"(resolving one-level renaming import) reduced graph \
construction or glob importing should have created the \
import resolution name by now";
}
some(import_resolution) => {
debug!{"(resolving one-level renaming import) writing module \
result %? for `%s` into `%s`",
is_none(module_result),
*(*self.atom_table).atom_to_str(target_name),
self.module_to_str(module_)};
import_resolution.module_target = module_result;
import_resolution.value_target = value_result;
import_resolution.type_target = type_result;
match impl_result {
none => {
// Nothing to do.
}
some(impl_result) => {
(*import_resolution.impl_target).push(impl_result);
}
}
assert import_resolution.outstanding_references >= 1u;
import_resolution.outstanding_references -= 1u;
}
}
debug!{"(resolving one-level renaming import) successfully resolved"};
return Success(());
}
fn report_unresolved_imports(module_: @Module) {
let index = module_.resolved_import_count;
let import_count = module_.imports.len();
if index != import_count {
self.session.span_err(module_.imports.get_elt(index).span,
~"unresolved import");
}
// Descend into children and anonymous children.
for module_.children.each |_name, child_node| {
match (*child_node).get_module_if_available() {
none => {
// Continue.
}
some(child_module) => {
self.report_unresolved_imports(child_module);
}
}
}
for module_.anonymous_children.each |_name, module_| {
self.report_unresolved_imports(module_);
}
}
// Export recording
//
// This pass simply determines what all "export" keywords refer to and
// writes the results into the export map.
//
// XXX: This pass will be removed once exports change to per-item. Then
// this operation can simply be performed as part of item (or import)
// processing.
fn record_exports() {
let root_module = (*self.graph_root).get_module();
self.record_exports_for_module_subtree(root_module);
}
fn record_exports_for_module_subtree(module_: @Module) {
// If this isn't a local crate, then bail out. We don't need to record
// exports for local crates.
match module_.def_id {
some(def_id) if def_id.crate == local_crate => {
// OK. Continue.
}
none => {
// Record exports for the root module.
}
some(_) => {
// Bail out.
debug!{"(recording exports for module subtree) not recording \
exports for `%s`",
self.module_to_str(module_)};
return;
}
}
self.record_exports_for_module(module_);
for module_.children.each |_atom, child_name_bindings| {
match (*child_name_bindings).get_module_if_available() {
none => {
// Nothing to do.
}
some(child_module) => {
self.record_exports_for_module_subtree(child_module);
}
}
}
for module_.anonymous_children.each |_node_id, child_module| {
self.record_exports_for_module_subtree(child_module);
}
}
fn record_exports_for_module(module_: @Module) {
for module_.exported_names.each |name, node_id| {
let mut exports = ~[];
for self.namespaces.each |namespace| {
// Ignore impl namespaces; they cause the original resolve
// to fail.
if namespace == ImplNS {
again;
}
match self.resolve_definition_of_name_in_module(module_,
name,
namespace,
Xray) {
NoNameDefinition => {
// Nothing to do.
}
ChildNameDefinition(target_def) => {
vec::push(exports, {
reexp: false,
id: def_id_of_def(target_def)
});
}
ImportNameDefinition(target_def) => {
vec::push(exports, {
reexp: true,
id: def_id_of_def(target_def)
});
}
}
}
self.export_map.insert(node_id, exports);
}
}
// Implementation scope creation
//
// This is a fairly simple pass that simply gathers up all the typeclass
// implementations in scope and threads a series of singly-linked series
// of impls through the tree.
fn build_impl_scopes() {
let root_module = (*self.graph_root).get_module();
self.build_impl_scopes_for_module_subtree(root_module);
}
fn build_impl_scopes_for_module_subtree(module_: @Module) {
// If this isn't a local crate, then bail out. We don't need to
// resolve implementations for external crates.
match module_.def_id {
some(def_id) if def_id.crate == local_crate => {
// OK. Continue.
}
none => {
// Resolve implementation scopes for the root module.
}
some(_) => {
// Bail out.
debug!{"(building impl scopes for module subtree) not \
resolving implementations for `%s`",
self.module_to_str(module_)};
return;
}
}
self.build_impl_scope_for_module(module_);
for module_.children.each |_atom, child_name_bindings| {
match (*child_name_bindings).get_module_if_available() {
none => {
// Nothing to do.
}
some(child_module) => {
self.build_impl_scopes_for_module_subtree(child_module);
}
}
}
for module_.anonymous_children.each |_node_id, child_module| {
self.build_impl_scopes_for_module_subtree(child_module);
}
}
fn build_impl_scope_for_module(module_: @Module) {
let mut impl_scope = ~[];
debug!{"(building impl scope for module) processing module %s (%?)",
self.module_to_str(module_),
copy module_.def_id};
// Gather up all direct children implementations in the module.
for module_.children.each |_impl_name, child_name_bindings| {
if child_name_bindings.impl_defs.len() >= 1u {
impl_scope += child_name_bindings.impl_defs;
}
}
debug!{"(building impl scope for module) found %u impl(s) as direct \
children",
impl_scope.len()};
// Gather up all imports.
for module_.import_resolutions.each |_impl_name, import_resolution| {
for (*import_resolution.impl_target).each |impl_target| {
debug!{"(building impl scope for module) found impl def"};
impl_scope += impl_target.bindings.impl_defs;
}
}
debug!{"(building impl scope for module) found %u impl(s) in total",
impl_scope.len()};
// Determine the parent's implementation scope.
let mut parent_impl_scopes;
match module_.parent_link {
NoParentLink => {
parent_impl_scopes = @nil;
}
ModuleParentLink(parent_module_node, _) |
BlockParentLink(parent_module_node, _) => {
parent_impl_scopes = parent_module_node.impl_scopes;
}
}
// Create the new implementation scope, if it was nonempty, and chain
// it up to the parent.
if impl_scope.len() >= 1u {
module_.impl_scopes = @cons(@impl_scope, parent_impl_scopes);
} else {
module_.impl_scopes = parent_impl_scopes;
}
}
// AST resolution
//
// We maintain a list of value ribs and type ribs.
//
// Simultaneously, we keep track of the current position in the module
// graph in the `current_module` pointer. When we go to resolve a name in
// the value or type namespaces, we first look through all the ribs and
// then query the module graph. When we resolve a name in the module
// namespace, we can skip all the ribs (since nested modules are not
// allowed within blocks in Rust) and jump straight to the current module
// graph node.
//
// Named implementations are handled separately. When we find a method
// call, we consult the module node to find all of the implementations in
// scope. This information is lazily cached in the module node. We then
// generate a fake "implementation scope" containing all the
// implementations thus found, for compatibility with old resolve pass.
fn with_scope(name: option<Atom>, f: fn()) {
let orig_module = self.current_module;
// Move down in the graph.
match name {
none => {
// Nothing to do.
}
some(name) => {
match orig_module.children.find(name) {
none => {
debug!{"!!! (with scope) didn't find `%s` in `%s`",
*(*self.atom_table).atom_to_str(name),
self.module_to_str(orig_module)};
}
some(name_bindings) => {
match (*name_bindings).get_module_if_available() {
none => {
debug!{"!!! (with scope) didn't find module \
for `%s` in `%s`",
*(*self.atom_table).atom_to_str(name),
self.module_to_str(orig_module)};
}
some(module_) => {
self.current_module = module_;
}
}
}
}
}
}
f();
self.current_module = orig_module;
}
// Wraps the given definition in the appropriate number of `def_upvar`
// wrappers.
fn upvarify(ribs: @dvec<@Rib>, rib_index: uint, def_like: def_like,
span: span, allow_capturing_self: AllowCapturingSelfFlag)
-> option<def_like> {
let mut def;
let mut is_ty_param;
match def_like {
dl_def(d @ def_local(*)) | dl_def(d @ def_upvar(*)) |
dl_def(d @ def_arg(*)) | dl_def(d @ def_binding(*)) => {
def = d;
is_ty_param = false;
}
dl_def(d @ def_ty_param(*)) => {
def = d;
is_ty_param = true;
}
dl_def(d @ def_self(*))
if allow_capturing_self == DontAllowCapturingSelf => {
def = d;
is_ty_param = false;
}
_ => {
return some(def_like);
}
}
let mut rib_index = rib_index + 1u;
while rib_index < (*ribs).len() {
let rib = (*ribs).get_elt(rib_index);
match rib.kind {
NormalRibKind => {
// Nothing to do. Continue.
}
FunctionRibKind(function_id) => {
if !is_ty_param {
def = def_upvar(def_id_of_def(def).node,
@def,
function_id);
}
}
MethodRibKind(item_id, method_id) => {
// If the def is a ty param, and came from the parent
// item, it's ok
match def {
def_ty_param(did, _) if self.def_map.find(copy(did.node))
== some(def_typaram_binder(item_id)) => {
// ok
}
_ => {
if !is_ty_param {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
self.session.span_err(
span,
~"attempted dynamic environment-capture");
} else {
// This was an attempt to use a type parameter outside
// its scope.
self.session.span_err(span,
~"attempt to use a type \
argument out of scope");
}
return none;
}
}
}
OpaqueFunctionRibKind => {
if !is_ty_param {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
self.session.span_err(
span,
~"attempted dynamic environment-capture");
} else {
// This was an attempt to use a type parameter outside
// its scope.
self.session.span_err(span,
~"attempt to use a type \
argument out of scope");
}
return none;
}
}
rib_index += 1u;
}
return some(dl_def(def));
}
fn search_ribs(ribs: @dvec<@Rib>, name: Atom, span: span,
allow_capturing_self: AllowCapturingSelfFlag)
-> option<def_like> {
// XXX: This should not use a while loop.
// XXX: Try caching?
let mut i = (*ribs).len();
while i != 0u {
i -= 1u;
let rib = (*ribs).get_elt(i);
match rib.bindings.find(name) {
some(def_like) => {
return self.upvarify(ribs, i, def_like, span,
allow_capturing_self);
}
none => {
// Continue.
}
}
}
return none;
}
// XXX: This shouldn't be unsafe!
fn resolve_crate() unsafe {
debug!{"(resolving crate) starting"};
// To avoid a failure in metadata encoding later, we have to add the
// crate-level implementation scopes
self.impl_map.insert(0, (*self.graph_root).get_module().impl_scopes);
// XXX: This is awful!
let this = ptr::addr_of(self);
visit_crate(*self.crate, (), mk_vt(@{
visit_item: |item, _context, visitor|
(*this).resolve_item(item, visitor),
visit_arm: |arm, _context, visitor|
(*this).resolve_arm(arm, visitor),
visit_block: |block, _context, visitor|
(*this).resolve_block(block, visitor),
visit_expr: |expr, _context, visitor|
(*this).resolve_expr(expr, visitor),
visit_local: |local, _context, visitor|
(*this).resolve_local(local, visitor),
visit_ty: |ty, _context, visitor|
(*this).resolve_type(ty, visitor)
with *default_visitor()
}));
}
fn resolve_item(item: @item, visitor: ResolveVisitor) {
debug!{"(resolving item) resolving %s", *item.ident};
// Items with the !resolve_unexported attribute are X-ray contexts.
// This is used to allow the test runner to run unexported tests.
let orig_xray_flag = self.xray_context;
if contains_name(attr_metas(item.attrs), ~"!resolve_unexported") {
self.xray_context = Xray;
}
match item.node {
item_enum(_, type_parameters) |
item_ty(_, type_parameters) => {
do self.with_type_parameter_rib
(HasTypeParameters(&type_parameters, item.id, 0u,
NormalRibKind))
|| {
visit_item(item, (), visitor);
}
}
item_impl(type_parameters, implemented_traits, self_type,
methods) => {
self.resolve_implementation(item.id, item.span,
type_parameters,
implemented_traits,
self_type, methods, visitor);
}
item_trait(type_parameters, traits, methods) => {
// Create a new rib for the self type.
let self_type_rib = @Rib(NormalRibKind);
(*self.type_ribs).push(self_type_rib);
self_type_rib.bindings.insert(self.self_atom,
dl_def(def_self(item.id)));
// Create a new rib for the trait-wide type parameters.
do self.with_type_parameter_rib
(HasTypeParameters(&type_parameters, item.id, 0u,
NormalRibKind)) {
self.resolve_type_parameters(type_parameters, visitor);
// Resolve derived traits.
for traits.each |trt| {
match self.resolve_path(trt.path, TypeNS, true,
visitor) {
none =>
self.session.span_err(trt.path.span,
~"attempt to derive a \
nonexistent trait"),
some(def) => {
// Write a mapping from the trait ID to the
// definition of the trait into the definition
// map.
debug!{"(resolving trait) found trait def: \
%?", def};
self.record_def(trt.ref_id, def);
}
}
}
for methods.each |method| {
// Create a new rib for the method-specific type
// parameters.
//
// XXX: Do we need a node ID here?
match method {
required(ty_m) => {
do self.with_type_parameter_rib
(HasTypeParameters(&ty_m.tps,
item.id,
type_parameters.len(),
MethodRibKind(item.id, Required))) {
// Resolve the method-specific type
// parameters.
self.resolve_type_parameters(ty_m.tps,
visitor);
for ty_m.decl.inputs.each |argument| {
self.resolve_type(argument.ty, visitor);
}
self.resolve_type(ty_m.decl.output, visitor);
}
}
provided(m) => {
self.resolve_method(MethodRibKind(item.id,
Provided(m.id)),
m,
type_parameters.len(),
visitor)
}
}
}
}
(*self.type_ribs).pop();
}
item_class(struct_def, ty_params) => {
self.resolve_class(item.id,
@copy ty_params,
struct_def.traits,
struct_def.members,
struct_def.ctor,
struct_def.dtor,
visitor);
}
item_mod(module_) => {
let atom = (*self.atom_table).intern(item.ident);
do self.with_scope(some(atom)) {
self.resolve_module(module_, item.span, item.ident,
item.id, visitor);
}
}
item_foreign_mod(foreign_module) => {
let atom = (*self.atom_table).intern(item.ident);
do self.with_scope(some(atom)) {
for foreign_module.items.each |foreign_item| {
match foreign_item.node {
foreign_item_fn(_, type_parameters) => {
do self.with_type_parameter_rib
(HasTypeParameters(&type_parameters,
foreign_item.id,
0u,
OpaqueFunctionRibKind))
|| {
visit_foreign_item(foreign_item, (),
visitor);
}
}
}
}
}
}
item_fn(fn_decl, ty_params, block) => {
// If this is the main function, we must record it in the
// session.
//
// For speed, we put the string comparison last in this chain
// of conditionals.
if !self.session.building_library &&
is_none(self.session.main_fn) &&
*item.ident == ~"main" {
self.session.main_fn = some((item.id, item.span));
}
self.resolve_function(OpaqueFunctionRibKind,
some(@fn_decl),
HasTypeParameters
(&ty_params,
item.id,
0u,
OpaqueFunctionRibKind),
block,
NoSelfBinding,
NoCaptureClause,
visitor);
}
item_const(*) => {
visit_item(item, (), visitor);
}
item_mac(*) => {
fail ~"item macros unimplemented"
}
}
self.xray_context = orig_xray_flag;
}
fn with_type_parameter_rib(type_parameters: TypeParameters, f: fn()) {
match type_parameters {
HasTypeParameters(type_parameters, node_id, initial_index,
rib_kind) => {
let function_type_rib = @Rib(rib_kind);
(*self.type_ribs).push(function_type_rib);
for (*type_parameters).eachi |index, type_parameter| {
let name =
(*self.atom_table).intern(type_parameter.ident);
debug!{"with_type_parameter_rib: %d %d", node_id,
type_parameter.id};
let def_like = dl_def(def_ty_param
(local_def(type_parameter.id),
index + initial_index));
// Associate this type parameter with
// the item that bound it
self.record_def(type_parameter.id,
def_typaram_binder(node_id));
(*function_type_rib).bindings.insert(name, def_like);
}
}
NoTypeParameters => {
// Nothing to do.
}
}
f();
match type_parameters {
HasTypeParameters(type_parameters, _, _, _) => {
(*self.type_ribs).pop();
}
NoTypeParameters =>{
// Nothing to do.
}
}
}
fn resolve_function(rib_kind: RibKind,
optional_declaration: option<@fn_decl>,
type_parameters: TypeParameters,
block: blk,
self_binding: SelfBinding,
capture_clause: CaptureClause,
visitor: ResolveVisitor) {
// Check each element of the capture clause.
match capture_clause {
NoCaptureClause => {
// Nothing to do.
}
HasCaptureClause(capture_clause) => {
// Resolve each captured item.
for (*capture_clause).each |capture_item| {
match self.resolve_identifier(capture_item.name,
ValueNS,
true,
capture_item.span) {
none => {
self.session.span_err(capture_item.span,
~"unresolved name in \
capture clause");
}
some(def) => {
self.record_def(capture_item.id, def);
}
}
}
}
}
// Create a value rib for the function.
let function_value_rib = @Rib(rib_kind);
(*self.value_ribs).push(function_value_rib);
// If this function has type parameters, add them now.
do self.with_type_parameter_rib(type_parameters) {
// Resolve the type parameters.
match type_parameters {
NoTypeParameters => {
// Continue.
}
HasTypeParameters(type_parameters, _, _, _) => {
self.resolve_type_parameters(*type_parameters, visitor);
}
}
// Add self to the rib, if necessary.
match self_binding {
NoSelfBinding => {
// Nothing to do.
}
HasSelfBinding(self_node_id) => {
let def_like = dl_def(def_self(self_node_id));
(*function_value_rib).bindings.insert(self.self_atom,
def_like);
}
}
// Add each argument to the rib.
match optional_declaration {
none => {
// Nothing to do.
}
some(declaration) => {
for declaration.inputs.each |argument| {
let name = (*self.atom_table).intern(argument.ident);
let def_like = dl_def(def_arg(argument.id,
argument.mode));
(*function_value_rib).bindings.insert(name, def_like);
self.resolve_type(argument.ty, visitor);
debug!{"(resolving function) recorded argument `%s`",
*(*self.atom_table).atom_to_str(name)};
}
self.resolve_type(declaration.output, visitor);
}
}
// Resolve the function body.
self.resolve_block(block, visitor);
debug!{"(resolving function) leaving function"};
}
(*self.value_ribs).pop();
}
fn resolve_type_parameters(type_parameters: ~[ty_param],
visitor: ResolveVisitor) {
for type_parameters.each |type_parameter| {
for (*type_parameter.bounds).each |bound| {
match bound {
bound_copy | bound_send | bound_const | bound_owned => {
// Nothing to do.
}
bound_trait(trait_type) => {
self.resolve_type(trait_type, visitor);
}
}
}
}
}
fn resolve_class(id: node_id,
type_parameters: @~[ty_param],
traits: ~[@trait_ref],
class_members: ~[@class_member],
optional_constructor: option<class_ctor>,
optional_destructor: option<class_dtor>,
visitor: ResolveVisitor) {
// Add a type into the def map. This is needed to prevent an ICE in
// ty::impl_traits.
// If applicable, create a rib for the type parameters.
let outer_type_parameter_count = (*type_parameters).len();
let borrowed_type_parameters: &~[ty_param] = &*type_parameters;
do self.with_type_parameter_rib(HasTypeParameters
(borrowed_type_parameters, id, 0u,
NormalRibKind)) {
// Resolve the type parameters.
self.resolve_type_parameters(*type_parameters, visitor);
// Resolve implemented traits.
for traits.each |trt| {
match self.resolve_path(trt.path, TypeNS, true, visitor) {
none => {
self.session.span_err(trt.path.span,
~"attempt to implement a \
nonexistent trait");
}
some(def) => {
// Write a mapping from the trait ID to the
// definition of the trait into the definition
// map.
debug!{"(resolving class) found trait def: %?", def};
self.record_def(trt.ref_id, def);
// XXX: This is wrong but is needed for tests to
// pass.
self.record_def(id, def);
}
}
}
// Resolve methods.
for class_members.each |class_member| {
match class_member.node {
class_method(method) => {
self.resolve_method(MethodRibKind(id,
Provided(method.id)),
method,
outer_type_parameter_count,
visitor);
}
instance_var(_, field_type, _, _, _) => {
self.resolve_type(field_type, visitor);
}
}
}
// Resolve the constructor, if applicable.
match optional_constructor {
none => {
// Nothing to do.
}
some(constructor) => {
self.resolve_function(NormalRibKind,
some(@constructor.node.dec),
NoTypeParameters,
constructor.node.body,
HasSelfBinding(constructor.node.
self_id),
NoCaptureClause,
visitor);
}
}
// Resolve the destructor, if applicable.
match optional_destructor {
none => {
// Nothing to do.
}
some(destructor) => {
self.resolve_function(NormalRibKind,
none,
NoTypeParameters,
destructor.node.body,
HasSelfBinding
(destructor.node.self_id),
NoCaptureClause,
visitor);
}
}
}
}
// Does this really need to take a RibKind or is it always going
// to be NormalRibKind?
fn resolve_method(rib_kind: RibKind,
method: @method,
outer_type_parameter_count: uint,
visitor: ResolveVisitor) {
let borrowed_method_type_parameters = &method.tps;
let type_parameters =
HasTypeParameters(borrowed_method_type_parameters,
method.id,
outer_type_parameter_count,
rib_kind);
// we only have self ty if it is a non static method
let self_binding = match method.self_ty.node {
sty_static => { NoSelfBinding }
_ => { HasSelfBinding(method.self_id) }
};
self.resolve_function(rib_kind,
some(@method.decl),
type_parameters,
method.body,
self_binding,
NoCaptureClause,
visitor);
}
fn resolve_implementation(id: node_id,
span: span,
type_parameters: ~[ty_param],
trait_references: ~[@trait_ref],
self_type: @ty,
methods: ~[@method],
visitor: ResolveVisitor) {
// If applicable, create a rib for the type parameters.
let outer_type_parameter_count = type_parameters.len();
let borrowed_type_parameters: &~[ty_param] = &type_parameters;
do self.with_type_parameter_rib(HasTypeParameters
(borrowed_type_parameters, id, 0u,
NormalRibKind)) {
// Resolve the type parameters.
self.resolve_type_parameters(type_parameters, visitor);
// Resolve the trait reference, if necessary.
let original_trait_refs = self.current_trait_refs;
if trait_references.len() >= 1 {
let mut new_trait_refs = @dvec();
for trait_references.each |trait_reference| {
match self.resolve_path(
trait_reference.path, TypeNS, true, visitor) {
none => {
self.session.span_err(span,
~"attempt to implement an \
unknown trait");
}
some(def) => {
self.record_def(trait_reference.ref_id, def);
// Record the current trait reference.
(*new_trait_refs).push(def_id_of_def(def));
}
}
}
// Record the current set of trait references.
self.current_trait_refs = some(new_trait_refs);
}
// Resolve the self type.
self.resolve_type(self_type, visitor);
for methods.each |method| {
// We also need a new scope for the method-specific
// type parameters.
self.resolve_method(MethodRibKind(id, Provided(method.id)),
method,
outer_type_parameter_count,
visitor);
/*
let borrowed_type_parameters = &method.tps;
self.resolve_function(MethodRibKind(id, Provided(method.id)),
some(@method.decl),
HasTypeParameters
(borrowed_type_parameters,
method.id,
outer_type_parameter_count,
NormalRibKind),
method.body,
HasSelfBinding(method.self_id),
NoCaptureClause,
visitor);
*/
}
// Restore the original trait references.
self.current_trait_refs = original_trait_refs;
}
}
fn resolve_module(module_: _mod, span: span, _name: ident, id: node_id,
visitor: ResolveVisitor) {
// Write the implementations in scope into the module metadata.
debug!{"(resolving module) resolving module ID %d", id};
self.impl_map.insert(id, self.current_module.impl_scopes);
visit_mod(module_, span, id, (), visitor);
}
fn resolve_local(local: @local, visitor: ResolveVisitor) {
let mut mutability;
if local.node.is_mutbl {
mutability = Mutable;
} else {
mutability = Immutable;
}
// Resolve the type.
self.resolve_type(local.node.ty, visitor);
// Resolve the initializer, if necessary.
match local.node.init {
none => {
// Nothing to do.
}
some(initializer) => {
self.resolve_expr(initializer.expr, visitor);
}
}
// Resolve the pattern.
self.resolve_pattern(local.node.pat, IrrefutableMode, mutability,
none, visitor);
}
fn binding_mode_map(pat: @pat) -> BindingMap {
let result = box_str_hash();
do pat_bindings(self.def_map, pat) |binding_mode, _id, sp, path| {
let ident = path_to_ident(path);
result.insert(ident,
binding_info {span: sp,
binding_mode: binding_mode});
}
return result;
}
fn check_consistent_bindings(arm: arm) {
if arm.pats.len() == 0 { return; }
let map_0 = self.binding_mode_map(arm.pats[0]);
for arm.pats.eachi() |i, p: @pat| {
let map_i = self.binding_mode_map(p);
for map_0.each |key, binding_0| {
match map_i.find(key) {
none => {
self.session.span_err(
p.span,
fmt!{"variable `%s` from pattern #1 is \
not bound in pattern #%u",
*key, i + 1});
}
some(binding_i) => {
if binding_0.binding_mode != binding_i.binding_mode {
self.session.span_err(
binding_i.span,
fmt!{"variable `%s` is bound with different \
mode in pattern #%u than in pattern #1",
*key, i + 1});
}
}
}
}
for map_i.each |key, binding| {
if !map_0.contains_key(key) {
self.session.span_err(
binding.span,
fmt!{"variable `%s` from pattern #%u is \
not bound in pattern #1",
*key, i + 1});
}
}
}
}
fn resolve_arm(arm: arm, visitor: ResolveVisitor) {
(*self.value_ribs).push(@Rib(NormalRibKind));
let bindings_list = atom_hashmap();
for arm.pats.each |pattern| {
self.resolve_pattern(pattern, RefutableMode, Immutable,
some(bindings_list), visitor);
}
// This has to happen *after* we determine which
// pat_idents are variants
self.check_consistent_bindings(arm);
visit_expr_opt(arm.guard, (), visitor);
self.resolve_block(arm.body, visitor);
(*self.value_ribs).pop();
}
fn resolve_block(block: blk, visitor: ResolveVisitor) {
debug!{"(resolving block) entering block"};
(*self.value_ribs).push(@Rib(NormalRibKind));
// Move down in the graph, if there's an anonymous module rooted here.
let orig_module = self.current_module;
match self.current_module.anonymous_children.find(block.node.id) {
none => { /* Nothing to do. */ }
some(anonymous_module) => {
debug!{"(resolving block) found anonymous module, moving \
down"};
self.current_module = anonymous_module;
}
}
// Descend into the block.
visit_block(block, (), visitor);
// Move back up.
self.current_module = orig_module;
(*self.value_ribs).pop();
debug!{"(resolving block) leaving block"};
}
fn resolve_type(ty: @ty, visitor: ResolveVisitor) {
match ty.node {
// Like path expressions, the interpretation of path types depends
// on whether the path has multiple elements in it or not.
ty_path(path, path_id) => {
// This is a path in the type namespace. Walk through scopes
// scopes looking for it.
let mut result_def;
match self.resolve_path(path, TypeNS, true, visitor) {
some(def) => {
debug!{"(resolving type) resolved `%s` to type",
*path.idents.last()};
result_def = some(def);
}
none => {
result_def = none;
}
}
match result_def {
some(_) => {
// Continue.
}
none => {
// Check to see whether the name is a primitive type.
if path.idents.len() == 1u {
let name =
(*self.atom_table).intern(path.idents.last());
match self.primitive_type_table
.primitive_types
.find(name) {
some(primitive_type) => {
result_def =
some(def_prim_ty(primitive_type));
}
none => {
// Continue.
}
}
}
}
}
match copy result_def {
some(def) => {
// Write the result into the def map.
debug!{"(resolving type) writing resolution for `%s` \
(id %d)",
connect(path.idents.map(|x| *x), ~"::"),
path_id};
self.record_def(path_id, def);
}
none => {
self.session.span_err
(ty.span, fmt!{"use of undeclared type name `%s`",
connect(path.idents.map(|x| *x),
~"::")});
}
}
}
_ => {
// Just resolve embedded types.
visit_ty(ty, (), visitor);
}
}
}
fn resolve_pattern(pattern: @pat,
mode: PatternBindingMode,
mutability: Mutability,
// Maps idents to the node ID for the (outermost)
// pattern that binds them
bindings_list: option<hashmap<Atom,node_id>>,
visitor: ResolveVisitor) {
let pat_id = pattern.id;
do walk_pat(pattern) |pattern| {
match pattern.node {
pat_ident(binding_mode, path, _)
if !path.global && path.idents.len() == 1u => {
// The meaning of pat_ident with no type parameters
// depends on whether an enum variant with that name is in
// scope. The probing lookup has to be careful not to emit
// spurious errors. Only matching patterns (match) can
// match nullary variants. For binding patterns (let),
// matching such a variant is simply disallowed (since
// it's rarely what you want).
let atom = (*self.atom_table).intern(path.idents[0]);
match self.resolve_enum_variant_or_const(atom) {
FoundEnumVariant(def) if mode == RefutableMode => {
debug!{"(resolving pattern) resolving `%s` to \
enum variant",
*path.idents[0]};
self.record_def(pattern.id, def);
}
FoundEnumVariant(_) => {
self.session.span_err(pattern.span,
fmt!{"declaration of `%s` \
shadows an enum \
that's in scope",
*(*self.atom_table).
atom_to_str
(atom)});
}
FoundConst => {
self.session.span_err(pattern.span,
~"pattern variable \
conflicts with a constant \
in scope");
}
EnumVariantOrConstNotFound => {
debug!{"(resolving pattern) binding `%s`",
*path.idents[0]};
let is_mutable = mutability == Mutable;
let def = match mode {
RefutableMode => {
// For pattern arms, we must use
// `def_binding` definitions.
def_binding(pattern.id, binding_mode)
}
IrrefutableMode => {
// But for locals, we use `def_local`.
def_local(pattern.id, is_mutable)
}
};
// Record the definition so that later passes
// will be able to distinguish variants from
// locals in patterns.
self.record_def(pattern.id, def);
// Add the binding to the local ribs, if it
// doesn't already exist in the bindings list. (We
// must not add it if it's in the bindings list
// because that breaks the assumptions later
// passes make about or-patterns.)
match bindings_list {
some(bindings_list)
if !bindings_list.contains_key(atom) => {
let last_rib = (*self.value_ribs).last();
last_rib.bindings.insert(atom,
dl_def(def));
bindings_list.insert(atom, pat_id);
}
some(b) => {
if b.find(atom) == some(pat_id) {
// Then this is a duplicate variable
// in the same disjunct, which is an
// error
self.session.span_err(pattern.span,
fmt!{"Identifier %s is bound more \
than once in the same pattern",
path_to_str(path)});
}
// Not bound in the same pattern: do nothing
}
none => {
let last_rib = (*self.value_ribs).last();
last_rib.bindings.insert(atom,
dl_def(def));
}
}
}
}
// Check the types in the path pattern.
for path.types.each |ty| {
self.resolve_type(ty, visitor);
}
}
pat_ident(_, path, _) | pat_enum(path, _) => {
// These two must be enum variants.
match self.resolve_path(path, ValueNS, false, visitor) {
some(def @ def_variant(*)) => {
self.record_def(pattern.id, def);
}
some(_) => {
self.session.span_err(path.span,
fmt!{"not an enum \
variant: %s",
*path.idents.last()});
}
none => {
self.session.span_err(path.span,
~"unresolved enum variant");
}
}
// Check the types in the path pattern.
for path.types.each |ty| {
self.resolve_type(ty, visitor);
}
}
pat_lit(expr) => {
self.resolve_expr(expr, visitor);
}
pat_range(first_expr, last_expr) => {
self.resolve_expr(first_expr, visitor);
self.resolve_expr(last_expr, visitor);
}
pat_struct(path, _, _) => {
match self.resolve_path(path, TypeNS, false, visitor) {
some(definition @ def_ty(class_id))
if self.structs.contains_key(class_id) => {
let has_constructor = self.structs.get(class_id);
let class_def = def_class(class_id,
has_constructor);
self.record_def(pattern.id, class_def);
}
_ => {
self.session.span_err(path.span,
fmt!("`%s` does not name a \
structure",
connect(path.idents.map
(|x| *x),
~"::")));
}
}
}
_ => {
// Nothing to do.
}
}
}
}
fn resolve_enum_variant_or_const(name: Atom)
-> EnumVariantOrConstResolution {
match self.resolve_item_in_lexical_scope(self.current_module,
name,
ValueNS) {
Success(target) => {
match target.bindings.value_def {
none => {
fail ~"resolved name in the value namespace to a set \
of name bindings with no def?!";
}
some(def @ def_variant(*)) => {
return FoundEnumVariant(def);
}
some(def_const(*)) => {
return FoundConst;
}
some(_) => {
return EnumVariantOrConstNotFound;
}
}
}
Indeterminate => {
fail ~"unexpected indeterminate result";
}
Failed => {
return EnumVariantOrConstNotFound;
}
}
}
/**
* If `check_ribs` is true, checks the local definitions first; i.e.
* doesn't skip straight to the containing module.
*/
fn resolve_path(path: @path, namespace: Namespace, check_ribs: bool,
visitor: ResolveVisitor)
-> option<def> {
// First, resolve the types.
for path.types.each |ty| {
self.resolve_type(ty, visitor);
}
if path.global {
return self.resolve_crate_relative_path(path,
self.xray_context,
namespace);
}
if path.idents.len() > 1u {
return self.resolve_module_relative_path(path,
self.xray_context,
namespace);
}
return self.resolve_identifier(path.idents.last(),
namespace,
check_ribs,
path.span);
}
fn resolve_identifier(identifier: ident,
namespace: Namespace,
check_ribs: bool,
span: span)
-> option<def> {
if check_ribs {
match self.resolve_identifier_in_local_ribs(identifier,
namespace,
span) {
some(def) => {
return some(def);
}
none => {
// Continue.
}
}
}
return self.resolve_item_by_identifier_in_lexical_scope(identifier,
namespace);
}
// XXX: Merge me with resolve_name_in_module?
fn resolve_definition_of_name_in_module(containing_module: @Module,
name: Atom,
namespace: Namespace,
xray: XrayFlag)
-> NameDefinition {
if xray == NoXray && !self.name_is_exported(containing_module, name) {
debug!{"(resolving definition of name in module) name `%s` is \
unexported",
*(*self.atom_table).atom_to_str(name)};
return NoNameDefinition;
}
// First, search children.
match containing_module.children.find(name) {
some(child_name_bindings) => {
match (*child_name_bindings).def_for_namespace(namespace) {
some(def) => {
// Found it. Stop the search here.
return ChildNameDefinition(def);
}
none => {
// Continue.
}
}
}
none => {
// Continue.
}
}
// Next, search import resolutions.
match containing_module.import_resolutions.find(name) {
some(import_resolution) => {
match (*import_resolution).target_for_namespace(namespace) {
some(target) => {
match (*target.bindings)
.def_for_namespace(namespace) {
some(def) => {
// Found it.
import_resolution.used = true;
return ImportNameDefinition(def);
}
none => {
// This can happen with external impls, due to
// the imperfect way we read the metadata.
return NoNameDefinition;
}
}
}
none => {
return NoNameDefinition;
}
}
}
none => {
return NoNameDefinition;
}
}
}
fn intern_module_part_of_path(path: @path) -> @dvec<Atom> {
let module_path_atoms = @dvec();
for path.idents.eachi |index, ident| {
if index == path.idents.len() - 1u {
break;
}
(*module_path_atoms).push((*self.atom_table).intern(ident));
}
return module_path_atoms;
}
fn resolve_module_relative_path(path: @path,
+xray: XrayFlag,
namespace: Namespace)
-> option<def> {
let module_path_atoms = self.intern_module_part_of_path(path);
let mut containing_module;
match self.resolve_module_path_for_import(self.current_module,
module_path_atoms,
xray,
path.span) {
Failed => {
self.session.span_err(path.span,
fmt!{"use of undeclared module `%s`",
*(*self.atom_table).atoms_to_str
((*module_path_atoms).get())});
return none;
}
Indeterminate => {
fail ~"indeterminate unexpected";
}
Success(resulting_module) => {
containing_module = resulting_module;
}
}
let name = (*self.atom_table).intern(path.idents.last());
match self.resolve_definition_of_name_in_module(containing_module,
name,
namespace,
xray) {
NoNameDefinition => {
// We failed to resolve the name. Report an error.
self.session.span_err(path.span,
fmt!{"unresolved name: %s::%s",
*(*self.atom_table).atoms_to_str
((*module_path_atoms).get()),
*(*self.atom_table).atom_to_str
(name)});
return none;
}
ChildNameDefinition(def) | ImportNameDefinition(def) => {
return some(def);
}
}
}
fn resolve_crate_relative_path(path: @path,
+xray: XrayFlag,
namespace: Namespace)
-> option<def> {
let module_path_atoms = self.intern_module_part_of_path(path);
let root_module = (*self.graph_root).get_module();
let mut containing_module;
match self.resolve_module_path_from_root(root_module,
module_path_atoms,
0u,
xray,
path.span) {
Failed => {
self.session.span_err(path.span,
fmt!{"use of undeclared module `::%s`",
*(*self.atom_table).atoms_to_str
((*module_path_atoms).get())});
return none;
}
Indeterminate => {
fail ~"indeterminate unexpected";
}
Success(resulting_module) => {
containing_module = resulting_module;
}
}
let name = (*self.atom_table).intern(path.idents.last());
match self.resolve_definition_of_name_in_module(containing_module,
name,
namespace,
xray) {
NoNameDefinition => {
// We failed to resolve the name. Report an error.
self.session.span_err(path.span,
fmt!{"unresolved name: %s::%s",
*(*self.atom_table).atoms_to_str
((*module_path_atoms).get()),
*(*self.atom_table).atom_to_str
(name)});
return none;
}
ChildNameDefinition(def) | ImportNameDefinition(def) => {
return some(def);
}
}
}
fn resolve_identifier_in_local_ribs(identifier: ident,
namespace: Namespace,
span: span)
-> option<def> {
let name = (*self.atom_table).intern(identifier);
// Check the local set of ribs.
let mut search_result;
match namespace {
ValueNS => {
search_result = self.search_ribs(self.value_ribs, name, span,
DontAllowCapturingSelf);
}
TypeNS => {
search_result = self.search_ribs(self.type_ribs, name, span,
AllowCapturingSelf);
}
ModuleNS | ImplNS => {
fail ~"module or impl namespaces do not have local ribs";
}
}
match copy search_result {
some(dl_def(def)) => {
debug!{"(resolving path in local ribs) resolved `%s` to \
local: %?",
*(*self.atom_table).atom_to_str(name),
def};
return some(def);
}
some(dl_field) | some(dl_impl(_)) | none => {
return none;
}
}
}
fn resolve_item_by_identifier_in_lexical_scope(ident: ident,
namespace: Namespace)
-> option<def> {
let name = (*self.atom_table).intern(ident);
// Check the items.
match self.resolve_item_in_lexical_scope(self.current_module,
name,
namespace) {
Success(target) => {
match (*target.bindings).def_for_namespace(namespace) {
none => {
fail ~"resolved name in a namespace to a set of name \
bindings with no def for that namespace?!";
}
some(def) => {
debug!{"(resolving item path in lexical scope) \
resolved `%s` to item",
*(*self.atom_table).atom_to_str(name)};
return some(def);
}
}
}
Indeterminate => {
fail ~"unexpected indeterminate result";
}
Failed => {
return none;
}
}
}
fn resolve_expr(expr: @expr, visitor: ResolveVisitor) {
// First, write the implementations in scope into a table if the
// expression might need them.
self.record_impls_for_expr_if_necessary(expr);
// Then record candidate traits for this expression if it could result
// in the invocation of a method call.
self.record_candidate_traits_for_expr_if_necessary(expr);
// Next, resolve the node.
match expr.node {
// The interpretation of paths depends on whether the path has
// multiple elements in it or not.
expr_path(path) => {
// This is a local path in the value namespace. Walk through
// scopes looking for it.
match self.resolve_path(path, ValueNS, true, visitor) {
some(def) => {
// Write the result into the def map.
debug!{"(resolving expr) resolved `%s`",
connect(path.idents.map(|x| *x), ~"::")};
self.record_def(expr.id, def);
}
none => {
self.session.span_err(expr.span,
fmt!{"unresolved name: %s",
connect(path.idents.map(|x| *x),
~"::")});
}
}
visit_expr(expr, (), visitor);
}
expr_fn(_, fn_decl, block, capture_clause) |
expr_fn_block(fn_decl, block, capture_clause) => {
self.resolve_function(FunctionRibKind(expr.id),
some(@fn_decl),
NoTypeParameters,
block,
NoSelfBinding,
HasCaptureClause(capture_clause),
visitor);
}
expr_struct(path, _, _) => {
// Resolve the path to the structure it goes to.
//
// XXX: We might want to support explicit type parameters in
// the path, in which case this gets a little more
// complicated:
//
// 1. Should we go through the ast_path_to_ty() path, which
// handles typedefs and the like?
//
// 2. If so, should programmers be able to write this?
//
// class Foo<A> { ... }
// type Bar<A> = Foo<A>;
// let bar = Bar { ... } // no type parameters
match self.resolve_path(path, TypeNS, false, visitor) {
some(definition @ def_ty(class_id))
if self.structs.contains_key(class_id) => {
let has_constructor = self.structs.get(class_id);
let class_def = def_class(class_id, has_constructor);
self.record_def(expr.id, class_def);
}
_ => {
self.session.span_err(path.span,
fmt!{"`%s` does not name a \
structure",
connect(path.idents.map
(|x| *x),
~"::")});
}
}
visit_expr(expr, (), visitor);
}
_ => {
visit_expr(expr, (), visitor);
}
}
}
fn record_impls_for_expr_if_necessary(expr: @expr) {
match expr.node {
expr_field(*) | expr_path(*) | expr_cast(*) | expr_binary(*) |
expr_unary(*) | expr_assign_op(*) | expr_index(*) => {
self.impl_map.insert(expr.id,
self.current_module.impl_scopes);
}
_ => {
// Nothing to do.
}
}
}
fn record_candidate_traits_for_expr_if_necessary(expr: @expr) {
match expr.node {
expr_field(_, ident, _) => {
let atom = (*self.atom_table).intern(ident);
let traits = self.search_for_traits_containing_method(atom);
self.trait_map.insert(expr.id, traits);
}
expr_binary(add, _, _) | expr_assign_op(add, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.add_trait);
}
expr_binary(subtract, _, _) | expr_assign_op(subtract, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.sub_trait);
}
expr_binary(mul, _, _) | expr_assign_op(mul, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.mul_trait);
}
expr_binary(div, _, _) | expr_assign_op(div, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.div_trait);
}
expr_binary(rem, _, _) | expr_assign_op(rem, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.modulo_trait);
}
expr_binary(bitxor, _, _) | expr_assign_op(bitxor, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitxor_trait);
}
expr_binary(bitand, _, _) | expr_assign_op(bitand, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitand_trait);
}
expr_binary(bitor, _, _) | expr_assign_op(bitor, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitor_trait);
}
expr_binary(shl, _, _) | expr_assign_op(shl, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.shl_trait);
}
expr_binary(shr, _, _) | expr_assign_op(shr, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.shr_trait);
}
expr_unary(neg, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.neg_trait);
}
expr_index(*) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.index_trait);
}
_ => {
// Nothing to do.
}
}
}
fn search_for_traits_containing_method(name: Atom) -> @dvec<def_id> {
let found_traits = @dvec();
let mut search_module = self.current_module;
loop {
// Look for the current trait.
match copy self.current_trait_refs {
some(trait_def_ids) => {
for trait_def_ids.each |trait_def_id| {
self.add_trait_info_if_containing_method
(found_traits, trait_def_id, name);
}
}
none => {
// Nothing to do.
}
}
// Look for trait children.
for search_module.children.each |_name, child_name_bindings| {
match child_name_bindings.def_for_namespace(TypeNS) {
some(def_ty(trait_def_id)) => {
self.add_trait_info_if_containing_method(found_traits,
trait_def_id,
name);
}
some(_) | none => {
// Continue.
}
}
}
// Look for imports.
for search_module.import_resolutions.each
|_atom, import_resolution| {
match import_resolution.target_for_namespace(TypeNS) {
none => {
// Continue.
}
some(target) => {
match target.bindings.def_for_namespace(TypeNS) {
some(def_ty(trait_def_id)) => {
self.add_trait_info_if_containing_method
(found_traits, trait_def_id, name);
}
some(_) | none => {
// Continue.
}
}
}
}
}
// Move to the next parent.
match search_module.parent_link {
NoParentLink => {
// Done.
break;
}
ModuleParentLink(parent_module, _) |
BlockParentLink(parent_module, _) => {
search_module = parent_module;
}
}
}
return found_traits;
}
fn add_trait_info_if_containing_method(found_traits: @dvec<def_id>,
trait_def_id: def_id,
name: Atom) {
match self.trait_info.find(trait_def_id) {
some(trait_info) if trait_info.contains_key(name) => {
debug!{"(adding trait info if containing method) found trait \
%d:%d for method '%s'",
trait_def_id.crate,
trait_def_id.node,
*(*self.atom_table).atom_to_str(name)};
(*found_traits).push(trait_def_id);
}
some(_) | none => {
// Continue.
}
}
}
fn add_fixed_trait_for_expr(expr_id: node_id, +trait_id: option<def_id>) {
let traits = @dvec();
traits.push(trait_id.get());
self.trait_map.insert(expr_id, traits);
}
fn record_def(node_id: node_id, def: def) {
debug!{"(recording def) recording %? for %?", def, node_id};
self.def_map.insert(node_id, def);
}
//
// Unused import checking
//
// Although this is a lint pass, it lives in here because it depends on
// resolve data structures.
//
fn check_for_unused_imports_if_necessary() {
if self.unused_import_lint_level == allow {
return;
}
let root_module = (*self.graph_root).get_module();
self.check_for_unused_imports_in_module_subtree(root_module);
}
fn check_for_unused_imports_in_module_subtree(module_: @Module) {
// If this isn't a local crate, then bail out. We don't need to check
// for unused imports in external crates.
match module_.def_id {
some(def_id) if def_id.crate == local_crate => {
// OK. Continue.
}
none => {
// Check for unused imports in the root module.
}
some(_) => {
// Bail out.
debug!{"(checking for unused imports in module subtree) not \
checking for unused imports for `%s`",
self.module_to_str(module_)};
return;
}
}
self.check_for_unused_imports_in_module(module_);
for module_.children.each |_atom, child_name_bindings| {
match (*child_name_bindings).get_module_if_available() {
none => {
// Nothing to do.
}
some(child_module) => {
self.check_for_unused_imports_in_module_subtree
(child_module);
}
}
}
for module_.anonymous_children.each |_node_id, child_module| {
self.check_for_unused_imports_in_module_subtree(child_module);
}
}
fn check_for_unused_imports_in_module(module_: @Module) {
for module_.import_resolutions.each |_impl_name, import_resolution| {
if !import_resolution.used {
match self.unused_import_lint_level {
warn => {
self.session.span_warn(import_resolution.span,
~"unused import");
}
deny | forbid => {
self.session.span_err(import_resolution.span,
~"unused import");
}
allow => {
self.session.span_bug(import_resolution.span,
~"shouldn't be here if lint \
is allowed");
}
}
}
}
}
//
// Diagnostics
//
// Diagnostics are not particularly efficient, because they're rarely
// hit.
//
/// A somewhat inefficient routine to print out the name of a module.
fn module_to_str(module_: @Module) -> ~str {
let atoms = dvec();
let mut current_module = module_;
loop {
match current_module.parent_link {
NoParentLink => {
break;
}
ModuleParentLink(module_, name) => {
atoms.push(name);
current_module = module_;
}
BlockParentLink(module_, node_id) => {
atoms.push((*self.atom_table).intern(@~"<opaque>"));
current_module = module_;
}
}
}
if atoms.len() == 0u {
return ~"???";
}
let mut string = ~"";
let mut i = atoms.len() - 1u;
loop {
if i < atoms.len() - 1u {
string += ~"::";
}
string += *(*self.atom_table).atom_to_str(atoms.get_elt(i));
if i == 0u {
break;
}
i -= 1u;
}
return string;
}
fn dump_module(module_: @Module) {
debug!{"Dump of module `%s`:", self.module_to_str(module_)};
debug!{"Children:"};
for module_.children.each |name, _child| {
debug!{"* %s", *(*self.atom_table).atom_to_str(name)};
}
debug!{"Import resolutions:"};
for module_.import_resolutions.each |name, import_resolution| {
let mut module_repr;
match (*import_resolution).target_for_namespace(ModuleNS) {
none => { module_repr = ~""; }
some(target) => {
module_repr = ~" module:?";
// XXX
}
}
let mut value_repr;
match (*import_resolution).target_for_namespace(ValueNS) {
none => { value_repr = ~""; }
some(target) => {
value_repr = ~" value:?";
// XXX
}
}
let mut type_repr;
match (*import_resolution).target_for_namespace(TypeNS) {
none => { type_repr = ~""; }
some(target) => {
type_repr = ~" type:?";
// XXX
}
}
let mut impl_repr;
match (*import_resolution).target_for_namespace(ImplNS) {
none => { impl_repr = ~""; }
some(target) => {
impl_repr = ~" impl:?";
// XXX
}
}
debug!{"* %s:%s%s%s%s",
*(*self.atom_table).atom_to_str(name),
module_repr, value_repr, type_repr, impl_repr};
}
}
fn dump_impl_scopes(impl_scopes: ImplScopes) {
debug!{"Dump of impl scopes:"};
let mut i = 0u;
let mut impl_scopes = impl_scopes;
loop {
match *impl_scopes {
cons(impl_scope, rest_impl_scopes) => {
debug!{"Impl scope %u:", i};
for (*impl_scope).each |implementation| {
debug!{"Impl: %s", *implementation.ident};
}
i += 1u;
impl_scopes = rest_impl_scopes;
}
nil => {
break;
}
}
}
}
}
/// Entry point to crate resolution.
fn resolve_crate(session: session, lang_items: LanguageItems, crate: @crate)
-> { def_map: DefMap,
exp_map: ExportMap,
impl_map: ImplMap,
trait_map: TraitMap } {
let resolver = @Resolver(session, lang_items, crate);
(*resolver).resolve(resolver);
return {
def_map: resolver.def_map,
exp_map: resolver.export_map,
impl_map: resolver.impl_map,
trait_map: resolver.trait_map
};
}