1028 lines
35 KiB
Rust
1028 lines
35 KiB
Rust
use std::ops::Index;
|
|
use std::sync::Arc;
|
|
|
|
use rustc_hash::FxHashMap;
|
|
|
|
use ra_arena::{Arena, RawId, impl_arena_id, map::ArenaMap};
|
|
use ra_syntax::{
|
|
SyntaxNodePtr, AstNode,
|
|
ast::{self, LoopBodyOwner, ArgListOwner, NameOwner, LiteralFlavor}
|
|
};
|
|
|
|
use crate::{
|
|
Path, Name, HirDatabase, Function, Resolver,
|
|
name::AsName,
|
|
type_ref::{Mutability, TypeRef},
|
|
};
|
|
use crate::ty::primitive::{UintTy, UncertainIntTy, UncertainFloatTy};
|
|
|
|
pub use self::scope::{ExprScopes, ScopesWithSyntaxMapping, ScopeEntryWithSyntax};
|
|
|
|
pub(crate) mod scope;
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
|
pub struct ExprId(RawId);
|
|
impl_arena_id!(ExprId);
|
|
|
|
/// The body of an item (function, const etc.).
|
|
#[derive(Debug, Eq, PartialEq)]
|
|
pub struct Body {
|
|
// TODO: this should be more general, consts & statics also have bodies
|
|
/// The Function of the item this body belongs to
|
|
owner: Function,
|
|
exprs: Arena<ExprId, Expr>,
|
|
pats: Arena<PatId, Pat>,
|
|
/// The patterns for the function's parameters. While the parameter types are
|
|
/// part of the function signature, the patterns are not (they don't change
|
|
/// the external type of the function).
|
|
///
|
|
/// If this `Body` is for the body of a constant, this will just be
|
|
/// empty.
|
|
params: Vec<PatId>,
|
|
/// The `ExprId` of the actual body expression.
|
|
body_expr: ExprId,
|
|
}
|
|
|
|
/// An item body together with the mapping from syntax nodes to HIR expression
|
|
/// IDs. This is needed to go from e.g. a position in a file to the HIR
|
|
/// expression containing it; but for type inference etc., we want to operate on
|
|
/// a structure that is agnostic to the actual positions of expressions in the
|
|
/// file, so that we don't recompute types whenever some whitespace is typed.
|
|
#[derive(Debug, Eq, PartialEq)]
|
|
pub struct BodySyntaxMapping {
|
|
body: Arc<Body>,
|
|
expr_syntax_mapping: FxHashMap<SyntaxNodePtr, ExprId>,
|
|
expr_syntax_mapping_back: ArenaMap<ExprId, SyntaxNodePtr>,
|
|
pat_syntax_mapping: FxHashMap<SyntaxNodePtr, PatId>,
|
|
pat_syntax_mapping_back: ArenaMap<PatId, SyntaxNodePtr>,
|
|
}
|
|
|
|
impl Body {
|
|
pub fn params(&self) -> &[PatId] {
|
|
&self.params
|
|
}
|
|
|
|
pub fn body_expr(&self) -> ExprId {
|
|
self.body_expr
|
|
}
|
|
|
|
pub fn owner(&self) -> Function {
|
|
self.owner
|
|
}
|
|
|
|
pub fn syntax_mapping(&self, db: &impl HirDatabase) -> Arc<BodySyntaxMapping> {
|
|
db.body_syntax_mapping(self.owner)
|
|
}
|
|
}
|
|
|
|
// needs arbitrary_self_types to be a method... or maybe move to the def?
|
|
pub fn resolver_for_expr(body: Arc<Body>, db: &impl HirDatabase, expr_id: ExprId) -> Resolver {
|
|
let scopes = db.expr_scopes(body.owner);
|
|
resolver_for_scope(body, db, scopes.scope_for(expr_id))
|
|
}
|
|
|
|
pub fn resolver_for_scope(
|
|
body: Arc<Body>,
|
|
db: &impl HirDatabase,
|
|
scope_id: Option<scope::ScopeId>,
|
|
) -> Resolver {
|
|
let mut r = body.owner.resolver(db);
|
|
let scopes = db.expr_scopes(body.owner);
|
|
let scope_chain = scopes.scope_chain_for(scope_id).collect::<Vec<_>>();
|
|
for scope in scope_chain.into_iter().rev() {
|
|
r = r.push_expr_scope(Arc::clone(&scopes), scope);
|
|
}
|
|
r
|
|
}
|
|
|
|
impl Index<ExprId> for Body {
|
|
type Output = Expr;
|
|
|
|
fn index(&self, expr: ExprId) -> &Expr {
|
|
&self.exprs[expr]
|
|
}
|
|
}
|
|
|
|
impl Index<PatId> for Body {
|
|
type Output = Pat;
|
|
|
|
fn index(&self, pat: PatId) -> &Pat {
|
|
&self.pats[pat]
|
|
}
|
|
}
|
|
|
|
impl BodySyntaxMapping {
|
|
pub fn expr_syntax(&self, expr: ExprId) -> Option<SyntaxNodePtr> {
|
|
self.expr_syntax_mapping_back.get(expr).cloned()
|
|
}
|
|
|
|
pub fn syntax_expr(&self, ptr: SyntaxNodePtr) -> Option<ExprId> {
|
|
self.expr_syntax_mapping.get(&ptr).cloned()
|
|
}
|
|
|
|
pub fn node_expr(&self, node: &ast::Expr) -> Option<ExprId> {
|
|
self.expr_syntax_mapping
|
|
.get(&SyntaxNodePtr::new(node.syntax()))
|
|
.cloned()
|
|
}
|
|
|
|
pub fn pat_syntax(&self, pat: PatId) -> Option<SyntaxNodePtr> {
|
|
self.pat_syntax_mapping_back.get(pat).cloned()
|
|
}
|
|
|
|
pub fn syntax_pat(&self, ptr: SyntaxNodePtr) -> Option<PatId> {
|
|
self.pat_syntax_mapping.get(&ptr).cloned()
|
|
}
|
|
|
|
pub fn node_pat(&self, node: &ast::Pat) -> Option<PatId> {
|
|
self.pat_syntax_mapping
|
|
.get(&SyntaxNodePtr::new(node.syntax()))
|
|
.cloned()
|
|
}
|
|
|
|
pub fn body(&self) -> &Arc<Body> {
|
|
&self.body
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub enum Literal {
|
|
String(String),
|
|
ByteString(Vec<u8>),
|
|
Char(char),
|
|
Bool(bool),
|
|
Int(u64, UncertainIntTy),
|
|
Float(u64, UncertainFloatTy), // FIXME: f64 is not Eq
|
|
}
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub enum Expr {
|
|
/// This is produced if syntax tree does not have a required expression piece.
|
|
Missing,
|
|
Path(Path),
|
|
If {
|
|
condition: ExprId,
|
|
then_branch: ExprId,
|
|
else_branch: Option<ExprId>,
|
|
},
|
|
Block {
|
|
statements: Vec<Statement>,
|
|
tail: Option<ExprId>,
|
|
},
|
|
Loop {
|
|
body: ExprId,
|
|
},
|
|
While {
|
|
condition: ExprId,
|
|
body: ExprId,
|
|
},
|
|
For {
|
|
iterable: ExprId,
|
|
pat: PatId,
|
|
body: ExprId,
|
|
},
|
|
Call {
|
|
callee: ExprId,
|
|
args: Vec<ExprId>,
|
|
},
|
|
MethodCall {
|
|
receiver: ExprId,
|
|
method_name: Name,
|
|
args: Vec<ExprId>,
|
|
},
|
|
Match {
|
|
expr: ExprId,
|
|
arms: Vec<MatchArm>,
|
|
},
|
|
Continue,
|
|
Break {
|
|
expr: Option<ExprId>,
|
|
},
|
|
Return {
|
|
expr: Option<ExprId>,
|
|
},
|
|
StructLit {
|
|
path: Option<Path>,
|
|
fields: Vec<StructLitField>,
|
|
spread: Option<ExprId>,
|
|
},
|
|
Field {
|
|
expr: ExprId,
|
|
name: Name,
|
|
},
|
|
Try {
|
|
expr: ExprId,
|
|
},
|
|
Cast {
|
|
expr: ExprId,
|
|
type_ref: TypeRef,
|
|
},
|
|
Ref {
|
|
expr: ExprId,
|
|
mutability: Mutability,
|
|
},
|
|
UnaryOp {
|
|
expr: ExprId,
|
|
op: UnaryOp,
|
|
},
|
|
BinaryOp {
|
|
lhs: ExprId,
|
|
rhs: ExprId,
|
|
op: Option<BinaryOp>,
|
|
},
|
|
Lambda {
|
|
args: Vec<PatId>,
|
|
arg_types: Vec<Option<TypeRef>>,
|
|
body: ExprId,
|
|
},
|
|
Tuple {
|
|
exprs: Vec<ExprId>,
|
|
},
|
|
Array {
|
|
exprs: Vec<ExprId>,
|
|
},
|
|
Literal(Literal),
|
|
}
|
|
|
|
pub use ra_syntax::ast::PrefixOp as UnaryOp;
|
|
pub use ra_syntax::ast::BinOp as BinaryOp;
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub struct MatchArm {
|
|
pub pats: Vec<PatId>,
|
|
pub guard: Option<ExprId>,
|
|
pub expr: ExprId,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub struct StructLitField {
|
|
pub name: Name,
|
|
pub expr: ExprId,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub enum Statement {
|
|
Let {
|
|
pat: PatId,
|
|
type_ref: Option<TypeRef>,
|
|
initializer: Option<ExprId>,
|
|
},
|
|
Expr(ExprId),
|
|
}
|
|
|
|
impl Expr {
|
|
pub fn walk_child_exprs(&self, mut f: impl FnMut(ExprId)) {
|
|
match self {
|
|
Expr::Missing => {}
|
|
Expr::Path(_) => {}
|
|
Expr::If {
|
|
condition,
|
|
then_branch,
|
|
else_branch,
|
|
} => {
|
|
f(*condition);
|
|
f(*then_branch);
|
|
if let Some(else_branch) = else_branch {
|
|
f(*else_branch);
|
|
}
|
|
}
|
|
Expr::Block { statements, tail } => {
|
|
for stmt in statements {
|
|
match stmt {
|
|
Statement::Let { initializer, .. } => {
|
|
if let Some(expr) = initializer {
|
|
f(*expr);
|
|
}
|
|
}
|
|
Statement::Expr(e) => f(*e),
|
|
}
|
|
}
|
|
if let Some(expr) = tail {
|
|
f(*expr);
|
|
}
|
|
}
|
|
Expr::Loop { body } => f(*body),
|
|
Expr::While { condition, body } => {
|
|
f(*condition);
|
|
f(*body);
|
|
}
|
|
Expr::For { iterable, body, .. } => {
|
|
f(*iterable);
|
|
f(*body);
|
|
}
|
|
Expr::Call { callee, args } => {
|
|
f(*callee);
|
|
for arg in args {
|
|
f(*arg);
|
|
}
|
|
}
|
|
Expr::MethodCall { receiver, args, .. } => {
|
|
f(*receiver);
|
|
for arg in args {
|
|
f(*arg);
|
|
}
|
|
}
|
|
Expr::Match { expr, arms } => {
|
|
f(*expr);
|
|
for arm in arms {
|
|
f(arm.expr);
|
|
}
|
|
}
|
|
Expr::Continue => {}
|
|
Expr::Break { expr } | Expr::Return { expr } => {
|
|
if let Some(expr) = expr {
|
|
f(*expr);
|
|
}
|
|
}
|
|
Expr::StructLit { fields, spread, .. } => {
|
|
for field in fields {
|
|
f(field.expr);
|
|
}
|
|
if let Some(expr) = spread {
|
|
f(*expr);
|
|
}
|
|
}
|
|
Expr::Lambda { body, .. } => {
|
|
f(*body);
|
|
}
|
|
Expr::BinaryOp { lhs, rhs, .. } => {
|
|
f(*lhs);
|
|
f(*rhs);
|
|
}
|
|
Expr::Field { expr, .. }
|
|
| Expr::Try { expr }
|
|
| Expr::Cast { expr, .. }
|
|
| Expr::Ref { expr, .. }
|
|
| Expr::UnaryOp { expr, .. } => {
|
|
f(*expr);
|
|
}
|
|
Expr::Tuple { exprs } | Expr::Array { exprs } => {
|
|
for expr in exprs {
|
|
f(*expr);
|
|
}
|
|
}
|
|
Expr::Literal(_) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
|
pub struct PatId(RawId);
|
|
impl_arena_id!(PatId);
|
|
|
|
/// Explicit binding annotations given in the HIR for a binding. Note
|
|
/// that this is not the final binding *mode* that we infer after type
|
|
/// inference.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Copy)]
|
|
pub enum BindingAnnotation {
|
|
/// No binding annotation given: this means that the final binding mode
|
|
/// will depend on whether we have skipped through a `&` reference
|
|
/// when matching. For example, the `x` in `Some(x)` will have binding
|
|
/// mode `None`; if you do `let Some(x) = &Some(22)`, it will
|
|
/// ultimately be inferred to be by-reference.
|
|
Unannotated,
|
|
|
|
/// Annotated with `mut x` -- could be either ref or not, similar to `None`.
|
|
Mutable,
|
|
|
|
/// Annotated as `ref`, like `ref x`
|
|
Ref,
|
|
|
|
/// Annotated as `ref mut x`.
|
|
RefMut,
|
|
}
|
|
|
|
impl BindingAnnotation {
|
|
fn new(is_mutable: bool, is_ref: bool) -> Self {
|
|
match (is_mutable, is_ref) {
|
|
(true, true) => BindingAnnotation::RefMut,
|
|
(false, true) => BindingAnnotation::Ref,
|
|
(true, false) => BindingAnnotation::Mutable,
|
|
(false, false) => BindingAnnotation::Unannotated,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub struct FieldPat {
|
|
pub(crate) name: Name,
|
|
pub(crate) pat: PatId,
|
|
}
|
|
|
|
/// Close relative to rustc's hir::PatKind
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub enum Pat {
|
|
Missing,
|
|
Wild,
|
|
Tuple(Vec<PatId>),
|
|
Struct {
|
|
path: Option<Path>,
|
|
args: Vec<FieldPat>,
|
|
// TODO: 'ellipsis' option
|
|
},
|
|
Range {
|
|
start: ExprId,
|
|
end: ExprId,
|
|
},
|
|
Slice {
|
|
prefix: Vec<PatId>,
|
|
rest: Option<PatId>,
|
|
suffix: Vec<PatId>,
|
|
},
|
|
Path(Path),
|
|
Lit(ExprId),
|
|
Bind {
|
|
mode: BindingAnnotation,
|
|
name: Name,
|
|
subpat: Option<PatId>,
|
|
},
|
|
TupleStruct {
|
|
path: Option<Path>,
|
|
args: Vec<PatId>,
|
|
},
|
|
Ref {
|
|
pat: PatId,
|
|
mutability: Mutability,
|
|
},
|
|
}
|
|
|
|
impl Pat {
|
|
pub fn walk_child_pats(&self, mut f: impl FnMut(PatId)) {
|
|
match self {
|
|
Pat::Range { .. } | Pat::Lit(..) | Pat::Path(..) | Pat::Wild | Pat::Missing => {}
|
|
Pat::Bind { subpat, .. } => {
|
|
subpat.iter().map(|pat| *pat).for_each(f);
|
|
}
|
|
Pat::Tuple(args) | Pat::TupleStruct { args, .. } => {
|
|
args.iter().map(|pat| *pat).for_each(f);
|
|
}
|
|
Pat::Ref { pat, .. } => f(*pat),
|
|
Pat::Slice {
|
|
prefix,
|
|
rest,
|
|
suffix,
|
|
} => {
|
|
let total_iter = prefix.iter().chain(rest.iter()).chain(suffix.iter());
|
|
total_iter.map(|pat| *pat).for_each(f);
|
|
}
|
|
Pat::Struct { args, .. } => {
|
|
args.iter().map(|f| f.pat).for_each(f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Queries
|
|
|
|
pub(crate) fn body_hir(db: &impl HirDatabase, func: Function) -> Arc<Body> {
|
|
Arc::clone(&body_syntax_mapping(db, func).body)
|
|
}
|
|
|
|
struct ExprCollector {
|
|
owner: Function,
|
|
exprs: Arena<ExprId, Expr>,
|
|
pats: Arena<PatId, Pat>,
|
|
expr_syntax_mapping: FxHashMap<SyntaxNodePtr, ExprId>,
|
|
expr_syntax_mapping_back: ArenaMap<ExprId, SyntaxNodePtr>,
|
|
pat_syntax_mapping: FxHashMap<SyntaxNodePtr, PatId>,
|
|
pat_syntax_mapping_back: ArenaMap<PatId, SyntaxNodePtr>,
|
|
params: Vec<PatId>,
|
|
body_expr: Option<ExprId>,
|
|
}
|
|
|
|
impl ExprCollector {
|
|
fn new(owner: Function) -> Self {
|
|
ExprCollector {
|
|
owner,
|
|
exprs: Arena::default(),
|
|
pats: Arena::default(),
|
|
expr_syntax_mapping: FxHashMap::default(),
|
|
expr_syntax_mapping_back: ArenaMap::default(),
|
|
pat_syntax_mapping: FxHashMap::default(),
|
|
pat_syntax_mapping_back: ArenaMap::default(),
|
|
params: Vec::new(),
|
|
body_expr: None,
|
|
}
|
|
}
|
|
|
|
fn alloc_expr(&mut self, expr: Expr, syntax_ptr: SyntaxNodePtr) -> ExprId {
|
|
let id = self.exprs.alloc(expr);
|
|
self.expr_syntax_mapping.insert(syntax_ptr, id);
|
|
self.expr_syntax_mapping_back.insert(id, syntax_ptr);
|
|
id
|
|
}
|
|
|
|
fn alloc_pat(&mut self, pat: Pat, syntax_ptr: SyntaxNodePtr) -> PatId {
|
|
let id = self.pats.alloc(pat);
|
|
self.pat_syntax_mapping.insert(syntax_ptr, id);
|
|
self.pat_syntax_mapping_back.insert(id, syntax_ptr);
|
|
id
|
|
}
|
|
|
|
fn empty_block(&mut self) -> ExprId {
|
|
let block = Expr::Block {
|
|
statements: Vec::new(),
|
|
tail: None,
|
|
};
|
|
self.exprs.alloc(block)
|
|
}
|
|
|
|
fn collect_expr(&mut self, expr: &ast::Expr) -> ExprId {
|
|
let syntax_ptr = SyntaxNodePtr::new(expr.syntax());
|
|
match expr.kind() {
|
|
ast::ExprKind::IfExpr(e) => {
|
|
if let Some(pat) = e.condition().and_then(|c| c.pat()) {
|
|
// if let -- desugar to match
|
|
let pat = self.collect_pat(pat);
|
|
let match_expr =
|
|
self.collect_expr_opt(e.condition().expect("checked above").expr());
|
|
let then_branch = self.collect_block_opt(e.then_branch());
|
|
let else_branch = e
|
|
.else_branch()
|
|
.map(|b| match b {
|
|
ast::ElseBranchFlavor::Block(it) => self.collect_block(it),
|
|
ast::ElseBranchFlavor::IfExpr(elif) => {
|
|
let expr: &ast::Expr = ast::Expr::cast(elif.syntax()).unwrap();
|
|
self.collect_expr(expr)
|
|
}
|
|
})
|
|
.unwrap_or_else(|| self.empty_block());
|
|
let placeholder_pat = self.pats.alloc(Pat::Missing);
|
|
let arms = vec![
|
|
MatchArm {
|
|
pats: vec![pat],
|
|
expr: then_branch,
|
|
guard: None,
|
|
},
|
|
MatchArm {
|
|
pats: vec![placeholder_pat],
|
|
expr: else_branch,
|
|
guard: None,
|
|
},
|
|
];
|
|
self.alloc_expr(
|
|
Expr::Match {
|
|
expr: match_expr,
|
|
arms,
|
|
},
|
|
syntax_ptr,
|
|
)
|
|
} else {
|
|
let condition = self.collect_expr_opt(e.condition().and_then(|c| c.expr()));
|
|
let then_branch = self.collect_block_opt(e.then_branch());
|
|
let else_branch = e.else_branch().map(|b| match b {
|
|
ast::ElseBranchFlavor::Block(it) => self.collect_block(it),
|
|
ast::ElseBranchFlavor::IfExpr(elif) => {
|
|
let expr: &ast::Expr = ast::Expr::cast(elif.syntax()).unwrap();
|
|
self.collect_expr(expr)
|
|
}
|
|
});
|
|
self.alloc_expr(
|
|
Expr::If {
|
|
condition,
|
|
then_branch,
|
|
else_branch,
|
|
},
|
|
syntax_ptr,
|
|
)
|
|
}
|
|
}
|
|
ast::ExprKind::BlockExpr(e) => self.collect_block_opt(e.block()),
|
|
ast::ExprKind::LoopExpr(e) => {
|
|
let body = self.collect_block_opt(e.loop_body());
|
|
self.alloc_expr(Expr::Loop { body }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::WhileExpr(e) => {
|
|
let condition = if let Some(condition) = e.condition() {
|
|
if condition.pat().is_none() {
|
|
self.collect_expr_opt(condition.expr())
|
|
} else {
|
|
// TODO handle while let
|
|
return self.alloc_expr(Expr::Missing, syntax_ptr);
|
|
}
|
|
} else {
|
|
self.exprs.alloc(Expr::Missing)
|
|
};
|
|
let body = self.collect_block_opt(e.loop_body());
|
|
self.alloc_expr(Expr::While { condition, body }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::ForExpr(e) => {
|
|
let iterable = self.collect_expr_opt(e.iterable());
|
|
let pat = self.collect_pat_opt(e.pat());
|
|
let body = self.collect_block_opt(e.loop_body());
|
|
self.alloc_expr(
|
|
Expr::For {
|
|
iterable,
|
|
pat,
|
|
body,
|
|
},
|
|
syntax_ptr,
|
|
)
|
|
}
|
|
ast::ExprKind::CallExpr(e) => {
|
|
let callee = self.collect_expr_opt(e.expr());
|
|
let args = if let Some(arg_list) = e.arg_list() {
|
|
arg_list.args().map(|e| self.collect_expr(e)).collect()
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::MethodCallExpr(e) => {
|
|
let receiver = self.collect_expr_opt(e.expr());
|
|
let args = if let Some(arg_list) = e.arg_list() {
|
|
arg_list.args().map(|e| self.collect_expr(e)).collect()
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
let method_name = e
|
|
.name_ref()
|
|
.map(|nr| nr.as_name())
|
|
.unwrap_or_else(Name::missing);
|
|
self.alloc_expr(
|
|
Expr::MethodCall {
|
|
receiver,
|
|
method_name,
|
|
args,
|
|
},
|
|
syntax_ptr,
|
|
)
|
|
}
|
|
ast::ExprKind::MatchExpr(e) => {
|
|
let expr = self.collect_expr_opt(e.expr());
|
|
let arms = if let Some(match_arm_list) = e.match_arm_list() {
|
|
match_arm_list
|
|
.arms()
|
|
.map(|arm| MatchArm {
|
|
pats: arm.pats().map(|p| self.collect_pat(p)).collect(),
|
|
expr: self.collect_expr_opt(arm.expr()),
|
|
guard: arm
|
|
.guard()
|
|
.and_then(|guard| guard.expr())
|
|
.map(|e| self.collect_expr(e)),
|
|
})
|
|
.collect()
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::PathExpr(e) => {
|
|
let path = e
|
|
.path()
|
|
.and_then(Path::from_ast)
|
|
.map(Expr::Path)
|
|
.unwrap_or(Expr::Missing);
|
|
self.alloc_expr(path, syntax_ptr)
|
|
}
|
|
ast::ExprKind::ContinueExpr(_e) => {
|
|
// TODO: labels
|
|
self.alloc_expr(Expr::Continue, syntax_ptr)
|
|
}
|
|
ast::ExprKind::BreakExpr(e) => {
|
|
let expr = e.expr().map(|e| self.collect_expr(e));
|
|
self.alloc_expr(Expr::Break { expr }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::ParenExpr(e) => {
|
|
let inner = self.collect_expr_opt(e.expr());
|
|
// make the paren expr point to the inner expression as well
|
|
self.expr_syntax_mapping.insert(syntax_ptr, inner);
|
|
inner
|
|
}
|
|
ast::ExprKind::ReturnExpr(e) => {
|
|
let expr = e.expr().map(|e| self.collect_expr(e));
|
|
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::StructLit(e) => {
|
|
let path = e.path().and_then(Path::from_ast);
|
|
let fields = if let Some(nfl) = e.named_field_list() {
|
|
nfl.fields()
|
|
.map(|field| StructLitField {
|
|
name: field
|
|
.name_ref()
|
|
.map(|nr| nr.as_name())
|
|
.unwrap_or_else(Name::missing),
|
|
expr: if let Some(e) = field.expr() {
|
|
self.collect_expr(e)
|
|
} else if let Some(nr) = field.name_ref() {
|
|
// field shorthand
|
|
let id = self.exprs.alloc(Expr::Path(Path::from_name_ref(nr)));
|
|
self.expr_syntax_mapping
|
|
.insert(SyntaxNodePtr::new(nr.syntax()), id);
|
|
self.expr_syntax_mapping_back
|
|
.insert(id, SyntaxNodePtr::new(nr.syntax()));
|
|
id
|
|
} else {
|
|
self.exprs.alloc(Expr::Missing)
|
|
},
|
|
})
|
|
.collect()
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
let spread = e.spread().map(|s| self.collect_expr(s));
|
|
self.alloc_expr(
|
|
Expr::StructLit {
|
|
path,
|
|
fields,
|
|
spread,
|
|
},
|
|
syntax_ptr,
|
|
)
|
|
}
|
|
ast::ExprKind::FieldExpr(e) => {
|
|
let expr = self.collect_expr_opt(e.expr());
|
|
let name = e
|
|
.name_ref()
|
|
.map(|nr| nr.as_name())
|
|
.unwrap_or_else(Name::missing);
|
|
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::TryExpr(e) => {
|
|
let expr = self.collect_expr_opt(e.expr());
|
|
self.alloc_expr(Expr::Try { expr }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::CastExpr(e) => {
|
|
let expr = self.collect_expr_opt(e.expr());
|
|
let type_ref = TypeRef::from_ast_opt(e.type_ref());
|
|
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::RefExpr(e) => {
|
|
let expr = self.collect_expr_opt(e.expr());
|
|
let mutability = Mutability::from_mutable(e.is_mut());
|
|
self.alloc_expr(Expr::Ref { expr, mutability }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::PrefixExpr(e) => {
|
|
let expr = self.collect_expr_opt(e.expr());
|
|
if let Some(op) = e.op() {
|
|
self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
|
|
} else {
|
|
self.alloc_expr(Expr::Missing, syntax_ptr)
|
|
}
|
|
}
|
|
ast::ExprKind::LambdaExpr(e) => {
|
|
let mut args = Vec::new();
|
|
let mut arg_types = Vec::new();
|
|
if let Some(pl) = e.param_list() {
|
|
for param in pl.params() {
|
|
let pat = self.collect_pat_opt(param.pat());
|
|
let type_ref = param.type_ref().map(TypeRef::from_ast);
|
|
args.push(pat);
|
|
arg_types.push(type_ref);
|
|
}
|
|
}
|
|
let body = self.collect_expr_opt(e.body());
|
|
self.alloc_expr(
|
|
Expr::Lambda {
|
|
args,
|
|
arg_types,
|
|
body,
|
|
},
|
|
syntax_ptr,
|
|
)
|
|
}
|
|
ast::ExprKind::BinExpr(e) => {
|
|
let lhs = self.collect_expr_opt(e.lhs());
|
|
let rhs = self.collect_expr_opt(e.rhs());
|
|
let op = e.op();
|
|
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::TupleExpr(e) => {
|
|
let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
|
|
self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::ArrayExpr(e) => {
|
|
let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
|
|
self.alloc_expr(Expr::Array { exprs }, syntax_ptr)
|
|
}
|
|
ast::ExprKind::Literal(e) => {
|
|
let child = if let Some(child) = e.literal_expr() {
|
|
child
|
|
} else {
|
|
return self.alloc_expr(Expr::Missing, syntax_ptr);
|
|
};
|
|
|
|
let lit = match child.flavor() {
|
|
LiteralFlavor::IntNumber { suffix } => {
|
|
let known_name = suffix
|
|
.map(Name::new)
|
|
.and_then(|name| UncertainIntTy::from_name(&name));
|
|
|
|
Literal::Int(
|
|
Default::default(),
|
|
known_name.unwrap_or(UncertainIntTy::Unknown),
|
|
)
|
|
}
|
|
LiteralFlavor::FloatNumber { suffix } => {
|
|
let known_name = suffix
|
|
.map(Name::new)
|
|
.and_then(|name| UncertainFloatTy::from_name(&name));
|
|
|
|
Literal::Float(
|
|
Default::default(),
|
|
known_name.unwrap_or(UncertainFloatTy::Unknown),
|
|
)
|
|
}
|
|
LiteralFlavor::ByteString => Literal::ByteString(Default::default()),
|
|
LiteralFlavor::String => Literal::String(Default::default()),
|
|
LiteralFlavor::Byte => {
|
|
Literal::Int(Default::default(), UncertainIntTy::Unsigned(UintTy::U8))
|
|
}
|
|
LiteralFlavor::Bool => Literal::Bool(Default::default()),
|
|
LiteralFlavor::Char => Literal::Char(Default::default()),
|
|
};
|
|
self.alloc_expr(Expr::Literal(lit), syntax_ptr)
|
|
}
|
|
|
|
// TODO implement HIR for these:
|
|
ast::ExprKind::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
|
|
ast::ExprKind::IndexExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
|
|
ast::ExprKind::RangeExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
|
|
}
|
|
}
|
|
|
|
fn collect_expr_opt(&mut self, expr: Option<&ast::Expr>) -> ExprId {
|
|
if let Some(expr) = expr {
|
|
self.collect_expr(expr)
|
|
} else {
|
|
self.exprs.alloc(Expr::Missing)
|
|
}
|
|
}
|
|
|
|
fn collect_block(&mut self, block: &ast::Block) -> ExprId {
|
|
let statements = block
|
|
.statements()
|
|
.map(|s| match s.kind() {
|
|
ast::StmtKind::LetStmt(stmt) => {
|
|
let pat = self.collect_pat_opt(stmt.pat());
|
|
let type_ref = stmt.type_ref().map(TypeRef::from_ast);
|
|
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
|
|
Statement::Let {
|
|
pat,
|
|
type_ref,
|
|
initializer,
|
|
}
|
|
}
|
|
ast::StmtKind::ExprStmt(stmt) => {
|
|
Statement::Expr(self.collect_expr_opt(stmt.expr()))
|
|
}
|
|
})
|
|
.collect();
|
|
let tail = block.expr().map(|e| self.collect_expr(e));
|
|
self.alloc_expr(
|
|
Expr::Block { statements, tail },
|
|
SyntaxNodePtr::new(block.syntax()),
|
|
)
|
|
}
|
|
|
|
fn collect_block_opt(&mut self, block: Option<&ast::Block>) -> ExprId {
|
|
if let Some(block) = block {
|
|
self.collect_block(block)
|
|
} else {
|
|
self.exprs.alloc(Expr::Missing)
|
|
}
|
|
}
|
|
|
|
fn collect_pat(&mut self, pat: &ast::Pat) -> PatId {
|
|
let pattern = match pat.kind() {
|
|
ast::PatKind::BindPat(bp) => {
|
|
let name = bp
|
|
.name()
|
|
.map(|nr| nr.as_name())
|
|
.unwrap_or_else(Name::missing);
|
|
let annotation = BindingAnnotation::new(bp.is_mutable(), bp.is_ref());
|
|
let subpat = bp.pat().map(|subpat| self.collect_pat(subpat));
|
|
Pat::Bind {
|
|
name,
|
|
mode: annotation,
|
|
subpat,
|
|
}
|
|
}
|
|
ast::PatKind::TupleStructPat(p) => {
|
|
let path = p.path().and_then(Path::from_ast);
|
|
let args = p.args().map(|p| self.collect_pat(p)).collect();
|
|
Pat::TupleStruct { path, args }
|
|
}
|
|
ast::PatKind::RefPat(p) => {
|
|
let pat = self.collect_pat_opt(p.pat());
|
|
let mutability = Mutability::from_mutable(p.is_mut());
|
|
Pat::Ref { pat, mutability }
|
|
}
|
|
ast::PatKind::PathPat(p) => {
|
|
let path = p.path().and_then(Path::from_ast);
|
|
path.map(Pat::Path).unwrap_or(Pat::Missing)
|
|
}
|
|
ast::PatKind::TuplePat(p) => {
|
|
let args = p.args().map(|p| self.collect_pat(p)).collect();
|
|
Pat::Tuple(args)
|
|
}
|
|
ast::PatKind::PlaceholderPat(_) => Pat::Wild,
|
|
ast::PatKind::StructPat(p) => {
|
|
let path = p.path().and_then(Path::from_ast);
|
|
let field_pat_list = p
|
|
.field_pat_list()
|
|
.expect("every struct should have a field list");
|
|
let mut fields: Vec<_> = field_pat_list
|
|
.bind_pats()
|
|
.map(|bind_pat| {
|
|
let ast_pat = ast::Pat::cast(bind_pat.syntax()).expect("bind pat is a pat");
|
|
let pat = self.collect_pat(ast_pat);
|
|
let name = bind_pat.name().expect("bind pat has a name").as_name();
|
|
FieldPat { name, pat }
|
|
})
|
|
.collect();
|
|
let iter = field_pat_list.field_pats().map(|f| {
|
|
let ast_pat = f.pat().expect("field pat always contains a pattern");
|
|
let pat = self.collect_pat(ast_pat);
|
|
let name = f.name().expect("field pats always have a name").as_name();
|
|
FieldPat { name, pat }
|
|
});
|
|
fields.extend(iter);
|
|
|
|
Pat::Struct { path, args: fields }
|
|
}
|
|
|
|
// TODO: implement
|
|
ast::PatKind::SlicePat(_) | ast::PatKind::RangePat(_) => Pat::Missing,
|
|
};
|
|
let syntax_ptr = SyntaxNodePtr::new(pat.syntax());
|
|
self.alloc_pat(pattern, syntax_ptr)
|
|
}
|
|
|
|
fn collect_pat_opt(&mut self, pat: Option<&ast::Pat>) -> PatId {
|
|
if let Some(pat) = pat {
|
|
self.collect_pat(pat)
|
|
} else {
|
|
self.pats.alloc(Pat::Missing)
|
|
}
|
|
}
|
|
|
|
fn collect_fn_body(&mut self, node: &ast::FnDef) {
|
|
if let Some(param_list) = node.param_list() {
|
|
if let Some(self_param) = param_list.self_param() {
|
|
let self_param = SyntaxNodePtr::new(
|
|
self_param
|
|
.self_kw()
|
|
.expect("self param without self keyword")
|
|
.syntax(),
|
|
);
|
|
let param_pat = self.alloc_pat(
|
|
Pat::Bind {
|
|
name: Name::self_param(),
|
|
mode: BindingAnnotation::Unannotated,
|
|
subpat: None,
|
|
},
|
|
self_param,
|
|
);
|
|
self.params.push(param_pat);
|
|
}
|
|
|
|
for param in param_list.params() {
|
|
let pat = if let Some(pat) = param.pat() {
|
|
pat
|
|
} else {
|
|
continue;
|
|
};
|
|
let param_pat = self.collect_pat(pat);
|
|
self.params.push(param_pat);
|
|
}
|
|
};
|
|
|
|
let body = self.collect_block_opt(node.body());
|
|
self.body_expr = Some(body);
|
|
}
|
|
|
|
fn into_body_syntax_mapping(self) -> BodySyntaxMapping {
|
|
let body = Body {
|
|
owner: self.owner,
|
|
exprs: self.exprs,
|
|
pats: self.pats,
|
|
params: self.params,
|
|
body_expr: self.body_expr.expect("A body should have been collected"),
|
|
};
|
|
BodySyntaxMapping {
|
|
body: Arc::new(body),
|
|
expr_syntax_mapping: self.expr_syntax_mapping,
|
|
expr_syntax_mapping_back: self.expr_syntax_mapping_back,
|
|
pat_syntax_mapping: self.pat_syntax_mapping,
|
|
pat_syntax_mapping_back: self.pat_syntax_mapping_back,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn body_syntax_mapping(db: &impl HirDatabase, func: Function) -> Arc<BodySyntaxMapping> {
|
|
let mut collector = ExprCollector::new(func);
|
|
|
|
// TODO: consts, etc.
|
|
collector.collect_fn_body(&func.source(db).1);
|
|
|
|
Arc::new(collector.into_body_syntax_mapping())
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub(crate) fn collect_fn_body_syntax(function: Function, node: &ast::FnDef) -> BodySyntaxMapping {
|
|
let mut collector = ExprCollector::new(function);
|
|
collector.collect_fn_body(node);
|
|
collector.into_body_syntax_mapping()
|
|
}
|