According to the LLVM reference: > A value of 0 or an omitted align argument means that the operation has the ABI alignment for the target. So loads/stores of fields of packed structs need to have their align set to 1. Implement that by tracking the alignment of `LvalueRef`s. Fixes #39376.
643 lines
23 KiB
Rust
643 lines
23 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Handles translation of callees as well as other call-related
|
|
//! things. Callees are a superset of normal rust values and sometimes
|
|
//! have different representations. In particular, top-level fn items
|
|
//! and methods are represented as just a fn ptr and not a full
|
|
//! closure.
|
|
|
|
pub use self::CalleeData::*;
|
|
|
|
use llvm::{self, ValueRef, get_params};
|
|
use rustc::hir::def_id::DefId;
|
|
use rustc::ty::subst::Substs;
|
|
use rustc::traits;
|
|
use abi::{Abi, FnType};
|
|
use attributes;
|
|
use base;
|
|
use builder::Builder;
|
|
use common::{self, CrateContext, SharedCrateContext};
|
|
use cleanup::CleanupScope;
|
|
use mir::lvalue::LvalueRef;
|
|
use consts;
|
|
use declare;
|
|
use value::Value;
|
|
use meth;
|
|
use monomorphize::{self, Instance};
|
|
use trans_item::TransItem;
|
|
use type_of;
|
|
use Disr;
|
|
use rustc::ty::{self, Ty, TypeFoldable};
|
|
use rustc::hir;
|
|
use std::iter;
|
|
|
|
use syntax_pos::DUMMY_SP;
|
|
|
|
use mir::lvalue::Alignment;
|
|
|
|
#[derive(Debug)]
|
|
pub enum CalleeData {
|
|
/// Constructor for enum variant/tuple-like-struct.
|
|
NamedTupleConstructor(Disr),
|
|
|
|
/// Function pointer.
|
|
Fn(ValueRef),
|
|
|
|
Intrinsic,
|
|
|
|
/// Trait object found in the vtable at that index.
|
|
Virtual(usize)
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Callee<'tcx> {
|
|
pub data: CalleeData,
|
|
pub ty: Ty<'tcx>
|
|
}
|
|
|
|
impl<'tcx> Callee<'tcx> {
|
|
/// Function pointer.
|
|
pub fn ptr(llfn: ValueRef, ty: Ty<'tcx>) -> Callee<'tcx> {
|
|
Callee {
|
|
data: Fn(llfn),
|
|
ty: ty
|
|
}
|
|
}
|
|
|
|
/// Function or method definition.
|
|
pub fn def<'a>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId, substs: &'tcx Substs<'tcx>)
|
|
-> Callee<'tcx> {
|
|
let tcx = ccx.tcx();
|
|
|
|
if let Some(trait_id) = tcx.trait_of_item(def_id) {
|
|
return Callee::trait_method(ccx, trait_id, def_id, substs);
|
|
}
|
|
|
|
let fn_ty = def_ty(ccx.shared(), def_id, substs);
|
|
if let ty::TyFnDef(.., f) = fn_ty.sty {
|
|
if f.abi == Abi::RustIntrinsic || f.abi == Abi::PlatformIntrinsic {
|
|
return Callee {
|
|
data: Intrinsic,
|
|
ty: fn_ty
|
|
};
|
|
}
|
|
}
|
|
|
|
// FIXME(eddyb) Detect ADT constructors more efficiently.
|
|
if let Some(adt_def) = fn_ty.fn_ret().skip_binder().ty_adt_def() {
|
|
if let Some(v) = adt_def.variants.iter().find(|v| def_id == v.did) {
|
|
return Callee {
|
|
data: NamedTupleConstructor(Disr::from(v.disr_val)),
|
|
ty: fn_ty
|
|
};
|
|
}
|
|
}
|
|
|
|
let (llfn, ty) = get_fn(ccx, def_id, substs);
|
|
Callee::ptr(llfn, ty)
|
|
}
|
|
|
|
/// Trait method, which has to be resolved to an impl method.
|
|
pub fn trait_method<'a>(ccx: &CrateContext<'a, 'tcx>,
|
|
trait_id: DefId,
|
|
def_id: DefId,
|
|
substs: &'tcx Substs<'tcx>)
|
|
-> Callee<'tcx> {
|
|
let tcx = ccx.tcx();
|
|
|
|
let trait_ref = ty::TraitRef::from_method(tcx, trait_id, substs);
|
|
let trait_ref = tcx.normalize_associated_type(&ty::Binder(trait_ref));
|
|
match common::fulfill_obligation(ccx.shared(), DUMMY_SP, trait_ref) {
|
|
traits::VtableImpl(vtable_impl) => {
|
|
let name = tcx.item_name(def_id);
|
|
let (def_id, substs) = traits::find_method(tcx, name, substs, &vtable_impl);
|
|
|
|
// Translate the function, bypassing Callee::def.
|
|
// That is because default methods have the same ID as the
|
|
// trait method used to look up the impl method that ended
|
|
// up here, so calling Callee::def would infinitely recurse.
|
|
let (llfn, ty) = get_fn(ccx, def_id, substs);
|
|
Callee::ptr(llfn, ty)
|
|
}
|
|
traits::VtableClosure(vtable_closure) => {
|
|
// The substitutions should have no type parameters remaining
|
|
// after passing through fulfill_obligation
|
|
let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_id).unwrap();
|
|
let instance = Instance::new(def_id, substs);
|
|
let llfn = trans_closure_method(
|
|
ccx,
|
|
vtable_closure.closure_def_id,
|
|
vtable_closure.substs,
|
|
instance,
|
|
trait_closure_kind);
|
|
|
|
let method_ty = def_ty(ccx.shared(), def_id, substs);
|
|
Callee::ptr(llfn, method_ty)
|
|
}
|
|
traits::VtableFnPointer(vtable_fn_pointer) => {
|
|
let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_id).unwrap();
|
|
let instance = Instance::new(def_id, substs);
|
|
let llfn = trans_fn_pointer_shim(ccx, instance,
|
|
trait_closure_kind,
|
|
vtable_fn_pointer.fn_ty);
|
|
|
|
let method_ty = def_ty(ccx.shared(), def_id, substs);
|
|
Callee::ptr(llfn, method_ty)
|
|
}
|
|
traits::VtableObject(ref data) => {
|
|
Callee {
|
|
data: Virtual(tcx.get_vtable_index_of_object_method(data, def_id)),
|
|
ty: def_ty(ccx.shared(), def_id, substs)
|
|
}
|
|
}
|
|
vtable => {
|
|
bug!("resolved vtable bad vtable {:?} in trans", vtable);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the abi::FnType for a direct call. Mainly deals with the fact
|
|
/// that a Virtual call doesn't take the vtable, like its shim does.
|
|
/// The extra argument types are for variadic (extern "C") functions.
|
|
pub fn direct_fn_type<'a>(&self, ccx: &CrateContext<'a, 'tcx>,
|
|
extra_args: &[Ty<'tcx>]) -> FnType {
|
|
let abi = self.ty.fn_abi();
|
|
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(self.ty.fn_sig());
|
|
let mut fn_ty = FnType::unadjusted(ccx, abi, &sig, extra_args);
|
|
if let Virtual(_) = self.data {
|
|
// Don't pass the vtable, it's not an argument of the virtual fn.
|
|
fn_ty.args[1].ignore();
|
|
}
|
|
fn_ty.adjust_for_abi(ccx, abi, &sig);
|
|
fn_ty
|
|
}
|
|
|
|
/// Turn the callee into a function pointer.
|
|
pub fn reify<'a>(self, ccx: &CrateContext<'a, 'tcx>) -> ValueRef {
|
|
match self.data {
|
|
Fn(llfn) => llfn,
|
|
Virtual(_) => meth::trans_object_shim(ccx, self),
|
|
NamedTupleConstructor(disr) => match self.ty.sty {
|
|
ty::TyFnDef(def_id, substs, _) => {
|
|
let instance = Instance::new(def_id, substs);
|
|
if let Some(&llfn) = ccx.instances().borrow().get(&instance) {
|
|
return llfn;
|
|
}
|
|
|
|
let sym = ccx.symbol_map().get_or_compute(ccx.shared(),
|
|
TransItem::Fn(instance));
|
|
assert!(!ccx.codegen_unit().contains_item(&TransItem::Fn(instance)));
|
|
let lldecl = declare::define_internal_fn(ccx, &sym, self.ty);
|
|
base::trans_ctor_shim(ccx, def_id, substs, disr, lldecl);
|
|
ccx.instances().borrow_mut().insert(instance, lldecl);
|
|
|
|
lldecl
|
|
}
|
|
_ => bug!("expected fn item type, found {}", self.ty)
|
|
},
|
|
Intrinsic => bug!("intrinsic {} getting reified", self.ty)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a DefId and some Substs, produces the monomorphic item type.
|
|
fn def_ty<'a, 'tcx>(shared: &SharedCrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
substs: &'tcx Substs<'tcx>)
|
|
-> Ty<'tcx> {
|
|
let ty = shared.tcx().item_type(def_id);
|
|
monomorphize::apply_param_substs(shared, substs, &ty)
|
|
}
|
|
|
|
|
|
fn trans_closure_method<'a, 'tcx>(ccx: &'a CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
substs: ty::ClosureSubsts<'tcx>,
|
|
method_instance: Instance<'tcx>,
|
|
trait_closure_kind: ty::ClosureKind)
|
|
-> ValueRef
|
|
{
|
|
// If this is a closure, redirect to it.
|
|
let (llfn, _) = get_fn(ccx, def_id, substs.substs);
|
|
|
|
// If the closure is a Fn closure, but a FnOnce is needed (etc),
|
|
// then adapt the self type
|
|
let llfn_closure_kind = ccx.tcx().closure_kind(def_id);
|
|
|
|
debug!("trans_closure_adapter_shim(llfn_closure_kind={:?}, \
|
|
trait_closure_kind={:?}, llfn={:?})",
|
|
llfn_closure_kind, trait_closure_kind, Value(llfn));
|
|
|
|
match needs_fn_once_adapter_shim(llfn_closure_kind, trait_closure_kind) {
|
|
Ok(true) => trans_fn_once_adapter_shim(ccx,
|
|
def_id,
|
|
substs,
|
|
method_instance,
|
|
llfn),
|
|
Ok(false) => llfn,
|
|
Err(()) => {
|
|
bug!("trans_closure_adapter_shim: cannot convert {:?} to {:?}",
|
|
llfn_closure_kind,
|
|
trait_closure_kind);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn needs_fn_once_adapter_shim(actual_closure_kind: ty::ClosureKind,
|
|
trait_closure_kind: ty::ClosureKind)
|
|
-> Result<bool, ()>
|
|
{
|
|
match (actual_closure_kind, trait_closure_kind) {
|
|
(ty::ClosureKind::Fn, ty::ClosureKind::Fn) |
|
|
(ty::ClosureKind::FnMut, ty::ClosureKind::FnMut) |
|
|
(ty::ClosureKind::FnOnce, ty::ClosureKind::FnOnce) => {
|
|
// No adapter needed.
|
|
Ok(false)
|
|
}
|
|
(ty::ClosureKind::Fn, ty::ClosureKind::FnMut) => {
|
|
// The closure fn `llfn` is a `fn(&self, ...)`. We want a
|
|
// `fn(&mut self, ...)`. In fact, at trans time, these are
|
|
// basically the same thing, so we can just return llfn.
|
|
Ok(false)
|
|
}
|
|
(ty::ClosureKind::Fn, ty::ClosureKind::FnOnce) |
|
|
(ty::ClosureKind::FnMut, ty::ClosureKind::FnOnce) => {
|
|
// The closure fn `llfn` is a `fn(&self, ...)` or `fn(&mut
|
|
// self, ...)`. We want a `fn(self, ...)`. We can produce
|
|
// this by doing something like:
|
|
//
|
|
// fn call_once(self, ...) { call_mut(&self, ...) }
|
|
// fn call_once(mut self, ...) { call_mut(&mut self, ...) }
|
|
//
|
|
// These are both the same at trans time.
|
|
Ok(true)
|
|
}
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
|
|
fn trans_fn_once_adapter_shim<'a, 'tcx>(
|
|
ccx: &'a CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
substs: ty::ClosureSubsts<'tcx>,
|
|
method_instance: Instance<'tcx>,
|
|
llreffn: ValueRef)
|
|
-> ValueRef
|
|
{
|
|
if let Some(&llfn) = ccx.instances().borrow().get(&method_instance) {
|
|
return llfn;
|
|
}
|
|
|
|
debug!("trans_fn_once_adapter_shim(def_id={:?}, substs={:?}, llreffn={:?})",
|
|
def_id, substs, Value(llreffn));
|
|
|
|
let tcx = ccx.tcx();
|
|
|
|
// Find a version of the closure type. Substitute static for the
|
|
// region since it doesn't really matter.
|
|
let closure_ty = tcx.mk_closure_from_closure_substs(def_id, substs);
|
|
let ref_closure_ty = tcx.mk_imm_ref(tcx.mk_region(ty::ReErased), closure_ty);
|
|
|
|
// Make a version with the type of by-ref closure.
|
|
let ty::ClosureTy { unsafety, abi, mut sig } = tcx.closure_type(def_id, substs);
|
|
sig.0 = tcx.mk_fn_sig(
|
|
iter::once(ref_closure_ty).chain(sig.0.inputs().iter().cloned()),
|
|
sig.0.output(),
|
|
sig.0.variadic
|
|
);
|
|
let llref_fn_ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
|
|
unsafety: unsafety,
|
|
abi: abi,
|
|
sig: sig.clone()
|
|
}));
|
|
debug!("trans_fn_once_adapter_shim: llref_fn_ty={:?}",
|
|
llref_fn_ty);
|
|
|
|
|
|
// Make a version of the closure type with the same arguments, but
|
|
// with argument #0 being by value.
|
|
assert_eq!(abi, Abi::RustCall);
|
|
sig.0 = tcx.mk_fn_sig(
|
|
iter::once(closure_ty).chain(sig.0.inputs().iter().skip(1).cloned()),
|
|
sig.0.output(),
|
|
sig.0.variadic
|
|
);
|
|
|
|
let sig = tcx.erase_late_bound_regions_and_normalize(&sig);
|
|
let fn_ty = FnType::new(ccx, abi, &sig, &[]);
|
|
|
|
let llonce_fn_ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
|
|
unsafety: unsafety,
|
|
abi: abi,
|
|
sig: ty::Binder(sig)
|
|
}));
|
|
|
|
// Create the by-value helper.
|
|
let function_name = method_instance.symbol_name(ccx.shared());
|
|
let lloncefn = declare::define_internal_fn(ccx, &function_name, llonce_fn_ty);
|
|
attributes::set_frame_pointer_elimination(ccx, lloncefn);
|
|
|
|
let orig_fn_ty = fn_ty;
|
|
let mut bcx = Builder::new_block(ccx, lloncefn, "entry-block");
|
|
|
|
let callee = Callee {
|
|
data: Fn(llreffn),
|
|
ty: llref_fn_ty
|
|
};
|
|
|
|
// the first argument (`self`) will be the (by value) closure env.
|
|
|
|
let mut llargs = get_params(lloncefn);
|
|
let fn_ret = callee.ty.fn_ret();
|
|
let fn_ty = callee.direct_fn_type(bcx.ccx, &[]);
|
|
let self_idx = fn_ty.ret.is_indirect() as usize;
|
|
let env_arg = &orig_fn_ty.args[0];
|
|
let env = if env_arg.is_indirect() {
|
|
LvalueRef::new_sized_ty(llargs[self_idx], closure_ty, Alignment::AbiAligned)
|
|
} else {
|
|
let scratch = LvalueRef::alloca(&bcx, closure_ty, "self");
|
|
let mut llarg_idx = self_idx;
|
|
env_arg.store_fn_arg(&bcx, &mut llarg_idx, scratch.llval);
|
|
scratch
|
|
};
|
|
|
|
debug!("trans_fn_once_adapter_shim: env={:?}", env);
|
|
// Adjust llargs such that llargs[self_idx..] has the call arguments.
|
|
// For zero-sized closures that means sneaking in a new argument.
|
|
if env_arg.is_ignore() {
|
|
llargs.insert(self_idx, env.llval);
|
|
} else {
|
|
llargs[self_idx] = env.llval;
|
|
}
|
|
|
|
// Call the by-ref closure body with `self` in a cleanup scope,
|
|
// to drop `self` when the body returns, or in case it unwinds.
|
|
let self_scope = CleanupScope::schedule_drop_mem(&bcx, env);
|
|
|
|
let llfn = callee.reify(bcx.ccx);
|
|
let llret;
|
|
if let Some(landing_pad) = self_scope.landing_pad {
|
|
let normal_bcx = bcx.build_sibling_block("normal-return");
|
|
llret = bcx.invoke(llfn, &llargs[..], normal_bcx.llbb(), landing_pad, None);
|
|
bcx = normal_bcx;
|
|
} else {
|
|
llret = bcx.call(llfn, &llargs[..], None);
|
|
}
|
|
fn_ty.apply_attrs_callsite(llret);
|
|
|
|
if fn_ret.0.is_never() {
|
|
bcx.unreachable();
|
|
} else {
|
|
self_scope.trans(&bcx);
|
|
|
|
if fn_ty.ret.is_indirect() || fn_ty.ret.is_ignore() {
|
|
bcx.ret_void();
|
|
} else {
|
|
bcx.ret(llret);
|
|
}
|
|
}
|
|
|
|
ccx.instances().borrow_mut().insert(method_instance, lloncefn);
|
|
|
|
lloncefn
|
|
}
|
|
|
|
/// Translates an adapter that implements the `Fn` trait for a fn
|
|
/// pointer. This is basically the equivalent of something like:
|
|
///
|
|
/// ```
|
|
/// impl<'a> Fn(&'a int) -> &'a int for fn(&int) -> &int {
|
|
/// extern "rust-abi" fn call(&self, args: (&'a int,)) -> &'a int {
|
|
/// (*self)(args.0)
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// but for the bare function type given.
|
|
fn trans_fn_pointer_shim<'a, 'tcx>(
|
|
ccx: &'a CrateContext<'a, 'tcx>,
|
|
method_instance: Instance<'tcx>,
|
|
closure_kind: ty::ClosureKind,
|
|
bare_fn_ty: Ty<'tcx>)
|
|
-> ValueRef
|
|
{
|
|
let tcx = ccx.tcx();
|
|
|
|
// Normalize the type for better caching.
|
|
let bare_fn_ty = tcx.normalize_associated_type(&bare_fn_ty);
|
|
|
|
// If this is an impl of `Fn` or `FnMut` trait, the receiver is `&self`.
|
|
let is_by_ref = match closure_kind {
|
|
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => true,
|
|
ty::ClosureKind::FnOnce => false,
|
|
};
|
|
|
|
let llfnpointer = match bare_fn_ty.sty {
|
|
ty::TyFnDef(def_id, substs, _) => {
|
|
// Function definitions have to be turned into a pointer.
|
|
let llfn = Callee::def(ccx, def_id, substs).reify(ccx);
|
|
if !is_by_ref {
|
|
// A by-value fn item is ignored, so the shim has
|
|
// the same signature as the original function.
|
|
return llfn;
|
|
}
|
|
Some(llfn)
|
|
}
|
|
_ => None
|
|
};
|
|
|
|
let bare_fn_ty_maybe_ref = if is_by_ref {
|
|
tcx.mk_imm_ref(tcx.mk_region(ty::ReErased), bare_fn_ty)
|
|
} else {
|
|
bare_fn_ty
|
|
};
|
|
|
|
// Check if we already trans'd this shim.
|
|
if let Some(&llval) = ccx.fn_pointer_shims().borrow().get(&bare_fn_ty_maybe_ref) {
|
|
return llval;
|
|
}
|
|
|
|
debug!("trans_fn_pointer_shim(bare_fn_ty={:?})",
|
|
bare_fn_ty);
|
|
|
|
// Construct the "tuply" version of `bare_fn_ty`. It takes two arguments: `self`,
|
|
// which is the fn pointer, and `args`, which is the arguments tuple.
|
|
let sig = match bare_fn_ty.sty {
|
|
ty::TyFnDef(..,
|
|
&ty::BareFnTy { unsafety: hir::Unsafety::Normal,
|
|
abi: Abi::Rust,
|
|
ref sig }) |
|
|
ty::TyFnPtr(&ty::BareFnTy { unsafety: hir::Unsafety::Normal,
|
|
abi: Abi::Rust,
|
|
ref sig }) => sig,
|
|
|
|
_ => {
|
|
bug!("trans_fn_pointer_shim invoked on invalid type: {}",
|
|
bare_fn_ty);
|
|
}
|
|
};
|
|
let sig = tcx.erase_late_bound_regions_and_normalize(sig);
|
|
let tuple_input_ty = tcx.intern_tup(sig.inputs(), false);
|
|
let sig = tcx.mk_fn_sig(
|
|
[bare_fn_ty_maybe_ref, tuple_input_ty].iter().cloned(),
|
|
sig.output(),
|
|
false
|
|
);
|
|
let fn_ty = FnType::new(ccx, Abi::RustCall, &sig, &[]);
|
|
let tuple_fn_ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
|
|
unsafety: hir::Unsafety::Normal,
|
|
abi: Abi::RustCall,
|
|
sig: ty::Binder(sig)
|
|
}));
|
|
debug!("tuple_fn_ty: {:?}", tuple_fn_ty);
|
|
|
|
//
|
|
let function_name = method_instance.symbol_name(ccx.shared());
|
|
let llfn = declare::define_internal_fn(ccx, &function_name, tuple_fn_ty);
|
|
attributes::set_frame_pointer_elimination(ccx, llfn);
|
|
//
|
|
let bcx = Builder::new_block(ccx, llfn, "entry-block");
|
|
|
|
let mut llargs = get_params(llfn);
|
|
|
|
let self_arg = llargs.remove(fn_ty.ret.is_indirect() as usize);
|
|
let llfnpointer = llfnpointer.unwrap_or_else(|| {
|
|
// the first argument (`self`) will be ptr to the fn pointer
|
|
if is_by_ref {
|
|
bcx.load(self_arg, None)
|
|
} else {
|
|
self_arg
|
|
}
|
|
});
|
|
|
|
let callee = Callee {
|
|
data: Fn(llfnpointer),
|
|
ty: bare_fn_ty
|
|
};
|
|
let fn_ret = callee.ty.fn_ret();
|
|
let fn_ty = callee.direct_fn_type(ccx, &[]);
|
|
let llret = bcx.call(llfnpointer, &llargs, None);
|
|
fn_ty.apply_attrs_callsite(llret);
|
|
|
|
if fn_ret.0.is_never() {
|
|
bcx.unreachable();
|
|
} else {
|
|
if fn_ty.ret.is_indirect() || fn_ty.ret.is_ignore() {
|
|
bcx.ret_void();
|
|
} else {
|
|
bcx.ret(llret);
|
|
}
|
|
}
|
|
|
|
ccx.fn_pointer_shims().borrow_mut().insert(bare_fn_ty_maybe_ref, llfn);
|
|
|
|
llfn
|
|
}
|
|
|
|
/// Translates a reference to a fn/method item, monomorphizing and
|
|
/// inlining as it goes.
|
|
///
|
|
/// # Parameters
|
|
///
|
|
/// - `ccx`: the crate context
|
|
/// - `def_id`: def id of the fn or method item being referenced
|
|
/// - `substs`: values for each of the fn/method's parameters
|
|
fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
substs: &'tcx Substs<'tcx>)
|
|
-> (ValueRef, Ty<'tcx>) {
|
|
let tcx = ccx.tcx();
|
|
|
|
debug!("get_fn(def_id={:?}, substs={:?})", def_id, substs);
|
|
|
|
assert!(!substs.needs_infer());
|
|
assert!(!substs.has_escaping_regions());
|
|
assert!(!substs.has_param_types());
|
|
|
|
let substs = tcx.normalize_associated_type(&substs);
|
|
let instance = Instance::new(def_id, substs);
|
|
let item_ty = ccx.tcx().item_type(def_id);
|
|
let fn_ty = monomorphize::apply_param_substs(ccx.shared(), substs, &item_ty);
|
|
|
|
if let Some(&llfn) = ccx.instances().borrow().get(&instance) {
|
|
return (llfn, fn_ty);
|
|
}
|
|
|
|
let sym = ccx.symbol_map().get_or_compute(ccx.shared(),
|
|
TransItem::Fn(instance));
|
|
debug!("get_fn({:?}: {:?}) => {}", instance, fn_ty, sym);
|
|
|
|
// This is subtle and surprising, but sometimes we have to bitcast
|
|
// the resulting fn pointer. The reason has to do with external
|
|
// functions. If you have two crates that both bind the same C
|
|
// library, they may not use precisely the same types: for
|
|
// example, they will probably each declare their own structs,
|
|
// which are distinct types from LLVM's point of view (nominal
|
|
// types).
|
|
//
|
|
// Now, if those two crates are linked into an application, and
|
|
// they contain inlined code, you can wind up with a situation
|
|
// where both of those functions wind up being loaded into this
|
|
// application simultaneously. In that case, the same function
|
|
// (from LLVM's point of view) requires two types. But of course
|
|
// LLVM won't allow one function to have two types.
|
|
//
|
|
// What we currently do, therefore, is declare the function with
|
|
// one of the two types (whichever happens to come first) and then
|
|
// bitcast as needed when the function is referenced to make sure
|
|
// it has the type we expect.
|
|
//
|
|
// This can occur on either a crate-local or crate-external
|
|
// reference. It also occurs when testing libcore and in some
|
|
// other weird situations. Annoying.
|
|
|
|
// Create a fn pointer with the substituted signature.
|
|
let fn_ptr_ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(common::ty_fn_ty(ccx, fn_ty).into_owned()));
|
|
let llptrty = type_of::type_of(ccx, fn_ptr_ty);
|
|
|
|
let llfn = if let Some(llfn) = declare::get_declared_value(ccx, &sym) {
|
|
if common::val_ty(llfn) != llptrty {
|
|
debug!("get_fn: casting {:?} to {:?}", llfn, llptrty);
|
|
consts::ptrcast(llfn, llptrty)
|
|
} else {
|
|
debug!("get_fn: not casting pointer!");
|
|
llfn
|
|
}
|
|
} else {
|
|
let llfn = declare::declare_fn(ccx, &sym, fn_ty);
|
|
assert_eq!(common::val_ty(llfn), llptrty);
|
|
debug!("get_fn: not casting pointer!");
|
|
|
|
let attrs = ccx.tcx().get_attrs(def_id);
|
|
attributes::from_fn_attrs(ccx, &attrs, llfn);
|
|
|
|
let is_local_def = ccx.shared().translation_items().borrow()
|
|
.contains(&TransItem::Fn(instance));
|
|
if is_local_def {
|
|
// FIXME(eddyb) Doubt all extern fn should allow unwinding.
|
|
attributes::unwind(llfn, true);
|
|
unsafe {
|
|
llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::ExternalLinkage);
|
|
}
|
|
}
|
|
if ccx.use_dll_storage_attrs() && ccx.sess().cstore.is_dllimport_foreign_item(def_id) {
|
|
unsafe {
|
|
llvm::LLVMSetDLLStorageClass(llfn, llvm::DLLStorageClass::DllImport);
|
|
}
|
|
}
|
|
llfn
|
|
};
|
|
|
|
ccx.instances().borrow_mut().insert(instance, llfn);
|
|
|
|
(llfn, fn_ty)
|
|
}
|