2022-08-10 16:29:23 +08:00

661 lines
18 KiB
Rust

//! To make attribute macros work reliably when typing, we need to take care to
//! fix up syntax errors in the code we're passing to them.
use std::mem;
use mbe::{SyntheticToken, SyntheticTokenId, TokenMap};
use rustc_hash::FxHashMap;
use syntax::{
ast::{self, AstNode, HasLoopBody},
match_ast, SyntaxElement, SyntaxKind, SyntaxNode, TextRange,
};
use tt::Subtree;
/// The result of calculating fixes for a syntax node -- a bunch of changes
/// (appending to and replacing nodes), the information that is needed to
/// reverse those changes afterwards, and a token map.
#[derive(Debug)]
pub(crate) struct SyntaxFixups {
pub(crate) append: FxHashMap<SyntaxElement, Vec<SyntheticToken>>,
pub(crate) replace: FxHashMap<SyntaxElement, Vec<SyntheticToken>>,
pub(crate) undo_info: SyntaxFixupUndoInfo,
pub(crate) token_map: TokenMap,
pub(crate) next_id: u32,
}
/// This is the information needed to reverse the fixups.
#[derive(Debug, PartialEq, Eq)]
pub struct SyntaxFixupUndoInfo {
original: Vec<Subtree>,
}
const EMPTY_ID: SyntheticTokenId = SyntheticTokenId(!0);
pub(crate) fn fixup_syntax(node: &SyntaxNode) -> SyntaxFixups {
let mut append = FxHashMap::<SyntaxElement, _>::default();
let mut replace = FxHashMap::<SyntaxElement, _>::default();
let mut preorder = node.preorder();
let mut original = Vec::new();
let mut token_map = TokenMap::default();
let mut next_id = 0;
while let Some(event) = preorder.next() {
let node = match event {
syntax::WalkEvent::Enter(node) => node,
syntax::WalkEvent::Leave(_) => continue,
};
if can_handle_error(&node) && has_error_to_handle(&node) {
// the node contains an error node, we have to completely replace it by something valid
let (original_tree, new_tmap, new_next_id) =
mbe::syntax_node_to_token_tree_with_modifications(
&node,
mem::take(&mut token_map),
next_id,
Default::default(),
Default::default(),
);
token_map = new_tmap;
next_id = new_next_id;
let idx = original.len() as u32;
original.push(original_tree);
let replacement = SyntheticToken {
kind: SyntaxKind::IDENT,
text: "__ra_fixup".into(),
range: node.text_range(),
id: SyntheticTokenId(idx),
};
replace.insert(node.clone().into(), vec![replacement]);
preorder.skip_subtree();
continue;
}
// In some other situations, we can fix things by just appending some tokens.
let end_range = TextRange::empty(node.text_range().end());
match_ast! {
match node {
ast::FieldExpr(it) => {
if it.name_ref().is_none() {
// incomplete field access: some_expr.|
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::IDENT,
text: "__ra_fixup".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
ast::ExprStmt(it) => {
if it.semicolon_token().is_none() {
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::SEMICOLON,
text: ";".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
ast::LetStmt(it) => {
if it.semicolon_token().is_none() {
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::SEMICOLON,
text: ";".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
ast::IfExpr(it) => {
if it.condition().is_none() {
// insert placeholder token after the if token
let if_token = match it.if_token() {
Some(t) => t,
None => continue,
};
append.insert(if_token.into(), vec![
SyntheticToken {
kind: SyntaxKind::IDENT,
text: "__ra_fixup".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
if it.then_branch().is_none() {
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::L_CURLY,
text: "{".into(),
range: end_range,
id: EMPTY_ID,
},
SyntheticToken {
kind: SyntaxKind::R_CURLY,
text: "}".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
ast::WhileExpr(it) => {
if it.condition().is_none() {
// insert placeholder token after the while token
let while_token = match it.while_token() {
Some(t) => t,
None => continue,
};
append.insert(while_token.into(), vec![
SyntheticToken {
kind: SyntaxKind::IDENT,
text: "__ra_fixup".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
if it.loop_body().is_none() {
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::L_CURLY,
text: "{".into(),
range: end_range,
id: EMPTY_ID,
},
SyntheticToken {
kind: SyntaxKind::R_CURLY,
text: "}".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
ast::LoopExpr(it) => {
if it.loop_body().is_none() {
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::L_CURLY,
text: "{".into(),
range: end_range,
id: EMPTY_ID,
},
SyntheticToken {
kind: SyntaxKind::R_CURLY,
text: "}".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
// FIXME: foo::
ast::MatchExpr(it) => {
if it.expr().is_none() {
let match_token = match it.match_token() {
Some(t) => t,
None => continue
};
append.insert(match_token.into(), vec![
SyntheticToken {
kind: SyntaxKind::IDENT,
text: "__ra_fixup".into(),
range: end_range,
id: EMPTY_ID
},
]);
}
if it.match_arm_list().is_none() {
// No match arms
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::L_CURLY,
text: "{".into(),
range: end_range,
id: EMPTY_ID,
},
SyntheticToken {
kind: SyntaxKind::R_CURLY,
text: "}".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
ast::ForExpr(it) => {
let for_token = match it.for_token() {
Some(token) => token,
None => continue
};
let [pat, in_token, iter] = [
(SyntaxKind::UNDERSCORE, "_"),
(SyntaxKind::IN_KW, "in"),
(SyntaxKind::IDENT, "__ra_fixup")
].map(|(kind, text)| SyntheticToken { kind, text: text.into(), range: end_range, id: EMPTY_ID});
if it.pat().is_none() && it.in_token().is_none() && it.iterable().is_none() {
append.insert(for_token.into(), vec![pat, in_token, iter]);
// does something funky -- see test case for_no_pat
} else if it.pat().is_none() {
append.insert(for_token.into(), vec![pat]);
}
if it.loop_body().is_none() {
append.insert(node.clone().into(), vec![
SyntheticToken {
kind: SyntaxKind::L_CURLY,
text: "{".into(),
range: end_range,
id: EMPTY_ID,
},
SyntheticToken {
kind: SyntaxKind::R_CURLY,
text: "}".into(),
range: end_range,
id: EMPTY_ID,
},
]);
}
},
_ => (),
}
}
}
SyntaxFixups {
append,
replace,
token_map,
next_id,
undo_info: SyntaxFixupUndoInfo { original },
}
}
fn has_error(node: &SyntaxNode) -> bool {
node.children().any(|c| c.kind() == SyntaxKind::ERROR)
}
fn can_handle_error(node: &SyntaxNode) -> bool {
ast::Expr::can_cast(node.kind())
}
fn has_error_to_handle(node: &SyntaxNode) -> bool {
has_error(node) || node.children().any(|c| !can_handle_error(&c) && has_error_to_handle(&c))
}
pub(crate) fn reverse_fixups(
tt: &mut Subtree,
token_map: &TokenMap,
undo_info: &SyntaxFixupUndoInfo,
) {
tt.token_trees.retain(|tt| match tt {
tt::TokenTree::Leaf(leaf) => {
token_map.synthetic_token_id(leaf.id()).is_none()
|| token_map.synthetic_token_id(leaf.id()) != Some(EMPTY_ID)
}
tt::TokenTree::Subtree(st) => st.delimiter.map_or(true, |d| {
token_map.synthetic_token_id(d.id).is_none()
|| token_map.synthetic_token_id(d.id) != Some(EMPTY_ID)
}),
});
tt.token_trees.iter_mut().for_each(|tt| match tt {
tt::TokenTree::Subtree(tt) => reverse_fixups(tt, token_map, undo_info),
tt::TokenTree::Leaf(leaf) => {
if let Some(id) = token_map.synthetic_token_id(leaf.id()) {
let original = &undo_info.original[id.0 as usize];
*tt = tt::TokenTree::Subtree(original.clone());
}
}
});
}
#[cfg(test)]
mod tests {
use expect_test::{expect, Expect};
use super::reverse_fixups;
#[track_caller]
fn check(ra_fixture: &str, mut expect: Expect) {
let parsed = syntax::SourceFile::parse(ra_fixture);
let fixups = super::fixup_syntax(&parsed.syntax_node());
let (mut tt, tmap, _) = mbe::syntax_node_to_token_tree_with_modifications(
&parsed.syntax_node(),
fixups.token_map,
fixups.next_id,
fixups.replace,
fixups.append,
);
let mut actual = tt.to_string();
actual.push('\n');
expect.indent(false);
expect.assert_eq(&actual);
// the fixed-up tree should be syntactically valid
let (parse, _) = mbe::token_tree_to_syntax_node(&tt, ::mbe::TopEntryPoint::MacroItems);
assert_eq!(
parse.errors(),
&[],
"parse has syntax errors. parse tree:\n{:#?}",
parse.syntax_node()
);
reverse_fixups(&mut tt, &tmap, &fixups.undo_info);
// the fixed-up + reversed version should be equivalent to the original input
// (but token IDs don't matter)
let (original_as_tt, _) = mbe::syntax_node_to_token_tree(&parsed.syntax_node());
assert_eq!(tt.to_string(), original_as_tt.to_string());
}
#[test]
fn just_for_token() {
check(
r#"
fn foo() {
for
}
"#,
expect![[r#"
fn foo () {for _ in __ra_fixup {}}
"#]],
)
}
#[test]
fn for_no_iter_pattern() {
check(
r#"
fn foo() {
for {}
}
"#,
expect![[r#"
fn foo () {for _ in __ra_fixup {}}
"#]],
)
}
#[test]
fn for_no_body() {
check(
r#"
fn foo() {
for bar in qux
}
"#,
expect![[r#"
fn foo () {for bar in qux {}}
"#]],
)
}
// FIXME: https://github.com/rust-lang/rust-analyzer/pull/12937#discussion_r937633695
#[test]
fn for_no_pat() {
check(
r#"
fn foo() {
for in qux {
}
}
"#,
expect![[r#"
fn foo () {__ra_fixup}
"#]],
)
}
#[test]
fn match_no_expr_no_arms() {
check(
r#"
fn foo() {
match
}
"#,
expect![[r#"
fn foo () {match __ra_fixup {}}
"#]],
)
}
#[test]
fn match_expr_no_arms() {
check(
r#"
fn foo() {
match x {
}
}
"#,
expect![[r#"
fn foo () {match x {}}
"#]],
)
}
#[test]
fn match_no_expr() {
check(
r#"
fn foo() {
match {
_ => {}
}
}
"#,
expect![[r#"
fn foo () {match __ra_fixup {}}
"#]],
)
}
#[test]
fn incomplete_field_expr_1() {
check(
r#"
fn foo() {
a.
}
"#,
expect![[r#"
fn foo () {a .__ra_fixup}
"#]],
)
}
#[test]
fn incomplete_field_expr_2() {
check(
r#"
fn foo() {
a.;
}
"#,
expect![[r#"
fn foo () {a .__ra_fixup ;}
"#]],
)
}
#[test]
fn incomplete_field_expr_3() {
check(
r#"
fn foo() {
a.;
bar();
}
"#,
expect![[r#"
fn foo () {a .__ra_fixup ; bar () ;}
"#]],
)
}
#[test]
fn incomplete_let() {
check(
r#"
fn foo() {
let x = a
}
"#,
expect![[r#"
fn foo () {let x = a ;}
"#]],
)
}
#[test]
fn incomplete_field_expr_in_let() {
check(
r#"
fn foo() {
let x = a.
}
"#,
expect![[r#"
fn foo () {let x = a .__ra_fixup ;}
"#]],
)
}
#[test]
fn field_expr_before_call() {
// another case that easily happens while typing
check(
r#"
fn foo() {
a.b
bar();
}
"#,
expect![[r#"
fn foo () {a .b ; bar () ;}
"#]],
)
}
#[test]
fn extraneous_comma() {
check(
r#"
fn foo() {
bar(,);
}
"#,
expect![[r#"
fn foo () {__ra_fixup ;}
"#]],
)
}
#[test]
fn fixup_if_1() {
check(
r#"
fn foo() {
if a
}
"#,
expect![[r#"
fn foo () {if a {}}
"#]],
)
}
#[test]
fn fixup_if_2() {
check(
r#"
fn foo() {
if
}
"#,
expect![[r#"
fn foo () {if __ra_fixup {}}
"#]],
)
}
#[test]
fn fixup_if_3() {
check(
r#"
fn foo() {
if {}
}
"#,
// the {} gets parsed as the condition, I think?
expect![[r#"
fn foo () {if {} {}}
"#]],
)
}
#[test]
fn fixup_while_1() {
check(
r#"
fn foo() {
while
}
"#,
expect![[r#"
fn foo () {while __ra_fixup {}}
"#]],
)
}
#[test]
fn fixup_while_2() {
check(
r#"
fn foo() {
while foo
}
"#,
expect![[r#"
fn foo () {while foo {}}
"#]],
)
}
#[test]
fn fixup_while_3() {
check(
r#"
fn foo() {
while {}
}
"#,
expect![[r#"
fn foo () {while __ra_fixup {}}
"#]],
)
}
#[test]
fn fixup_loop() {
check(
r#"
fn foo() {
loop
}
"#,
expect![[r#"
fn foo () {loop {}}
"#]],
)
}
}