Clark Gaebel 5bdbd21009 Performance-oriented hashtable.
Previously, rust's hashtable was totally unoptimized. It used an Option
per key-value pair, and used very naive open allocation.

The old hashtable had very high variance in lookup time. For an example,
see the 'find_nonexisting' benchmark below. This is fixed by keys in
'lucky' spots with a low probe sequence length getting their good spots
stolen by keys with long probe sequence lengths. This reduces hashtable
probe length variance, while maintaining the same mean.

Also, other optimization liberties were taken. Everything is as cache
aware as possible, and this hashtable should perform extremely well for
both large and small keys and values.

Benchmarks:

comprehensive_old_hashmap         378 ns/iter (+/- 8)
comprehensive_new_hashmap         206 ns/iter (+/- 4)
1.8x faster

old_hashmap_as_queue              238 ns/iter (+/- 8)
new_hashmap_as_queue              119 ns/iter (+/- 2)
2x faster

old_hashmap_insert                172 ns/iter (+/- 8)
new_hashmap_insert                146 ns/iter (+/- 11)
1.17x faster

old_hashmap_find_existing         50 ns/iter (+/- 12)
new_hashmap_find_existing         35 ns/iter (+/- 6)
1.43x faster

old_hashmap_find_notexisting      49 ns/iter (+/- 49)
new_hashmap_find_notexisting      34 ns/iter (+/- 4)
1.44x faster

Memory usage of old hashtable (64-bit assumed):

aligned(8+sizeof(K)+sizeof(V))/0.75 + 6 words

Memory usage of new hashtable:

(aligned(sizeof(K))
+ aligned(sizeof(V))
+ 8)/0.9 + 6.5 words

BUT accesses are much more cache friendly. In fact, if the probe
sequence length is below 8, only two cache lines worth of hashes will be
pulled into cache. This is unlike the old version which would have to
stride over the stoerd keys and values, and would be more cache
unfriendly the bigger the stored values got.

And did you notice the higher load factor? We can now reasonably get a
load factor of 0.9 with very good performance.
2014-03-12 18:30:11 -04:00
2014-03-12 11:31:05 +11:00
2014-03-12 18:30:11 -04:00
2013-10-16 22:57:51 -04:00
2014-03-09 14:17:27 -07:00
2014-02-21 07:44:11 -08:00
2014-01-08 18:04:43 -08:00
2014-01-08 18:04:43 -08:00
2014-02-02 03:08:56 -05:00

The Rust Programming Language

This is a compiler for Rust, including standard libraries, tools and documentation.

Quick Start

Windows

  1. Download and use the installer and MinGW.
  2. Read the tutorial.
  3. Enjoy!

Note: Windows users can read the detailed getting started notes on the wiki.

Linux / OS X

  1. Make sure you have installed the dependencies:

    • g++ 4.4 or clang++ 3.x
    • python 2.6 or later (but not 3.x)
    • perl 5.0 or later
    • GNU make 3.81 or later
    • curl
  2. Download and build Rust:

    You can either download a tarball or build directly from the repo.

    To build from the tarball do:

     $ curl -O http://static.rust-lang.org/dist/rust-0.9.tar.gz
     $ tar -xzf rust-0.9.tar.gz
     $ cd rust-0.9
    

    Or to build from the repo do:

     $ git clone https://github.com/mozilla/rust.git
     $ cd rust
    

    Now that you have Rust's source code, you can configure and build it:

     $ ./configure
     $ make && make install
    

    Note: You may need to use sudo make install if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a --prefix argument to configure. Various other options are also supported, pass --help for more information on them.

    When complete, make install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. system.

  3. Read the tutorial.

  4. Enjoy!

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

  • Windows (7, 8, Server 2008 R2), x86 only
  • Linux (2.6.18 or later, various distributions), x86 and x86-64
  • OSX 10.7 (Lion) or greater, x86 and x86-64

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.

There is a lot more documentation in the wiki.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Description
No description provided
Readme 1.4 GiB
Languages
Rust 96.2%
RenderScript 0.7%
JavaScript 0.6%
Shell 0.6%
Fluent 0.4%
Other 1.3%