rust/src/libcollectionstest/slice.rs
2015-04-14 10:14:19 -07:00

1573 lines
39 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cmp::Ordering::{Equal, Greater, Less};
use std::default::Default;
use std::iter::RandomAccessIterator;
use std::mem;
use std::__rand::{Rng, thread_rng};
use std::rc::Rc;
use std::slice::ElementSwaps;
fn square(n: usize) -> usize { n * n }
fn is_odd(n: &usize) -> bool { *n % 2 == 1 }
#[test]
fn test_from_fn() {
// Test on-stack from_fn.
let mut v: Vec<_> = (0..3).map(square).collect();
{
let v = v;
assert_eq!(v.len(), 3);
assert_eq!(v[0], 0);
assert_eq!(v[1], 1);
assert_eq!(v[2], 4);
}
// Test on-heap from_fn.
v = (0..5).map(square).collect();
{
let v = v;
assert_eq!(v.len(), 5);
assert_eq!(v[0], 0);
assert_eq!(v[1], 1);
assert_eq!(v[2], 4);
assert_eq!(v[3], 9);
assert_eq!(v[4], 16);
}
}
#[test]
fn test_from_elem() {
// Test on-stack from_elem.
let mut v = vec![10, 10];
{
let v = v;
assert_eq!(v.len(), 2);
assert_eq!(v[0], 10);
assert_eq!(v[1], 10);
}
// Test on-heap from_elem.
v = vec![20; 6];
{
let v = &v[..];
assert_eq!(v[0], 20);
assert_eq!(v[1], 20);
assert_eq!(v[2], 20);
assert_eq!(v[3], 20);
assert_eq!(v[4], 20);
assert_eq!(v[5], 20);
}
}
#[test]
fn test_is_empty() {
let xs: [i32; 0] = [];
assert!(xs.is_empty());
assert!(![0].is_empty());
}
#[test]
fn test_len_divzero() {
type Z = [i8; 0];
let v0 : &[Z] = &[];
let v1 : &[Z] = &[[]];
let v2 : &[Z] = &[[], []];
assert_eq!(mem::size_of::<Z>(), 0);
assert_eq!(v0.len(), 0);
assert_eq!(v1.len(), 1);
assert_eq!(v2.len(), 2);
}
#[test]
fn test_get() {
let mut a = vec![11];
assert_eq!(a.get(1), None);
a = vec![11, 12];
assert_eq!(a.get(1).unwrap(), &12);
a = vec![11, 12, 13];
assert_eq!(a.get(1).unwrap(), &12);
}
#[test]
fn test_first() {
let mut a = vec![];
assert_eq!(a.first(), None);
a = vec![11];
assert_eq!(a.first().unwrap(), &11);
a = vec![11, 12];
assert_eq!(a.first().unwrap(), &11);
}
#[test]
fn test_first_mut() {
let mut a = vec![];
assert_eq!(a.first_mut(), None);
a = vec![11];
assert_eq!(*a.first_mut().unwrap(), 11);
a = vec![11, 12];
assert_eq!(*a.first_mut().unwrap(), 11);
}
#[test]
fn test_tail() {
let mut a = vec![11];
let b: &[i32] = &[];
assert_eq!(a.tail(), b);
a = vec![11, 12];
let b: &[i32] = &[12];
assert_eq!(a.tail(), b);
}
#[test]
fn test_tail_mut() {
let mut a = vec![11];
let b: &mut [i32] = &mut [];
assert!(a.tail_mut() == b);
a = vec![11, 12];
let b: &mut [_] = &mut [12];
assert!(a.tail_mut() == b);
}
#[test]
#[should_panic]
fn test_tail_empty() {
let a = Vec::<i32>::new();
a.tail();
}
#[test]
#[should_panic]
fn test_tail_mut_empty() {
let mut a = Vec::<i32>::new();
a.tail_mut();
}
#[test]
fn test_init() {
let mut a = vec![11];
let b: &[i32] = &[];
assert_eq!(a.init(), b);
a = vec![11, 12];
let b: &[_] = &[11];
assert_eq!(a.init(), b);
}
#[test]
fn test_init_mut() {
let mut a = vec![11];
let b: &mut [i32] = &mut [];
assert!(a.init_mut() == b);
a = vec![11, 12];
let b: &mut [_] = &mut [11];
assert!(a.init_mut() == b);
}
#[test]
#[should_panic]
fn test_init_empty() {
let a = Vec::<i32>::new();
a.init();
}
#[test]
#[should_panic]
fn test_init_mut_empty() {
let mut a = Vec::<i32>::new();
a.init_mut();
}
#[test]
fn test_last() {
let mut a = vec![];
assert_eq!(a.last(), None);
a = vec![11];
assert_eq!(a.last().unwrap(), &11);
a = vec![11, 12];
assert_eq!(a.last().unwrap(), &12);
}
#[test]
fn test_last_mut() {
let mut a = vec![];
assert_eq!(a.last_mut(), None);
a = vec![11];
assert_eq!(*a.last_mut().unwrap(), 11);
a = vec![11, 12];
assert_eq!(*a.last_mut().unwrap(), 12);
}
#[test]
fn test_slice() {
// Test fixed length vector.
let vec_fixed = [1, 2, 3, 4];
let v_a = vec_fixed[1..vec_fixed.len()].to_vec();
assert_eq!(v_a.len(), 3);
assert_eq!(v_a[0], 2);
assert_eq!(v_a[1], 3);
assert_eq!(v_a[2], 4);
// Test on stack.
let vec_stack: &[_] = &[1, 2, 3];
let v_b = vec_stack[1..3].to_vec();
assert_eq!(v_b.len(), 2);
assert_eq!(v_b[0], 2);
assert_eq!(v_b[1], 3);
// Test `Box<[T]>`
let vec_unique = vec![1, 2, 3, 4, 5, 6];
let v_d = vec_unique[1..6].to_vec();
assert_eq!(v_d.len(), 5);
assert_eq!(v_d[0], 2);
assert_eq!(v_d[1], 3);
assert_eq!(v_d[2], 4);
assert_eq!(v_d[3], 5);
assert_eq!(v_d[4], 6);
}
#[test]
fn test_slice_from() {
let vec: &[_] = &[1, 2, 3, 4];
assert_eq!(&vec[..], vec);
let b: &[_] = &[3, 4];
assert_eq!(&vec[2..], b);
let b: &[_] = &[];
assert_eq!(&vec[4..], b);
}
#[test]
fn test_slice_to() {
let vec: &[_] = &[1, 2, 3, 4];
assert_eq!(&vec[..4], vec);
let b: &[_] = &[1, 2];
assert_eq!(&vec[..2], b);
let b: &[_] = &[];
assert_eq!(&vec[..0], b);
}
#[test]
fn test_pop() {
let mut v = vec![5];
let e = v.pop();
assert_eq!(v.len(), 0);
assert_eq!(e, Some(5));
let f = v.pop();
assert_eq!(f, None);
let g = v.pop();
assert_eq!(g, None);
}
#[test]
fn test_swap_remove() {
let mut v = vec![1, 2, 3, 4, 5];
let mut e = v.swap_remove(0);
assert_eq!(e, 1);
assert_eq!(v, [5, 2, 3, 4]);
e = v.swap_remove(3);
assert_eq!(e, 4);
assert_eq!(v, [5, 2, 3]);
}
#[test]
#[should_panic]
fn test_swap_remove_fail() {
let mut v = vec![1];
let _ = v.swap_remove(0);
let _ = v.swap_remove(0);
}
#[test]
fn test_swap_remove_noncopyable() {
// Tests that we don't accidentally run destructors twice.
let mut v: Vec<Box<_>> = Vec::new();
v.push(box 0u8);
v.push(box 0u8);
v.push(box 0u8);
let mut _e = v.swap_remove(0);
assert_eq!(v.len(), 2);
_e = v.swap_remove(1);
assert_eq!(v.len(), 1);
_e = v.swap_remove(0);
assert_eq!(v.len(), 0);
}
#[test]
fn test_push() {
// Test on-stack push().
let mut v = vec![];
v.push(1);
assert_eq!(v.len(), 1);
assert_eq!(v[0], 1);
// Test on-heap push().
v.push(2);
assert_eq!(v.len(), 2);
assert_eq!(v[0], 1);
assert_eq!(v[1], 2);
}
#[test]
fn test_truncate() {
let mut v: Vec<Box<_>> = vec![box 6,box 5,box 4];
v.truncate(1);
let v = v;
assert_eq!(v.len(), 1);
assert_eq!(*(v[0]), 6);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_clear() {
let mut v: Vec<Box<_>> = vec![box 6,box 5,box 4];
v.clear();
assert_eq!(v.len(), 0);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_dedup() {
fn case(a: Vec<i32>, b: Vec<i32>) {
let mut v = a;
v.dedup();
assert_eq!(v, b);
}
case(vec![], vec![]);
case(vec![1], vec![1]);
case(vec![1,1], vec![1]);
case(vec![1,2,3], vec![1,2,3]);
case(vec![1,1,2,3], vec![1,2,3]);
case(vec![1,2,2,3], vec![1,2,3]);
case(vec![1,2,3,3], vec![1,2,3]);
case(vec![1,1,2,2,2,3,3], vec![1,2,3]);
}
#[test]
fn test_dedup_unique() {
let mut v0: Vec<Box<_>> = vec![box 1, box 1, box 2, box 3];
v0.dedup();
let mut v1: Vec<Box<_>> = vec![box 1, box 2, box 2, box 3];
v1.dedup();
let mut v2: Vec<Box<_>> = vec![box 1, box 2, box 3, box 3];
v2.dedup();
/*
* If the boxed pointers were leaked or otherwise misused, valgrind
* and/or rt should raise errors.
*/
}
#[test]
fn test_dedup_shared() {
let mut v0: Vec<Box<_>> = vec![box 1, box 1, box 2, box 3];
v0.dedup();
let mut v1: Vec<Box<_>> = vec![box 1, box 2, box 2, box 3];
v1.dedup();
let mut v2: Vec<Box<_>> = vec![box 1, box 2, box 3, box 3];
v2.dedup();
/*
* If the pointers were leaked or otherwise misused, valgrind and/or
* rt should raise errors.
*/
}
#[test]
fn test_retain() {
let mut v = vec![1, 2, 3, 4, 5];
v.retain(is_odd);
assert_eq!(v, [1, 3, 5]);
}
#[test]
fn test_element_swaps() {
let mut v = [1, 2, 3];
for (i, (a, b)) in ElementSwaps::new(v.len()).enumerate() {
v.swap(a, b);
match i {
0 => assert!(v == [1, 3, 2]),
1 => assert!(v == [3, 1, 2]),
2 => assert!(v == [3, 2, 1]),
3 => assert!(v == [2, 3, 1]),
4 => assert!(v == [2, 1, 3]),
5 => assert!(v == [1, 2, 3]),
_ => panic!(),
}
}
}
#[test]
fn test_lexicographic_permutations() {
let v : &mut[_] = &mut[1, 2, 3, 4, 5];
assert!(v.prev_permutation() == false);
assert!(v.next_permutation());
let b: &mut[_] = &mut[1, 2, 3, 5, 4];
assert!(v == b);
assert!(v.prev_permutation());
let b: &mut[_] = &mut[1, 2, 3, 4, 5];
assert!(v == b);
assert!(v.next_permutation());
assert!(v.next_permutation());
let b: &mut[_] = &mut[1, 2, 4, 3, 5];
assert!(v == b);
assert!(v.next_permutation());
let b: &mut[_] = &mut[1, 2, 4, 5, 3];
assert!(v == b);
let v : &mut[_] = &mut[1, 0, 0, 0];
assert!(v.next_permutation() == false);
assert!(v.prev_permutation());
let b: &mut[_] = &mut[0, 1, 0, 0];
assert!(v == b);
assert!(v.prev_permutation());
let b: &mut[_] = &mut[0, 0, 1, 0];
assert!(v == b);
assert!(v.prev_permutation());
let b: &mut[_] = &mut[0, 0, 0, 1];
assert!(v == b);
assert!(v.prev_permutation() == false);
}
#[test]
fn test_lexicographic_permutations_empty_and_short() {
let empty : &mut[i32] = &mut[];
assert!(empty.next_permutation() == false);
let b: &mut[i32] = &mut[];
assert!(empty == b);
assert!(empty.prev_permutation() == false);
assert!(empty == b);
let one_elem : &mut[_] = &mut[4];
assert!(one_elem.prev_permutation() == false);
let b: &mut[_] = &mut[4];
assert!(one_elem == b);
assert!(one_elem.next_permutation() == false);
assert!(one_elem == b);
let two_elem : &mut[_] = &mut[1, 2];
assert!(two_elem.prev_permutation() == false);
let b : &mut[_] = &mut[1, 2];
let c : &mut[_] = &mut[2, 1];
assert!(two_elem == b);
assert!(two_elem.next_permutation());
assert!(two_elem == c);
assert!(two_elem.next_permutation() == false);
assert!(two_elem == c);
assert!(two_elem.prev_permutation());
assert!(two_elem == b);
assert!(two_elem.prev_permutation() == false);
assert!(two_elem == b);
}
#[test]
fn test_position_elem() {
assert!([].position_elem(&1).is_none());
let v1 = vec![1, 2, 3, 3, 2, 5];
assert_eq!(v1.position_elem(&1), Some(0));
assert_eq!(v1.position_elem(&2), Some(1));
assert_eq!(v1.position_elem(&5), Some(5));
assert!(v1.position_elem(&4).is_none());
}
#[test]
fn test_binary_search() {
assert_eq!([1,2,3,4,5].binary_search(&5).ok(), Some(4));
assert_eq!([1,2,3,4,5].binary_search(&4).ok(), Some(3));
assert_eq!([1,2,3,4,5].binary_search(&3).ok(), Some(2));
assert_eq!([1,2,3,4,5].binary_search(&2).ok(), Some(1));
assert_eq!([1,2,3,4,5].binary_search(&1).ok(), Some(0));
assert_eq!([2,4,6,8,10].binary_search(&1).ok(), None);
assert_eq!([2,4,6,8,10].binary_search(&5).ok(), None);
assert_eq!([2,4,6,8,10].binary_search(&4).ok(), Some(1));
assert_eq!([2,4,6,8,10].binary_search(&10).ok(), Some(4));
assert_eq!([2,4,6,8].binary_search(&1).ok(), None);
assert_eq!([2,4,6,8].binary_search(&5).ok(), None);
assert_eq!([2,4,6,8].binary_search(&4).ok(), Some(1));
assert_eq!([2,4,6,8].binary_search(&8).ok(), Some(3));
assert_eq!([2,4,6].binary_search(&1).ok(), None);
assert_eq!([2,4,6].binary_search(&5).ok(), None);
assert_eq!([2,4,6].binary_search(&4).ok(), Some(1));
assert_eq!([2,4,6].binary_search(&6).ok(), Some(2));
assert_eq!([2,4].binary_search(&1).ok(), None);
assert_eq!([2,4].binary_search(&5).ok(), None);
assert_eq!([2,4].binary_search(&2).ok(), Some(0));
assert_eq!([2,4].binary_search(&4).ok(), Some(1));
assert_eq!([2].binary_search(&1).ok(), None);
assert_eq!([2].binary_search(&5).ok(), None);
assert_eq!([2].binary_search(&2).ok(), Some(0));
assert_eq!([].binary_search(&1).ok(), None);
assert_eq!([].binary_search(&5).ok(), None);
assert!([1,1,1,1,1].binary_search(&1).ok() != None);
assert!([1,1,1,1,2].binary_search(&1).ok() != None);
assert!([1,1,1,2,2].binary_search(&1).ok() != None);
assert!([1,1,2,2,2].binary_search(&1).ok() != None);
assert_eq!([1,2,2,2,2].binary_search(&1).ok(), Some(0));
assert_eq!([1,2,3,4,5].binary_search(&6).ok(), None);
assert_eq!([1,2,3,4,5].binary_search(&0).ok(), None);
}
#[test]
fn test_reverse() {
let mut v = vec![10, 20];
assert_eq!(v[0], 10);
assert_eq!(v[1], 20);
v.reverse();
assert_eq!(v[0], 20);
assert_eq!(v[1], 10);
let mut v3 = Vec::<i32>::new();
v3.reverse();
assert!(v3.is_empty());
}
#[test]
fn test_sort() {
for len in 4..25 {
for _ in 0..100 {
let mut v: Vec<_> = thread_rng().gen_iter::<i32>().take(len).collect();
let mut v1 = v.clone();
v.sort();
assert!(v.windows(2).all(|w| w[0] <= w[1]));
v1.sort_by(|a, b| a.cmp(b));
assert!(v1.windows(2).all(|w| w[0] <= w[1]));
v1.sort_by(|a, b| b.cmp(a));
assert!(v1.windows(2).all(|w| w[0] >= w[1]));
}
}
// shouldn't panic
let mut v: [i32; 0] = [];
v.sort();
let mut v = [0xDEADBEEFu64];
v.sort();
assert!(v == [0xDEADBEEF]);
}
#[test]
fn test_sort_stability() {
for len in 4..25 {
for _ in 0..10 {
let mut counts = [0; 10];
// create a vector like [(6, 1), (5, 1), (6, 2), ...],
// where the first item of each tuple is random, but
// the second item represents which occurrence of that
// number this element is, i.e. the second elements
// will occur in sorted order.
let mut v: Vec<_> = (0..len).map(|_| {
let n = thread_rng().gen::<usize>() % 10;
counts[n] += 1;
(n, counts[n])
}).collect();
// only sort on the first element, so an unstable sort
// may mix up the counts.
v.sort_by(|&(a,_), &(b,_)| a.cmp(&b));
// this comparison includes the count (the second item
// of the tuple), so elements with equal first items
// will need to be ordered with increasing
// counts... i.e. exactly asserting that this sort is
// stable.
assert!(v.windows(2).all(|w| w[0] <= w[1]));
}
}
}
#[test]
fn test_concat() {
let v: [Vec<i32>; 0] = [];
let c = v.concat();
assert_eq!(c, []);
let d = [vec![1], vec![2, 3]].concat();
assert_eq!(d, [1, 2, 3]);
let v: &[&[_]] = &[&[1], &[2, 3]];
assert_eq!(v.connect(&0), [1, 0, 2, 3]);
let v: &[&[_]] = &[&[1], &[2], &[3]];
assert_eq!(v.connect(&0), [1, 0, 2, 0, 3]);
}
#[test]
fn test_connect() {
let v: [Vec<i32>; 0] = [];
assert_eq!(v.connect(&0), []);
assert_eq!([vec![1], vec![2, 3]].connect(&0), [1, 0, 2, 3]);
assert_eq!([vec![1], vec![2], vec![3]].connect(&0), [1, 0, 2, 0, 3]);
let v: [&[_]; 2] = [&[1], &[2, 3]];
assert_eq!(v.connect(&0), [1, 0, 2, 3]);
let v: [&[_]; 3] = [&[1], &[2], &[3]];
assert_eq!(v.connect(&0), [1, 0, 2, 0, 3]);
}
#[test]
fn test_insert() {
let mut a = vec![1, 2, 4];
a.insert(2, 3);
assert_eq!(a, [1, 2, 3, 4]);
let mut a = vec![1, 2, 3];
a.insert(0, 0);
assert_eq!(a, [0, 1, 2, 3]);
let mut a = vec![1, 2, 3];
a.insert(3, 4);
assert_eq!(a, [1, 2, 3, 4]);
let mut a = vec![];
a.insert(0, 1);
assert_eq!(a, [1]);
}
#[test]
#[should_panic]
fn test_insert_oob() {
let mut a = vec![1, 2, 3];
a.insert(4, 5);
}
#[test]
fn test_remove() {
let mut a = vec![1, 2, 3, 4];
assert_eq!(a.remove(2), 3);
assert_eq!(a, [1, 2, 4]);
assert_eq!(a.remove(2), 4);
assert_eq!(a, [1, 2]);
assert_eq!(a.remove(0), 1);
assert_eq!(a, [2]);
assert_eq!(a.remove(0), 2);
assert_eq!(a, []);
}
#[test]
#[should_panic]
fn test_remove_fail() {
let mut a = vec![1];
let _ = a.remove(0);
let _ = a.remove(0);
}
#[test]
fn test_capacity() {
let mut v = vec![0];
v.reserve_exact(10);
assert!(v.capacity() >= 11);
}
#[test]
fn test_slice_2() {
let v = vec![1, 2, 3, 4, 5];
let v = &v[1..3];
assert_eq!(v.len(), 2);
assert_eq!(v[0], 2);
assert_eq!(v[1], 3);
}
#[test]
#[should_panic]
fn test_permute_fail() {
let v: [(Box<_>, Rc<_>); 4] =
[(box 0, Rc::new(0)), (box 0, Rc::new(0)),
(box 0, Rc::new(0)), (box 0, Rc::new(0))];
let mut i = 0;
for _ in v.permutations() {
if i == 2 {
panic!()
}
i += 1;
}
}
#[test]
fn test_total_ord() {
let c = &[1, 2, 3];
[1, 2, 3, 4][..].cmp(c) == Greater;
let c = &[1, 2, 3, 4];
[1, 2, 3][..].cmp(c) == Less;
let c = &[1, 2, 3, 6];
[1, 2, 3, 4][..].cmp(c) == Equal;
let c = &[1, 2, 3, 4, 5, 6];
[1, 2, 3, 4, 5, 5, 5, 5][..].cmp(c) == Less;
let c = &[1, 2, 3, 4];
[2, 2][..].cmp(c) == Greater;
}
#[test]
fn test_iterator() {
let xs = [1, 2, 5, 10, 11];
let mut it = xs.iter();
assert_eq!(it.size_hint(), (5, Some(5)));
assert_eq!(it.next().unwrap(), &1);
assert_eq!(it.size_hint(), (4, Some(4)));
assert_eq!(it.next().unwrap(), &2);
assert_eq!(it.size_hint(), (3, Some(3)));
assert_eq!(it.next().unwrap(), &5);
assert_eq!(it.size_hint(), (2, Some(2)));
assert_eq!(it.next().unwrap(), &10);
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next().unwrap(), &11);
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
#[test]
fn test_random_access_iterator() {
let xs = [1, 2, 5, 10, 11];
let mut it = xs.iter();
assert_eq!(it.indexable(), 5);
assert_eq!(it.idx(0).unwrap(), &1);
assert_eq!(it.idx(2).unwrap(), &5);
assert_eq!(it.idx(4).unwrap(), &11);
assert!(it.idx(5).is_none());
assert_eq!(it.next().unwrap(), &1);
assert_eq!(it.indexable(), 4);
assert_eq!(it.idx(0).unwrap(), &2);
assert_eq!(it.idx(3).unwrap(), &11);
assert!(it.idx(4).is_none());
assert_eq!(it.next().unwrap(), &2);
assert_eq!(it.indexable(), 3);
assert_eq!(it.idx(1).unwrap(), &10);
assert!(it.idx(3).is_none());
assert_eq!(it.next().unwrap(), &5);
assert_eq!(it.indexable(), 2);
assert_eq!(it.idx(1).unwrap(), &11);
assert_eq!(it.next().unwrap(), &10);
assert_eq!(it.indexable(), 1);
assert_eq!(it.idx(0).unwrap(), &11);
assert!(it.idx(1).is_none());
assert_eq!(it.next().unwrap(), &11);
assert_eq!(it.indexable(), 0);
assert!(it.idx(0).is_none());
assert!(it.next().is_none());
}
#[test]
fn test_iter_size_hints() {
let mut xs = [1, 2, 5, 10, 11];
assert_eq!(xs.iter().size_hint(), (5, Some(5)));
assert_eq!(xs.iter_mut().size_hint(), (5, Some(5)));
}
#[test]
fn test_iter_clone() {
let xs = [1, 2, 5];
let mut it = xs.iter();
it.next();
let mut jt = it.clone();
assert_eq!(it.next(), jt.next());
assert_eq!(it.next(), jt.next());
assert_eq!(it.next(), jt.next());
}
#[test]
fn test_mut_iterator() {
let mut xs = [1, 2, 3, 4, 5];
for x in &mut xs {
*x += 1;
}
assert!(xs == [2, 3, 4, 5, 6])
}
#[test]
fn test_rev_iterator() {
let xs = [1, 2, 5, 10, 11];
let ys = [11, 10, 5, 2, 1];
let mut i = 0;
for &x in xs.iter().rev() {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, 5);
}
#[test]
fn test_mut_rev_iterator() {
let mut xs = [1, 2, 3, 4, 5];
for (i,x) in xs.iter_mut().rev().enumerate() {
*x += i;
}
assert!(xs == [5, 5, 5, 5, 5])
}
#[test]
fn test_move_iterator() {
let xs = vec![1,2,3,4,5];
assert_eq!(xs.into_iter().fold(0, |a: usize, b: usize| 10*a + b), 12345);
}
#[test]
fn test_move_rev_iterator() {
let xs = vec![1,2,3,4,5];
assert_eq!(xs.into_iter().rev().fold(0, |a: usize, b: usize| 10*a + b), 54321);
}
#[test]
fn test_splitator() {
let xs = &[1,2,3,4,5];
let splits: &[&[_]] = &[&[1], &[3], &[5]];
assert_eq!(xs.split(|x| *x % 2 == 0).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[], &[2,3,4,5]];
assert_eq!(xs.split(|x| *x == 1).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[1,2,3,4], &[]];
assert_eq!(xs.split(|x| *x == 5).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[1,2,3,4,5]];
assert_eq!(xs.split(|x| *x == 10).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[], &[], &[], &[], &[], &[]];
assert_eq!(xs.split(|_| true).collect::<Vec<&[i32]>>(),
splits);
let xs: &[i32] = &[];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.split(|x| *x == 5).collect::<Vec<&[i32]>>(), splits);
}
#[test]
fn test_splitnator() {
let xs = &[1,2,3,4,5];
let splits: &[&[_]] = &[&[1,2,3,4,5]];
assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[1], &[3,4,5]];
assert_eq!(xs.splitn(2, |x| *x % 2 == 0).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[], &[], &[], &[4,5]];
assert_eq!(xs.splitn(4, |_| true).collect::<Vec<_>>(),
splits);
let xs: &[i32] = &[];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.splitn(2, |x| *x == 5).collect::<Vec<_>>(), splits);
}
#[test]
fn test_splitnator_mut() {
let xs = &mut [1,2,3,4,5];
let splits: &[&mut[_]] = &[&mut [1,2,3,4,5]];
assert_eq!(xs.splitn_mut(1, |x| *x % 2 == 0).collect::<Vec<_>>(),
splits);
let splits: &[&mut[_]] = &[&mut [1], &mut [3,4,5]];
assert_eq!(xs.splitn_mut(2, |x| *x % 2 == 0).collect::<Vec<_>>(),
splits);
let splits: &[&mut[_]] = &[&mut [], &mut [], &mut [], &mut [4,5]];
assert_eq!(xs.splitn_mut(4, |_| true).collect::<Vec<_>>(),
splits);
let xs: &mut [i32] = &mut [];
let splits: &[&mut[i32]] = &[&mut []];
assert_eq!(xs.splitn_mut(2, |x| *x == 5).collect::<Vec<_>>(),
splits);
}
#[test]
fn test_rsplitator() {
let xs = &[1,2,3,4,5];
let splits: &[&[_]] = &[&[5], &[3], &[1]];
assert_eq!(xs.split(|x| *x % 2 == 0).rev().collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[2,3,4,5], &[]];
assert_eq!(xs.split(|x| *x == 1).rev().collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[], &[1,2,3,4]];
assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[1,2,3,4,5]];
assert_eq!(xs.split(|x| *x == 10).rev().collect::<Vec<_>>(),
splits);
let xs: &[i32] = &[];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<&[i32]>>(), splits);
}
#[test]
fn test_rsplitnator() {
let xs = &[1,2,3,4,5];
let splits: &[&[_]] = &[&[1,2,3,4,5]];
assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[5], &[1,2,3]];
assert_eq!(xs.rsplitn(2, |x| *x % 2 == 0).collect::<Vec<_>>(),
splits);
let splits: &[&[_]] = &[&[], &[], &[], &[1,2]];
assert_eq!(xs.rsplitn(4, |_| true).collect::<Vec<_>>(),
splits);
let xs: &[i32] = &[];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.rsplitn(2, |x| *x == 5).collect::<Vec<&[i32]>>(), splits);
assert!(xs.rsplitn(0, |x| *x % 2 == 0).next().is_none());
}
#[test]
fn test_windowsator() {
let v = &[1,2,3,4];
let wins: &[&[_]] = &[&[1,2], &[2,3], &[3,4]];
assert_eq!(v.windows(2).collect::<Vec<_>>(), wins);
let wins: &[&[_]] = &[&[1,2,3], &[2,3,4]];
assert_eq!(v.windows(3).collect::<Vec<_>>(), wins);
assert!(v.windows(6).next().is_none());
let wins: &[&[_]] = &[&[3,4], &[2,3], &[1,2]];
assert_eq!(v.windows(2).rev().collect::<Vec<&[_]>>(), wins);
let mut it = v.windows(2);
assert_eq!(it.indexable(), 3);
let win: &[_] = &[1,2];
assert_eq!(it.idx(0).unwrap(), win);
let win: &[_] = &[2,3];
assert_eq!(it.idx(1).unwrap(), win);
let win: &[_] = &[3,4];
assert_eq!(it.idx(2).unwrap(), win);
assert_eq!(it.idx(3), None);
}
#[test]
#[should_panic]
fn test_windowsator_0() {
let v = &[1,2,3,4];
let _it = v.windows(0);
}
#[test]
fn test_chunksator() {
let v = &[1,2,3,4,5];
assert_eq!(v.chunks(2).len(), 3);
let chunks: &[&[_]] = &[&[1,2], &[3,4], &[5]];
assert_eq!(v.chunks(2).collect::<Vec<_>>(), chunks);
let chunks: &[&[_]] = &[&[1,2,3], &[4,5]];
assert_eq!(v.chunks(3).collect::<Vec<_>>(), chunks);
let chunks: &[&[_]] = &[&[1,2,3,4,5]];
assert_eq!(v.chunks(6).collect::<Vec<_>>(), chunks);
let chunks: &[&[_]] = &[&[5], &[3,4], &[1,2]];
assert_eq!(v.chunks(2).rev().collect::<Vec<_>>(), chunks);
let mut it = v.chunks(2);
assert_eq!(it.indexable(), 3);
let chunk: &[_] = &[1,2];
assert_eq!(it.idx(0).unwrap(), chunk);
let chunk: &[_] = &[3,4];
assert_eq!(it.idx(1).unwrap(), chunk);
let chunk: &[_] = &[5];
assert_eq!(it.idx(2).unwrap(), chunk);
assert_eq!(it.idx(3), None);
}
#[test]
#[should_panic]
fn test_chunksator_0() {
let v = &[1,2,3,4];
let _it = v.chunks(0);
}
#[test]
fn test_move_from() {
let mut a = [1,2,3,4,5];
let b = vec![6,7,8];
assert_eq!(a.move_from(b, 0, 3), 3);
assert!(a == [6,7,8,4,5]);
let mut a = [7,2,8,1];
let b = vec![3,1,4,1,5,9];
assert_eq!(a.move_from(b, 0, 6), 4);
assert!(a == [3,1,4,1]);
let mut a = [1,2,3,4];
let b = vec![5,6,7,8,9,0];
assert_eq!(a.move_from(b, 2, 3), 1);
assert!(a == [7,2,3,4]);
let mut a = [1,2,3,4,5];
let b = vec![5,6,7,8,9,0];
assert_eq!(a[2..4].move_from(b,1,6), 2);
assert!(a == [1,2,6,7,5]);
}
#[test]
fn test_reverse_part() {
let mut values = [1,2,3,4,5];
values[1..4].reverse();
assert!(values == [1,4,3,2,5]);
}
#[test]
fn test_show() {
macro_rules! test_show_vec {
($x:expr, $x_str:expr) => ({
let (x, x_str) = ($x, $x_str);
assert_eq!(format!("{:?}", x), x_str);
assert_eq!(format!("{:?}", x), x_str);
})
}
let empty = Vec::<i32>::new();
test_show_vec!(empty, "[]");
test_show_vec!(vec![1], "[1]");
test_show_vec!(vec![1, 2, 3], "[1, 2, 3]");
test_show_vec!(vec![vec![], vec![1], vec![1, 1]],
"[[], [1], [1, 1]]");
let empty_mut: &mut [i32] = &mut[];
test_show_vec!(empty_mut, "[]");
let v = &mut[1];
test_show_vec!(v, "[1]");
let v = &mut[1, 2, 3];
test_show_vec!(v, "[1, 2, 3]");
let v: &mut[&mut[_]] = &mut[&mut[], &mut[1], &mut[1, 1]];
test_show_vec!(v, "[[], [1], [1, 1]]");
}
#[test]
fn test_vec_default() {
macro_rules! t {
($ty:ty) => {{
let v: $ty = Default::default();
assert!(v.is_empty());
}}
}
t!(&[i32]);
t!(Vec<i32>);
}
#[test]
fn test_bytes_set_memory() {
use std::slice::bytes::MutableByteVector;
let mut values = [1,2,3,4,5];
values[0..5].set_memory(0xAB);
assert!(values == [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]);
values[2..4].set_memory(0xFF);
assert!(values == [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]);
}
#[test]
#[should_panic]
fn test_overflow_does_not_cause_segfault() {
let mut v = vec![];
v.reserve_exact(!0);
v.push(1);
v.push(2);
}
#[test]
#[should_panic]
fn test_overflow_does_not_cause_segfault_managed() {
let mut v = vec![Rc::new(1)];
v.reserve_exact(!0);
v.push(Rc::new(2));
}
#[test]
fn test_mut_split_at() {
let mut values = [1u8,2,3,4,5];
{
let (left, right) = values.split_at_mut(2);
{
let left: &[_] = left;
assert!(left[..left.len()] == [1, 2]);
}
for p in left {
*p += 1;
}
{
let right: &[_] = right;
assert!(right[..right.len()] == [3, 4, 5]);
}
for p in right {
*p += 2;
}
}
assert!(values == [2, 3, 5, 6, 7]);
}
#[derive(Clone, PartialEq)]
struct Foo;
#[test]
fn test_iter_zero_sized() {
let mut v = vec![Foo, Foo, Foo];
assert_eq!(v.len(), 3);
let mut cnt = 0;
for f in &v {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 3);
for f in &v[1..3] {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 5);
for f in &mut v {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 8);
for f in v {
assert!(f == Foo);
cnt += 1;
}
assert_eq!(cnt, 11);
let xs: [Foo; 3] = [Foo, Foo, Foo];
cnt = 0;
for f in &xs {
assert!(*f == Foo);
cnt += 1;
}
assert!(cnt == 3);
}
#[test]
fn test_shrink_to_fit() {
let mut xs = vec![0, 1, 2, 3];
for i in 4..100 {
xs.push(i)
}
assert_eq!(xs.capacity(), 128);
xs.shrink_to_fit();
assert_eq!(xs.capacity(), 100);
assert_eq!(xs, (0..100).collect::<Vec<_>>());
}
#[test]
fn test_starts_with() {
assert!(b"foobar".starts_with(b"foo"));
assert!(!b"foobar".starts_with(b"oob"));
assert!(!b"foobar".starts_with(b"bar"));
assert!(!b"foo".starts_with(b"foobar"));
assert!(!b"bar".starts_with(b"foobar"));
assert!(b"foobar".starts_with(b"foobar"));
let empty: &[u8] = &[];
assert!(empty.starts_with(empty));
assert!(!empty.starts_with(b"foo"));
assert!(b"foobar".starts_with(empty));
}
#[test]
fn test_ends_with() {
assert!(b"foobar".ends_with(b"bar"));
assert!(!b"foobar".ends_with(b"oba"));
assert!(!b"foobar".ends_with(b"foo"));
assert!(!b"foo".ends_with(b"foobar"));
assert!(!b"bar".ends_with(b"foobar"));
assert!(b"foobar".ends_with(b"foobar"));
let empty: &[u8] = &[];
assert!(empty.ends_with(empty));
assert!(!empty.ends_with(b"foo"));
assert!(b"foobar".ends_with(empty));
}
#[test]
fn test_mut_splitator() {
let mut xs = [0,1,0,2,3,0,0,4,5,0];
assert_eq!(xs.split_mut(|x| *x == 0).count(), 6);
for slice in xs.split_mut(|x| *x == 0) {
slice.reverse();
}
assert!(xs == [0,1,0,3,2,0,0,5,4,0]);
let mut xs = [0,1,0,2,3,0,0,4,5,0,6,7];
for slice in xs.split_mut(|x| *x == 0).take(5) {
slice.reverse();
}
assert!(xs == [0,1,0,3,2,0,0,5,4,0,6,7]);
}
#[test]
fn test_mut_splitator_rev() {
let mut xs = [1,2,0,3,4,0,0,5,6,0];
for slice in xs.split_mut(|x| *x == 0).rev().take(4) {
slice.reverse();
}
assert!(xs == [1,2,0,4,3,0,0,6,5,0]);
}
#[test]
fn test_get_mut() {
let mut v = [0,1,2];
assert_eq!(v.get_mut(3), None);
v.get_mut(1).map(|e| *e = 7);
assert_eq!(v[1], 7);
let mut x = 2;
assert_eq!(v.get_mut(2), Some(&mut x));
}
#[test]
fn test_mut_chunks() {
let mut v = [0, 1, 2, 3, 4, 5, 6];
assert_eq!(v.chunks_mut(2).len(), 4);
for (i, chunk) in v.chunks_mut(3).enumerate() {
for x in chunk {
*x = i as u8;
}
}
let result = [0, 0, 0, 1, 1, 1, 2];
assert!(v == result);
}
#[test]
fn test_mut_chunks_rev() {
let mut v = [0, 1, 2, 3, 4, 5, 6];
for (i, chunk) in v.chunks_mut(3).rev().enumerate() {
for x in chunk {
*x = i as u8;
}
}
let result = [2, 2, 2, 1, 1, 1, 0];
assert!(v == result);
}
#[test]
#[should_panic]
fn test_mut_chunks_0() {
let mut v = [1, 2, 3, 4];
let _it = v.chunks_mut(0);
}
#[test]
fn test_mut_last() {
let mut x = [1, 2, 3, 4, 5];
let h = x.last_mut();
assert_eq!(*h.unwrap(), 5);
let y: &mut [i32] = &mut [];
assert!(y.last_mut().is_none());
}
#[test]
fn test_to_vec() {
let xs: Box<_> = box [1, 2, 3];
let ys = xs.to_vec();
assert_eq!(ys, [1, 2, 3]);
}
mod bench {
use std::iter::repeat;
use std::{mem, ptr};
use std::__rand::{Rng, thread_rng};
use test::{Bencher, black_box};
#[bench]
fn iterator(b: &mut Bencher) {
// peculiar numbers to stop LLVM from optimising the summation
// out.
let v: Vec<_> = (0..100).map(|i| i ^ (i << 1) ^ (i >> 1)).collect();
b.iter(|| {
let mut sum = 0;
for x in &v {
sum += *x;
}
// sum == 11806, to stop dead code elimination.
if sum == 0 {panic!()}
})
}
#[bench]
fn mut_iterator(b: &mut Bencher) {
let mut v: Vec<_> = repeat(0).take(100).collect();
b.iter(|| {
let mut i = 0;
for x in &mut v {
*x = i;
i += 1;
}
})
}
#[bench]
fn concat(b: &mut Bencher) {
let xss: Vec<Vec<i32>> =
(0..100).map(|i| (0..i).collect()).collect();
b.iter(|| {
xss.concat();
});
}
#[bench]
fn connect(b: &mut Bencher) {
let xss: Vec<Vec<i32>> =
(0..100).map(|i| (0..i).collect()).collect();
b.iter(|| {
xss.connect(&0)
});
}
#[bench]
fn push(b: &mut Bencher) {
let mut vec = Vec::<i32>::new();
b.iter(|| {
vec.push(0);
black_box(&vec);
});
}
#[bench]
fn starts_with_same_vector(b: &mut Bencher) {
let vec: Vec<_> = (0..100).collect();
b.iter(|| {
vec.starts_with(&vec)
})
}
#[bench]
fn starts_with_single_element(b: &mut Bencher) {
let vec: Vec<_> = vec![0];
b.iter(|| {
vec.starts_with(&vec)
})
}
#[bench]
fn starts_with_diff_one_element_at_end(b: &mut Bencher) {
let vec: Vec<_> = (0..100).collect();
let mut match_vec: Vec<_> = (0..99).collect();
match_vec.push(0);
b.iter(|| {
vec.starts_with(&match_vec)
})
}
#[bench]
fn ends_with_same_vector(b: &mut Bencher) {
let vec: Vec<_> = (0..100).collect();
b.iter(|| {
vec.ends_with(&vec)
})
}
#[bench]
fn ends_with_single_element(b: &mut Bencher) {
let vec: Vec<_> = vec![0];
b.iter(|| {
vec.ends_with(&vec)
})
}
#[bench]
fn ends_with_diff_one_element_at_beginning(b: &mut Bencher) {
let vec: Vec<_> = (0..100).collect();
let mut match_vec: Vec<_> = (0..100).collect();
match_vec[0] = 200;
b.iter(|| {
vec.starts_with(&match_vec)
})
}
#[bench]
fn contains_last_element(b: &mut Bencher) {
let vec: Vec<_> = (0..100).collect();
b.iter(|| {
vec.contains(&99)
})
}
#[bench]
fn zero_1kb_from_elem(b: &mut Bencher) {
b.iter(|| {
repeat(0u8).take(1024).collect::<Vec<_>>()
});
}
#[bench]
fn zero_1kb_set_memory(b: &mut Bencher) {
b.iter(|| {
let mut v = Vec::<u8>::with_capacity(1024);
unsafe {
let vp = v.as_mut_ptr();
ptr::write_bytes(vp, 0, 1024);
v.set_len(1024);
}
v
});
}
#[bench]
fn zero_1kb_loop_set(b: &mut Bencher) {
b.iter(|| {
let mut v = Vec::<u8>::with_capacity(1024);
unsafe {
v.set_len(1024);
}
for i in 0..1024 {
v[i] = 0;
}
});
}
#[bench]
fn zero_1kb_mut_iter(b: &mut Bencher) {
b.iter(|| {
let mut v = Vec::<u8>::with_capacity(1024);
unsafe {
v.set_len(1024);
}
for x in &mut v {
*x = 0;
}
v
});
}
#[bench]
fn random_inserts(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v: Vec<_> = repeat((0, 0)).take(30).collect();
for _ in 0..100 {
let l = v.len();
v.insert(rng.gen::<usize>() % (l + 1),
(1, 1));
}
})
}
#[bench]
fn random_removes(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v: Vec<_> = repeat((0, 0)).take(130).collect();
for _ in 0..100 {
let l = v.len();
v.remove(rng.gen::<usize>() % l);
}
})
}
#[bench]
fn sort_random_small(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v: Vec<_> = rng.gen_iter::<u64>().take(5).collect();
v.sort();
});
b.bytes = 5 * mem::size_of::<u64>() as u64;
}
#[bench]
fn sort_random_medium(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v: Vec<_> = rng.gen_iter::<u64>().take(100).collect();
v.sort();
});
b.bytes = 100 * mem::size_of::<u64>() as u64;
}
#[bench]
fn sort_random_large(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v: Vec<_> = rng.gen_iter::<u64>().take(10000).collect();
v.sort();
});
b.bytes = 10000 * mem::size_of::<u64>() as u64;
}
#[bench]
fn sort_sorted(b: &mut Bencher) {
let mut v: Vec<_> = (0..10000).collect();
b.iter(|| {
v.sort();
});
b.bytes = (v.len() * mem::size_of_val(&v[0])) as u64;
}
type BigSortable = (u64, u64, u64, u64);
#[bench]
fn sort_big_random_small(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v = rng.gen_iter::<BigSortable>().take(5)
.collect::<Vec<BigSortable>>();
v.sort();
});
b.bytes = 5 * mem::size_of::<BigSortable>() as u64;
}
#[bench]
fn sort_big_random_medium(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v = rng.gen_iter::<BigSortable>().take(100)
.collect::<Vec<BigSortable>>();
v.sort();
});
b.bytes = 100 * mem::size_of::<BigSortable>() as u64;
}
#[bench]
fn sort_big_random_large(b: &mut Bencher) {
let mut rng = thread_rng();
b.iter(|| {
let mut v = rng.gen_iter::<BigSortable>().take(10000)
.collect::<Vec<BigSortable>>();
v.sort();
});
b.bytes = 10000 * mem::size_of::<BigSortable>() as u64;
}
#[bench]
fn sort_big_sorted(b: &mut Bencher) {
let mut v: Vec<BigSortable> = (0..10000).map(|i| (i, i, i, i)).collect();
b.iter(|| {
v.sort();
});
b.bytes = (v.len() * mem::size_of_val(&v[0])) as u64;
}
}