rust/src/libcore/vec.rs

3982 lines
105 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Vectors
#[warn(non_camel_case_types)];
use container::{Container, Mutable};
use cast::transmute;
use cast;
use cmp::{Eq, Ord};
use iter::BaseIter;
use iter;
use kinds::Copy;
use libc;
use libc::size_t;
use option::{None, Option, Some};
use ptr;
use ptr::addr_of;
use sys;
use uint;
use vec;
#[abi = "cdecl"]
pub extern mod rustrt {
unsafe fn vec_reserve_shared(++t: *sys::TypeDesc,
++v: **raw::VecRepr,
++n: libc::size_t);
}
#[abi = "rust-intrinsic"]
pub extern mod rusti {
fn move_val_init<T>(dst: &mut T, -src: T);
fn init<T>() -> T;
}
/// Returns true if a vector contains no elements
pub pure fn is_empty<T>(v: &[const T]) -> bool {
as_const_buf(v, |_p, len| len == 0u)
}
/// Returns true if two vectors have the same length
pub pure fn same_length<T, U>(xs: &[const T], ys: &[const U]) -> bool {
len(xs) == len(ys)
}
/**
* Reserves capacity for exactly `n` elements in the given vector.
*
* If the capacity for `v` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * v - A vector
* * n - The number of elements to reserve space for
*/
pub fn reserve<T>(v: &mut ~[T], n: uint) {
// Only make the (slow) call into the runtime if we have to
if capacity(v) < n {
unsafe {
let ptr: **raw::VecRepr = cast::transmute(v);
rustrt::vec_reserve_shared(sys::get_type_desc::<T>(),
ptr, n as size_t);
}
}
}
/**
* Reserves capacity for at least `n` elements in the given vector.
*
* This function will over-allocate in order to amortize the allocation costs
* in scenarios where the caller may need to repeatedly reserve additional
* space.
*
* If the capacity for `v` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * v - A vector
* * n - The number of elements to reserve space for
*/
pub fn reserve_at_least<T>(v: &mut ~[T], n: uint) {
reserve(v, uint::next_power_of_two(n));
}
/// Returns the number of elements the vector can hold without reallocating
#[inline(always)]
pub pure fn capacity<T>(v: &const ~[T]) -> uint {
unsafe {
let repr: **raw::VecRepr = ::cast::transmute(v);
(**repr).unboxed.alloc / sys::nonzero_size_of::<T>()
}
}
/// Returns the length of a vector
#[inline(always)]
pub pure fn len<T>(v: &[const T]) -> uint {
as_const_buf(v, |_p, len| len)
}
/**
* Creates and initializes an immutable vector.
*
* Creates an immutable vector of size `n_elts` and initializes the elements
* to the value returned by the function `op`.
*/
pub pure fn from_fn<T>(n_elts: uint, op: iter::InitOp<T>) -> ~[T] {
unsafe {
let mut v = with_capacity(n_elts);
do as_mut_buf(v) |p, _len| {
let mut i: uint = 0u;
while i < n_elts {
rusti::move_val_init(&mut(*ptr::mut_offset(p, i)), op(i));
i += 1u;
}
}
raw::set_len(&mut v, n_elts);
return v;
}
}
/**
* Creates and initializes an immutable vector.
*
* Creates an immutable vector of size `n_elts` and initializes the elements
* to the value `t`.
*/
pub pure fn from_elem<T: Copy>(n_elts: uint, t: T) -> ~[T] {
from_fn(n_elts, |_i| copy t)
}
/// Creates a new unique vector with the same contents as the slice
pub pure fn from_slice<T: Copy>(t: &[T]) -> ~[T] {
from_fn(t.len(), |i| t[i])
}
pub pure fn with_capacity<T>(capacity: uint) -> ~[T] {
let mut vec = ~[];
unsafe { reserve(&mut vec, capacity); }
return vec;
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
* This version takes an initial size for the vector.
*
* # Arguments
*
* * size - An initial size of the vector to reserve
* * builder - A function that will construct the vector. It recieves
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline(always)]
pub pure fn build_sized<A>(size: uint,
builder: fn(push: pure fn(v: A))) -> ~[A] {
let mut vec = with_capacity(size);
builder(|x| unsafe { vec.push(x) });
vec
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
*
* # Arguments
*
* * builder - A function that will construct the vector. It recieves
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline(always)]
pub pure fn build<A>(builder: fn(push: pure fn(v: A))) -> ~[A] {
build_sized(4, builder)
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
* This version takes an initial size for the vector.
*
* # Arguments
*
* * size - An option, maybe containing initial size of the vector to reserve
* * builder - A function that will construct the vector. It recieves
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline(always)]
pub pure fn build_sized_opt<A>(size: Option<uint>,
builder: fn(push: pure fn(v: A))) -> ~[A] {
build_sized(size.get_or_default(4), builder)
}
/// Produces a mut vector from an immutable vector.
pub pure fn cast_to_mut<T>(v: ~[T]) -> ~[mut T] {
unsafe { ::cast::transmute(v) }
}
/// Produces an immutable vector from a mut vector.
pub pure fn cast_from_mut<T>(v: ~[mut T]) -> ~[T] {
unsafe { ::cast::transmute(v) }
}
// Accessors
/// Returns the first element of a vector
pub pure fn head<T: Copy>(v: &[const T]) -> T { v[0] }
/// Returns a vector containing all but the first element of a slice
pub pure fn tail<T: Copy>(v: &[const T]) -> ~[T] {
return slice(v, 1u, len(v));
}
/**
* Returns a vector containing all but the first `n` \
* elements of a slice
*/
pub pure fn tailn<T: Copy>(v: &[const T], n: uint) -> ~[T] {
slice(v, n, len(v))
}
/// Returns a vector containing all but the last element of a slice
pub pure fn init<T: Copy>(v: &[const T]) -> ~[T] {
assert len(v) != 0u;
slice(v, 0u, len(v) - 1u)
}
/// Returns the last element of the slice `v`, failing if the slice is empty.
pub pure fn last<T: Copy>(v: &[const T]) -> T {
if len(v) == 0u { fail!(~"last_unsafe: empty vector") }
v[len(v) - 1u]
}
/**
* Returns `Some(x)` where `x` is the last element of the slice `v`,
* or `none` if the vector is empty.
*/
pub pure fn last_opt<T: Copy>(v: &[const T]) -> Option<T> {
if len(v) == 0u { return None; }
Some(v[len(v) - 1u])
}
/// Returns a copy of the elements from [`start`..`end`) from `v`.
pub pure fn slice<T: Copy>(v: &[const T], start: uint, end: uint) -> ~[T] {
assert (start <= end);
assert (end <= len(v));
let mut result = ~[];
unsafe {
for uint::range(start, end) |i| { result.push(v[i]) }
}
result
}
/// Return a slice that points into another slice.
#[inline(always)]
pub pure fn view<T>(v: &r/[T], start: uint, end: uint) -> &r/[T] {
assert (start <= end);
assert (end <= len(v));
do as_imm_buf(v) |p, _len| {
unsafe {
::cast::reinterpret_cast(
&(ptr::offset(p, start),
(end - start) * sys::nonzero_size_of::<T>()))
}
}
}
/// Return a slice that points into another slice.
#[inline(always)]
pub pure fn mut_view<T>(v: &r/[mut T], start: uint, end: uint) -> &r/[mut T] {
assert (start <= end);
assert (end <= len(v));
do as_mut_buf(v) |p, _len| {
unsafe {
::cast::reinterpret_cast(
&(ptr::mut_offset(p, start),
(end - start) * sys::nonzero_size_of::<T>()))
}
}
}
/// Return a slice that points into another slice.
#[inline(always)]
pub pure fn const_view<T>(v: &r/[const T], start: uint,
end: uint) -> &r/[const T] {
assert (start <= end);
assert (end <= len(v));
do as_const_buf(v) |p, _len| {
unsafe {
::cast::reinterpret_cast(
&(ptr::const_offset(p, start),
(end - start) * sys::nonzero_size_of::<T>()))
}
}
}
/// Copies
/// Split the vector `v` by applying each element against the predicate `f`.
pub fn split<T: Copy>(v: &[T], f: fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0u) { return ~[] }
let mut start = 0u;
let mut result = ~[];
while start < ln {
match position_between(v, start, ln, f) {
None => break,
Some(i) => {
result.push(slice(v, start, i));
start = i + 1u;
}
}
}
result.push(slice(v, start, ln));
result
}
/**
* Split the vector `v` by applying each element against the predicate `f` up
* to `n` times.
*/
pub fn splitn<T: Copy>(v: &[T], n: uint, f: fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0u) { return ~[] }
let mut start = 0u;
let mut count = n;
let mut result = ~[];
while start < ln && count > 0u {
match position_between(v, start, ln, f) {
None => break,
Some(i) => {
result.push(slice(v, start, i));
// Make sure to skip the separator.
start = i + 1u;
count -= 1u;
}
}
}
result.push(slice(v, start, ln));
result
}
/**
* Reverse split the vector `v` by applying each element against the predicate
* `f`.
*/
pub fn rsplit<T: Copy>(v: &[T], f: fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0) { return ~[] }
let mut end = ln;
let mut result = ~[];
while end > 0 {
match rposition_between(v, 0, end, f) {
None => break,
Some(i) => {
result.push(slice(v, i + 1, end));
end = i;
}
}
}
result.push(slice(v, 0u, end));
reverse(result);
return result;
}
/**
* Reverse split the vector `v` by applying each element against the predicate
* `f` up to `n times.
*/
pub fn rsplitn<T: Copy>(v: &[T], n: uint, f: fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0u) { return ~[] }
let mut end = ln;
let mut count = n;
let mut result = ~[];
while end > 0u && count > 0u {
match rposition_between(v, 0u, end, f) {
None => break,
Some(i) => {
result.push(slice(v, i + 1u, end));
// Make sure to skip the separator.
end = i;
count -= 1u;
}
}
}
result.push(slice(v, 0u, end));
reverse(result);
result
}
/**
* Partitions a vector into two new vectors: those that satisfies the
* predicate, and those that do not.
*/
pub fn partition<T>(v: ~[T], f: fn(&T) -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
// FIXME (#4355 maybe): using v.consume here crashes
// do v.consume |_, elt| {
do consume(v) |_, elt| {
if f(&elt) {
lefts.push(elt);
} else {
rights.push(elt);
}
}
(lefts, rights)
}
/**
* Partitions a vector into two new vectors: those that satisfies the
* predicate, and those that do not.
*/
pub pure fn partitioned<T: Copy>(v: &[T], f: fn(&T) -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
for each(v) |elt| {
unsafe {
if f(elt) {
lefts.push(*elt);
} else {
rights.push(*elt);
}
}
}
(lefts, rights)
}
// Mutators
/// Removes the first element from a vector and return it
pub fn shift<T>(v: &mut ~[T]) -> T {
unsafe {
assert !v.is_empty();
if v.len() == 1 { return v.pop() }
if v.len() == 2 {
let last = v.pop();
let first = v.pop();
v.push(last);
return first;
}
let ln = v.len();
let next_ln = v.len() - 1;
// Save the last element. We're going to overwrite its position
let mut work_elt = v.pop();
// We still should have room to work where what last element was
assert capacity(v) >= ln;
// Pretend like we have the original length so we can use
// the vector copy_memory to overwrite the hole we just made
raw::set_len(&mut *v, ln);
// Memcopy the head element (the one we want) to the location we just
// popped. For the moment it unsafely exists at both the head and last
// positions
{
let first_slice = view(*v, 0, 1);
let last_slice = view(*v, next_ln, ln);
raw::copy_memory(::cast::transmute(last_slice), first_slice, 1);
}
// Memcopy everything to the left one element
{
let init_slice = view(*v, 0, next_ln);
let tail_slice = view(*v, 1, ln);
raw::copy_memory(::cast::transmute(init_slice),
tail_slice,
next_ln);
}
// Set the new length. Now the vector is back to normal
raw::set_len(&mut *v, next_ln);
// Swap out the element we want from the end
let vp = raw::to_mut_ptr(*v);
let vp = ptr::mut_offset(vp, next_ln - 1);
*vp <-> work_elt;
return work_elt;
}
}
/// Prepend an element to the vector
pub fn unshift<T>(v: &mut ~[T], x: T) {
let mut vv = ~[x];
*v <-> vv;
v.push_all_move(vv);
}
/// Insert an element at position i within v, shifting all
/// elements after position i one position to the right.
pub fn insert<T>(v: &mut ~[T], i: uint, x: T) {
let len = v.len();
assert i <= len;
v.push(x);
let mut j = len;
while j > i {
v[j] <-> v[j - 1];
j -= 1;
}
}
/// Remove and return the element at position i within v, shifting
/// all elements after position i one position to the left.
pub fn remove<T>(v: &mut ~[T], i: uint) -> T {
let len = v.len();
assert i < len;
let mut j = i;
while j < len - 1 {
v[j] <-> v[j + 1];
j += 1;
}
v.pop()
}
pub fn consume<T>(mut v: ~[T], f: fn(uint, v: T)) {
unsafe {
do as_mut_buf(v) |p, ln| {
for uint::range(0, ln) |i| {
// NB: This unsafe operation counts on init writing 0s to the
// holes we create in the vector. That ensures that, if the
// iterator fails then we won't try to clean up the consumed
// elements during unwinding
let mut x = rusti::init();
let p = ptr::mut_offset(p, i);
x <-> *p;
f(i, x);
}
}
raw::set_len(&mut v, 0);
}
}
/// Remove the last element from a vector and return it
pub fn pop<T>(v: &mut ~[T]) -> T {
let ln = v.len();
if ln == 0 {
fail!(~"sorry, cannot vec::pop an empty vector")
}
let valptr = ptr::to_mut_unsafe_ptr(&mut v[ln - 1u]);
unsafe {
// FIXME #4204: Should be rusti::uninit() - we don't need this zeroed
let mut val = rusti::init();
val <-> *valptr;
raw::set_len(v, ln - 1u);
val
}
}
/**
* Remove an element from anywhere in the vector and return it, replacing it
* with the last element. This does not preserve ordering, but is O(1).
*
* Fails if index >= length.
*/
pub fn swap_remove<T>(v: &mut ~[T], index: uint) -> T {
let ln = v.len();
if index >= ln {
fail!(fmt!("vec::swap_remove - index %u >= length %u", index, ln));
}
if index < ln - 1 {
v[index] <-> v[ln - 1];
}
vec::pop(v)
}
/// Append an element to a vector
#[inline(always)]
pub fn push<T>(v: &mut ~[T], initval: T) {
unsafe {
let repr: **raw::VecRepr = ::cast::transmute(&mut *v);
let fill = (**repr).unboxed.fill;
if (**repr).unboxed.alloc > fill {
push_fast(v, initval);
}
else {
push_slow(v, initval);
}
}
}
// This doesn't bother to make sure we have space.
#[inline(always)] // really pretty please
unsafe fn push_fast<T>(v: &mut ~[T], initval: T) {
let repr: **raw::VecRepr = ::cast::transmute(v);
let fill = (**repr).unboxed.fill;
(**repr).unboxed.fill += sys::nonzero_size_of::<T>();
let p = addr_of(&((**repr).unboxed.data));
let p = ptr::offset(p, fill) as *mut T;
rusti::move_val_init(&mut(*p), move initval);
}
#[inline(never)]
fn push_slow<T>(v: &mut ~[T], initval: T) {
let new_len = v.len() + 1;
reserve_at_least(&mut *v, new_len);
unsafe { push_fast(v, initval) }
}
#[inline(always)]
pub fn push_all<T: Copy>(v: &mut ~[T], rhs: &[const T]) {
let new_len = v.len() + rhs.len();
reserve(&mut *v, new_len);
for uint::range(0u, rhs.len()) |i| {
push(&mut *v, unsafe { raw::get(rhs, i) })
}
}
#[inline(always)]
pub fn push_all_move<T>(v: &mut ~[T], mut rhs: ~[T]) {
let new_len = v.len() + rhs.len();
reserve(&mut *v, new_len);
unsafe {
do as_mut_buf(rhs) |p, len| {
for uint::range(0, len) |i| {
// FIXME #4204 Should be rusti::uninit() - don't need to zero
let mut x = rusti::init();
x <-> *ptr::mut_offset(p, i);
push(&mut *v, x);
}
}
raw::set_len(&mut rhs, 0);
}
}
/// Shorten a vector, dropping excess elements.
pub fn truncate<T>(v: &mut ~[T], newlen: uint) {
do as_mut_buf(*v) |p, oldlen| {
assert(newlen <= oldlen);
unsafe {
// This loop is optimized out for non-drop types.
for uint::range(newlen, oldlen) |i| {
// FIXME #4204 Should be rusti::uninit() - don't need to zero
let mut dropped = rusti::init();
dropped <-> *ptr::mut_offset(p, i);
}
}
}
unsafe { raw::set_len(&mut *v, newlen); }
}
/**
* Remove consecutive repeated elements from a vector; if the vector is
* sorted, this removes all duplicates.
*/
pub fn dedup<T: Eq>(v: &mut ~[T]) {
unsafe {
if v.len() < 1 { return; }
let mut last_written = 0, next_to_read = 1;
do as_const_buf(*v) |p, ln| {
// We have a mutable reference to v, so we can make arbitrary
// changes. (cf. push and pop)
let p = p as *mut T;
// last_written < next_to_read <= ln
while next_to_read < ln {
// last_written < next_to_read < ln
if *ptr::mut_offset(p, next_to_read) ==
*ptr::mut_offset(p, last_written) {
// FIXME #4204 Should be rusti::uninit() - don't need to
// zero
let mut dropped = rusti::init();
dropped <-> *ptr::mut_offset(p, next_to_read);
} else {
last_written += 1;
// last_written <= next_to_read < ln
if next_to_read != last_written {
*ptr::mut_offset(p, last_written) <->
*ptr::mut_offset(p, next_to_read);
}
}
// last_written <= next_to_read < ln
next_to_read += 1;
// last_written < next_to_read <= ln
}
}
// last_written < next_to_read == ln
raw::set_len(v, last_written + 1);
}
}
// Appending
#[inline(always)]
pub pure fn append<T: Copy>(lhs: ~[T], rhs: &[const T]) -> ~[T] {
let mut v = lhs;
unsafe {
v.push_all(rhs);
}
v
}
#[inline(always)]
pub pure fn append_one<T>(lhs: ~[T], x: T) -> ~[T] {
let mut v = lhs;
unsafe { v.push(x); }
v
}
/**
* Expands a vector in place, initializing the new elements to a given value
*
* # Arguments
*
* * v - The vector to grow
* * n - The number of elements to add
* * initval - The value for the new elements
*/
pub fn grow<T: Copy>(v: &mut ~[T], n: uint, initval: &T) {
let new_len = v.len() + n;
reserve_at_least(&mut *v, new_len);
let mut i: uint = 0u;
while i < n {
v.push(*initval);
i += 1u;
}
}
/**
* Expands a vector in place, initializing the new elements to the result of
* a function
*
* Function `init_op` is called `n` times with the values [0..`n`)
*
* # Arguments
*
* * v - The vector to grow
* * n - The number of elements to add
* * init_op - A function to call to retreive each appended element's
* value
*/
pub fn grow_fn<T>(v: &mut ~[T], n: uint, op: iter::InitOp<T>) {
let new_len = v.len() + n;
reserve_at_least(&mut *v, new_len);
let mut i: uint = 0u;
while i < n {
v.push(op(i));
i += 1u;
}
}
/**
* Sets the value of a vector element at a given index, growing the vector as
* needed
*
* Sets the element at position `index` to `val`. If `index` is past the end
* of the vector, expands the vector by replicating `initval` to fill the
* intervening space.
*/
pub fn grow_set<T: Copy>(v: &mut ~[T], index: uint, initval: &T, val: T) {
let l = v.len();
if index >= l { grow(&mut *v, index - l + 1u, initval); }
v[index] = val;
}
// Functional utilities
/// Apply a function to each element of a vector and return the results
pub pure fn map<T, U>(v: &[T], f: fn(t: &T) -> U) -> ~[U] {
let mut result = with_capacity(len(v));
for each(v) |elem| {
unsafe {
result.push(f(elem));
}
}
result
}
pub fn map_consume<T, U>(v: ~[T], f: fn(v: T) -> U) -> ~[U] {
let mut result = ~[];
do consume(v) |_i, x| {
result.push(f(x));
}
result
}
/// Apply a function to each element of a vector and return the results
pub pure fn mapi<T, U>(v: &[T], f: fn(uint, t: &T) -> U) -> ~[U] {
let mut i = 0;
do map(v) |e| {
i += 1;
f(i - 1, e)
}
}
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
pub pure fn flat_map<T, U>(v: &[T], f: fn(t: &T) -> ~[U]) -> ~[U] {
let mut result = ~[];
for each(v) |elem| { unsafe{ result.push_all_move(f(elem)); } }
result
}
/// Apply a function to each pair of elements and return the results
pub pure fn map2<T: Copy, U: Copy, V>(v0: &[T], v1: &[U],
f: fn(t: &T, v: &U) -> V) -> ~[V] {
let v0_len = len(v0);
if v0_len != len(v1) { fail!(); }
let mut u: ~[V] = ~[];
let mut i = 0u;
while i < v0_len {
unsafe { u.push(f(&v0[i], &v1[i])) };
i += 1u;
}
u
}
pub fn filter_map<T, U>(
v: ~[T],
f: fn(t: T) -> Option<U>) -> ~[U]
{
/*!
*
* Apply a function to each element of a vector and return the results.
* Consumes the input vector. If function `f` returns `None` then that
* element is excluded from the resulting vector.
*/
let mut result = ~[];
do consume(v) |_, elem| {
match f(elem) {
None => {}
Some(result_elem) => { result.push(result_elem); }
}
}
result
}
pub pure fn filter_mapped<T, U: Copy>(
v: &[T],
f: fn(t: &T) -> Option<U>) -> ~[U]
{
/*!
*
* Like `filter_map()`, but operates on a borrowed slice
* and does not consume the input.
*/
let mut result = ~[];
for each(v) |elem| {
match f(elem) {
None => {/* no-op */ }
Some(result_elem) => unsafe { result.push(result_elem); }
}
}
result
}
/**
* Construct a new vector from the elements of a vector for which some
* predicate holds.
*
* Apply function `f` to each element of `v` and return a vector containing
* only those elements for which `f` returned true.
*/
pub fn filter<T>(v: ~[T], f: fn(t: &T) -> bool) -> ~[T] {
let mut result = ~[];
// FIXME (#4355 maybe): using v.consume here crashes
// do v.consume |_, elem| {
do consume(v) |_, elem| {
if f(&elem) { result.push(elem); }
}
result
}
/**
* Construct a new vector from the elements of a vector for which some
* predicate holds.
*
* Apply function `f` to each element of `v` and return a vector containing
* only those elements for which `f` returned true.
*/
pub pure fn filtered<T: Copy>(v: &[T], f: fn(t: &T) -> bool) -> ~[T] {
let mut result = ~[];
for each(v) |elem| {
if f(elem) { unsafe { result.push(*elem); } }
}
result
}
/**
* Like `filter()`, but in place. Preserves order of `v`. Linear time.
*/
pub fn retain<T>(v: &mut ~[T], f: pure fn(t: &T) -> bool) {
let len = v.len();
let mut deleted: uint = 0;
for uint::range(0, len) |i| {
if !f(&v[i]) {
deleted += 1;
} else if deleted > 0 {
v[i - deleted] <-> v[i];
}
}
if deleted > 0 {
v.truncate(len - deleted);
}
}
/**
* Concatenate a vector of vectors.
*
* Flattens a vector of vectors of T into a single vector of T.
*/
pub pure fn concat<T: Copy>(v: &[~[T]]) -> ~[T] {
let mut r = ~[];
for each(v) |inner| { unsafe { r.push_all(*inner); } }
r
}
/// Concatenate a vector of vectors, placing a given separator between each
pub pure fn connect<T: Copy>(v: &[~[T]], sep: &T) -> ~[T] {
let mut r: ~[T] = ~[];
let mut first = true;
for each(v) |inner| {
if first { first = false; } else { unsafe { r.push(*sep); } }
unsafe { r.push_all(*inner) };
}
r
}
/**
* Reduces a vector from left to right.
*
* # Arguments
* * `z` - initial accumulator value
* * `v` - vector to iterate over
* * `p` - a closure to operate on vector elements
*
* # Examples
*
* Sum all values in the vector [1, 2, 3]:
*
* ~~~
* vec::foldl(0, [1, 2, 3], |a, b| a + *b);
* ~~~
*
*/
pub pure fn foldl<T, U>(z: T, v: &[U], p: fn(t: T, u: &U) -> T) -> T {
let mut accum = z;
let mut i = 0;
let l = v.len();
while i < l {
// Use a while loop so that liveness analysis can handle moving
// the accumulator.
accum = p(accum, &v[i]);
i += 1;
}
return accum;
}
/**
* Reduces a vector from right to left. Note that the argument order is
* reversed compared to `foldl` to reflect the order they are provided to
* the closure.
*
* # Arguments
* * `v` - vector to iterate over
* * `z` - initial accumulator value
* * `p` - a closure to do operate on vector elements
*
* # Examples
*
* Sum all values in the vector [1, 2, 3]:
*
* ~~~
* vec::foldr([1, 2, 3], 0, |a, b| a + *b);
* ~~~
*
*/
pub pure fn foldr<T, U: Copy>(v: &[T], z: U, p: fn(t: &T, u: U) -> U) -> U {
let mut accum = z;
for rev_each(v) |elt| {
accum = p(elt, accum);
}
return accum;
}
/**
* Return true if a predicate matches any elements
*
* If the vector contains no elements then false is returned.
*/
pub pure fn any<T>(v: &[T], f: fn(t: &T) -> bool) -> bool {
for each(v) |elem| { if f(elem) { return true; } }
return false;
}
/**
* Return true if a predicate matches any elements in both vectors.
*
* If the vectors contains no elements then false is returned.
*/
pub pure fn any2<T, U>(v0: &[T], v1: &[U],
f: fn(a: &T, b: &U) -> bool) -> bool {
let v0_len = len(v0);
let v1_len = len(v1);
let mut i = 0u;
while i < v0_len && i < v1_len {
if f(&v0[i], &v1[i]) { return true; };
i += 1u;
}
return false;
}
/**
* Return true if a predicate matches all elements
*
* If the vector contains no elements then true is returned.
*/
pub pure fn all<T>(v: &[T], f: fn(t: &T) -> bool) -> bool {
for each(v) |elem| { if !f(elem) { return false; } }
return true;
}
/**
* Return true if a predicate matches all elements
*
* If the vector contains no elements then true is returned.
*/
pub pure fn alli<T>(v: &[T], f: fn(uint, t: &T) -> bool) -> bool {
for eachi(v) |i, elem| { if !f(i, elem) { return false; } }
return true;
}
/**
* Return true if a predicate matches all elements in both vectors.
*
* If the vectors are not the same size then false is returned.
*/
pub pure fn all2<T, U>(v0: &[T], v1: &[U],
f: fn(t: &T, u: &U) -> bool) -> bool {
let v0_len = len(v0);
if v0_len != len(v1) { return false; }
let mut i = 0u;
while i < v0_len { if !f(&v0[i], &v1[i]) { return false; }; i += 1u; }
return true;
}
/// Return true if a vector contains an element with the given value
pub pure fn contains<T: Eq>(v: &[T], x: &T) -> bool {
for each(v) |elt| { if *x == *elt { return true; } }
return false;
}
/// Returns the number of elements that are equal to a given value
pub pure fn count<T: Eq>(v: &[T], x: &T) -> uint {
let mut cnt = 0u;
for each(v) |elt| { if *x == *elt { cnt += 1u; } }
return cnt;
}
/**
* Search for the first element that matches a given predicate
*
* Apply function `f` to each element of `v`, starting from the first.
* When function `f` returns true then an option containing the element
* is returned. If `f` matches no elements then none is returned.
*/
pub pure fn find<T: Copy>(v: &[T], f: fn(t: &T) -> bool) -> Option<T> {
find_between(v, 0u, len(v), f)
}
/**
* Search for the first element that matches a given predicate within a range
*
* Apply function `f` to each element of `v` within the range
* [`start`, `end`). When function `f` returns true then an option containing
* the element is returned. If `f` matches no elements then none is returned.
*/
pub pure fn find_between<T: Copy>(v: &[T], start: uint, end: uint,
f: fn(t: &T) -> bool) -> Option<T> {
position_between(v, start, end, f).map(|i| v[*i])
}
/**
* Search for the last element that matches a given predicate
*
* Apply function `f` to each element of `v` in reverse order. When function
* `f` returns true then an option containing the element is returned. If `f`
* matches no elements then none is returned.
*/
pub pure fn rfind<T: Copy>(v: &[T], f: fn(t: &T) -> bool) -> Option<T> {
rfind_between(v, 0u, len(v), f)
}
/**
* Search for the last element that matches a given predicate within a range
*
* Apply function `f` to each element of `v` in reverse order within the range
* [`start`, `end`). When function `f` returns true then an option containing
* the element is returned. If `f` matches no elements then none is return.
*/
pub pure fn rfind_between<T: Copy>(v: &[T], start: uint, end: uint,
f: fn(t: &T) -> bool) -> Option<T> {
rposition_between(v, start, end, f).map(|i| v[*i])
}
/// Find the first index containing a matching value
pub pure fn position_elem<T: Eq>(v: &[T], x: &T) -> Option<uint> {
position(v, |y| *x == *y)
}
/**
* Find the first index matching some predicate
*
* Apply function `f` to each element of `v`. When function `f` returns true
* then an option containing the index is returned. If `f` matches no elements
* then none is returned.
*/
pub pure fn position<T>(v: &[T], f: fn(t: &T) -> bool) -> Option<uint> {
position_between(v, 0u, len(v), f)
}
/**
* Find the first index matching some predicate within a range
*
* Apply function `f` to each element of `v` between the range
* [`start`, `end`). When function `f` returns true then an option containing
* the index is returned. If `f` matches no elements then none is returned.
*/
pub pure fn position_between<T>(v: &[T], start: uint, end: uint,
f: fn(t: &T) -> bool) -> Option<uint> {
assert start <= end;
assert end <= len(v);
let mut i = start;
while i < end { if f(&v[i]) { return Some::<uint>(i); } i += 1u; }
return None;
}
/// Find the last index containing a matching value
pure fn rposition_elem<T: Eq>(v: &[T], x: &T) -> Option<uint> {
rposition(v, |y| *x == *y)
}
/**
* Find the last index matching some predicate
*
* Apply function `f` to each element of `v` in reverse order. When function
* `f` returns true then an option containing the index is returned. If `f`
* matches no elements then none is returned.
*/
pub pure fn rposition<T>(v: &[T], f: fn(t: &T) -> bool) -> Option<uint> {
rposition_between(v, 0u, len(v), f)
}
/**
* Find the last index matching some predicate within a range
*
* Apply function `f` to each element of `v` in reverse order between the
* range [`start`, `end`). When function `f` returns true then an option
* containing the index is returned. If `f` matches no elements then none is
* returned.
*/
pub pure fn rposition_between<T>(v: &[T], start: uint, end: uint,
f: fn(t: &T) -> bool) -> Option<uint> {
assert start <= end;
assert end <= len(v);
let mut i = end;
while i > start {
if f(&v[i - 1u]) { return Some::<uint>(i - 1u); }
i -= 1u;
}
return None;
}
// FIXME: if issue #586 gets implemented, could have a postcondition
// saying the two result lists have the same length -- or, could
// return a nominal record with a constraint saying that, instead of
// returning a tuple (contingent on issue #869)
/**
* Convert a vector of pairs into a pair of vectors, by reference. As unzip().
*/
pure fn unzip_slice<T: Copy, U: Copy>(v: &[(T, U)]) -> (~[T], ~[U]) {
let mut ts = ~[], us = ~[];
for each(v) |p| {
let (t, u) = *p;
unsafe {
ts.push(t);
us.push(u);
}
}
return (ts, us);
}
/**
* Convert a vector of pairs into a pair of vectors.
*
* Returns a tuple containing two vectors where the i-th element of the first
* vector contains the first element of the i-th tuple of the input vector,
* and the i-th element of the second vector contains the second element
* of the i-th tuple of the input vector.
*/
pub pure fn unzip<T,U>(v: ~[(T, U)]) -> (~[T], ~[U]) {
let mut ts = ~[], us = ~[];
unsafe {
do consume(v) |_i, p| {
let (t, u) = p;
ts.push(t);
us.push(u);
}
}
(ts, us)
}
/**
* Convert two vectors to a vector of pairs, by reference. As zip().
*/
pub pure fn zip_slice<T: Copy, U: Copy>(v: &[const T], u: &[const U])
-> ~[(T, U)] {
let mut zipped = ~[];
let sz = len(v);
let mut i = 0u;
assert sz == len(u);
while i < sz {
unsafe { zipped.push((v[i], u[i])); i += 1u; }
}
zipped
}
/**
* Convert two vectors to a vector of pairs.
*
* Returns a vector of tuples, where the i-th tuple contains contains the
* i-th elements from each of the input vectors.
*/
pub pure fn zip<T, U>(mut v: ~[T], mut u: ~[U]) -> ~[(T, U)] {
let mut i = len(v);
assert i == len(u);
let mut w = with_capacity(i);
while i > 0 {
unsafe { w.push((v.pop(),u.pop())); }
i -= 1;
}
unsafe { reverse(w); }
w
}
/**
* Swaps two elements in a vector
*
* # Arguments
*
* * v The input vector
* * a - The index of the first element
* * b - The index of the second element
*/
pub fn swap<T>(v: &mut [T], a: uint, b: uint) {
v[a] <-> v[b];
}
/// Reverse the order of elements in a vector, in place
pub fn reverse<T>(v: &mut [T]) {
let mut i: uint = 0;
let ln = len::<T>(v);
while i < ln / 2 { v[i] <-> v[ln - i - 1]; i += 1; }
}
/// Returns a vector with the order of elements reversed
pub pure fn reversed<T: Copy>(v: &[const T]) -> ~[T] {
let mut rs: ~[T] = ~[];
let mut i = len::<T>(v);
if i == 0 { return (rs); } else { i -= 1; }
unsafe {
while i != 0 { rs.push(v[i]); i -= 1; }
rs.push(v[0]);
}
rs
}
/**
* Iterates over a vector, yielding each element to a closure.
*
* # Arguments
*
* * `v` - A vector, to be iterated over
* * `f` - A closure to do the iterating. Within this closure, return true to
* * continue iterating, false to break.
*
* # Examples
* ~~~
* [1,2,3].each(|&i| {
* io::println(int::str(i));
* true
* });
* ~~~
*
* ~~~
* [1,2,3,4,5].each(|&i| {
* if i < 4 {
* io::println(int::str(i));
* true
* }
* else {
* false
* }
* });
* ~~~
*
* You probably will want to use each with a `for`/`do` expression, depending
* on your iteration needs:
*
* ~~~
* for [1,2,3].each |&i| {
* io::println(int::str(i));
* }
* ~~~
*/
#[inline(always)]
pub pure fn each<T>(v: &r/[T], f: fn(&r/T) -> bool) {
// ^^^^
// NB---this CANNOT be &[const T]! The reason
// is that you are passing it to `f()` using
// an immutable.
do vec::as_imm_buf(v) |p, n| {
let mut n = n;
let mut p = p;
while n > 0u {
unsafe {
let q = cast::copy_lifetime_vec(v, &*p);
if !f(q) { break; }
p = ptr::offset(p, 1u);
}
n -= 1u;
}
}
}
/// Like `each()`, but for the case where you have
/// a vector with mutable contents and you would like
/// to mutate the contents as you iterate.
#[inline(always)]
pub fn each_mut<T>(v: &mut [T], f: fn(elem: &mut T) -> bool) {
let mut i = 0;
let n = v.len();
while i < n {
if !f(&mut v[i]) {
return;
}
i += 1;
}
}
/// Like `each()`, but for the case where you have a vector that *may or may
/// not* have mutable contents.
#[inline(always)]
pub pure fn each_const<T>(v: &[const T], f: fn(elem: &const T) -> bool) {
let mut i = 0;
let n = v.len();
while i < n {
if !f(&const v[i]) {
return;
}
i += 1;
}
}
/**
* Iterates over a vector's elements and indices
*
* Return true to continue, false to break.
*/
#[inline(always)]
pub pure fn eachi<T>(v: &r/[T], f: fn(uint, v: &r/T) -> bool) {
let mut i = 0;
for each(v) |p| {
if !f(i, p) { return; }
i += 1;
}
}
/**
* Iterates over a vector's elements in reverse
*
* Return true to continue, false to break.
*/
#[inline(always)]
pub pure fn rev_each<T>(v: &r/[T], blk: fn(v: &r/T) -> bool) {
rev_eachi(v, |_i, v| blk(v))
}
/**
* Iterates over a vector's elements and indices in reverse
*
* Return true to continue, false to break.
*/
#[inline(always)]
pub pure fn rev_eachi<T>(v: &r/[T], blk: fn(i: uint, v: &r/T) -> bool) {
let mut i = v.len();
while i > 0 {
i -= 1;
if !blk(i, &v[i]) {
return;
}
}
}
/**
* Iterates over two vectors simultaneously
*
* # Failure
*
* Both vectors must have the same length
*/
#[inline]
pub fn each2<U, T>(v1: &[U], v2: &[T], f: fn(u: &U, t: &T) -> bool) {
assert len(v1) == len(v2);
for uint::range(0u, len(v1)) |i| {
if !f(&v1[i], &v2[i]) {
return;
}
}
}
/**
* Iterate over all permutations of vector `v`.
*
* Permutations are produced in lexicographic order with respect to the order
* of elements in `v` (so if `v` is sorted then the permutations are
* lexicographically sorted).
*
* The total number of permutations produced is `len(v)!`. If `v` contains
* repeated elements, then some permutations are repeated.
*/
pure fn each_permutation<T: Copy>(v: &[T], put: fn(ts: &[T]) -> bool) {
let ln = len(v);
if ln <= 1 {
put(v);
} else {
// This does not seem like the most efficient implementation. You
// could make far fewer copies if you put your mind to it.
let mut i = 0u;
while i < ln {
let elt = v[i];
let mut rest = slice(v, 0u, i);
unsafe {
rest.push_all(const_view(v, i+1u, ln));
for each_permutation(rest) |permutation| {
if !put(append(~[elt], permutation)) {
return;
}
}
}
i += 1u;
}
}
}
pub pure fn windowed<TT: Copy>(nn: uint, xx: &[TT]) -> ~[~[TT]] {
let mut ww = ~[];
assert 1u <= nn;
for vec::eachi (xx) |ii, _x| {
let len = vec::len(xx);
if ii+nn <= len {
unsafe {
ww.push(vec::slice(xx, ii, ii+nn));
}
}
}
ww
}
/**
* Work with the buffer of a vector.
*
* Allows for unsafe manipulation of vector contents, which is useful for
* foreign interop.
*/
#[inline(always)]
pub pure fn as_imm_buf<T,U>(s: &[T],
/* NB---this CANNOT be const, see below */
f: fn(*T, uint) -> U) -> U {
// NB---Do not change the type of s to `&[const T]`. This is
// unsound. The reason is that we are going to create immutable pointers
// into `s` and pass them to `f()`, but in fact they are potentially
// pointing at *mutable memory*. Use `as_const_buf` or `as_mut_buf`
// instead!
unsafe {
let v : *(*T,uint) =
::cast::reinterpret_cast(&addr_of(&s));
let (buf,len) = *v;
f(buf, len / sys::nonzero_size_of::<T>())
}
}
/// Similar to `as_imm_buf` but passing a `*const T`
#[inline(always)]
pub pure fn as_const_buf<T,U>(s: &[const T],
f: fn(*const T, uint) -> U) -> U {
unsafe {
let v : *(*const T,uint) =
::cast::reinterpret_cast(&addr_of(&s));
let (buf,len) = *v;
f(buf, len / sys::nonzero_size_of::<T>())
}
}
/// Similar to `as_imm_buf` but passing a `*mut T`
#[inline(always)]
pub pure fn as_mut_buf<T,U>(s: &mut [T],
f: fn(*mut T, uint) -> U) -> U {
unsafe {
let v : *(*mut T,uint) =
::cast::reinterpret_cast(&addr_of(&s));
let (buf,len) = *v;
f(buf, len / sys::nonzero_size_of::<T>())
}
}
// Equality
pure fn eq<T: Eq>(a: &[T], b: &[T]) -> bool {
let (a_len, b_len) = (a.len(), b.len());
if a_len != b_len { return false; }
let mut i = 0;
while i < a_len {
if a[i] != b[i] { return false; }
i += 1;
}
return true;
}
#[cfg(notest)]
impl<T: Eq> Eq for &[T] {
#[inline(always)]
pure fn eq(&self, other: & &self/[T]) -> bool { eq((*self), (*other)) }
#[inline(always)]
pure fn ne(&self, other: & &self/[T]) -> bool { !(*self).eq(other) }
}
#[cfg(notest)]
impl<T: Eq> Eq for ~[T] {
#[inline(always)]
pure fn eq(&self, other: &~[T]) -> bool { eq((*self), (*other)) }
#[inline(always)]
pure fn ne(&self, other: &~[T]) -> bool { !(*self).eq(other) }
}
#[cfg(notest)]
impl<T: Eq> Eq for @[T] {
#[inline(always)]
pure fn eq(&self, other: &@[T]) -> bool { eq((*self), (*other)) }
#[inline(always)]
pure fn ne(&self, other: &@[T]) -> bool { !(*self).eq(other) }
}
// Lexicographical comparison
pure fn lt<T: Ord>(a: &[T], b: &[T]) -> bool {
let (a_len, b_len) = (a.len(), b.len());
let mut end = uint::min(a_len, b_len);
let mut i = 0;
while i < end {
let (c_a, c_b) = (&a[i], &b[i]);
if *c_a < *c_b { return true; }
if *c_a > *c_b { return false; }
i += 1;
}
return a_len < b_len;
}
pure fn le<T: Ord>(a: &[T], b: &[T]) -> bool { !lt(b, a) }
pure fn ge<T: Ord>(a: &[T], b: &[T]) -> bool { !lt(a, b) }
pure fn gt<T: Ord>(a: &[T], b: &[T]) -> bool { lt(b, a) }
#[cfg(notest)]
impl<T: Ord> Ord for &[T] {
#[inline(always)]
pure fn lt(&self, other: & &self/[T]) -> bool { lt((*self), (*other)) }
#[inline(always)]
pure fn le(&self, other: & &self/[T]) -> bool { le((*self), (*other)) }
#[inline(always)]
pure fn ge(&self, other: & &self/[T]) -> bool { ge((*self), (*other)) }
#[inline(always)]
pure fn gt(&self, other: & &self/[T]) -> bool { gt((*self), (*other)) }
}
#[cfg(notest)]
impl<T: Ord> Ord for ~[T] {
#[inline(always)]
pure fn lt(&self, other: &~[T]) -> bool { lt((*self), (*other)) }
#[inline(always)]
pure fn le(&self, other: &~[T]) -> bool { le((*self), (*other)) }
#[inline(always)]
pure fn ge(&self, other: &~[T]) -> bool { ge((*self), (*other)) }
#[inline(always)]
pure fn gt(&self, other: &~[T]) -> bool { gt((*self), (*other)) }
}
#[cfg(notest)]
impl<T: Ord> Ord for @[T] {
#[inline(always)]
pure fn lt(&self, other: &@[T]) -> bool { lt((*self), (*other)) }
#[inline(always)]
pure fn le(&self, other: &@[T]) -> bool { le((*self), (*other)) }
#[inline(always)]
pure fn ge(&self, other: &@[T]) -> bool { ge((*self), (*other)) }
#[inline(always)]
pure fn gt(&self, other: &@[T]) -> bool { gt((*self), (*other)) }
}
#[cfg(notest)]
pub mod traits {
use kinds::Copy;
use ops::Add;
use vec::append;
impl<T: Copy> Add<&[const T],~[T]> for ~[T] {
#[inline(always)]
pure fn add(&self, rhs: & &self/[const T]) -> ~[T] {
append(copy *self, (*rhs))
}
}
}
impl<T> Container for &[const T] {
/// Returns true if a vector contains no elements
#[inline]
pure fn is_empty(&self) -> bool { is_empty(*self) }
/// Returns the length of a vector
#[inline]
pure fn len(&self) -> uint { len(*self) }
}
pub trait CopyableVector<T> {
pure fn head(&self) -> T;
pure fn init(&self) -> ~[T];
pure fn last(&self) -> T;
pure fn slice(&self, start: uint, end: uint) -> ~[T];
pure fn tail(&self) -> ~[T];
}
/// Extension methods for vectors
impl<T: Copy> CopyableVector<T> for &[const T] {
/// Returns the first element of a vector
#[inline]
pure fn head(&self) -> T { head(*self) }
/// Returns all but the last elemnt of a vector
#[inline]
pure fn init(&self) -> ~[T] { init(*self) }
/// Returns the last element of a `v`, failing if the vector is empty.
#[inline]
pure fn last(&self) -> T { last(*self) }
/// Returns a copy of the elements from [`start`..`end`) from `v`.
#[inline]
pure fn slice(&self, start: uint, end: uint) -> ~[T] {
slice(*self, start, end)
}
/// Returns all but the first element of a vector
#[inline]
pure fn tail(&self) -> ~[T] { tail(*self) }
}
pub trait ImmutableVector<T> {
pure fn view(&self, start: uint, end: uint) -> &self/[T];
pure fn foldr<U: Copy>(&self, z: U, p: fn(t: &T, u: U) -> U) -> U;
pure fn map<U>(&self, f: fn(t: &T) -> U) -> ~[U];
pure fn mapi<U>(&self, f: fn(uint, t: &T) -> U) -> ~[U];
fn map_r<U>(&self, f: fn(x: &T) -> U) -> ~[U];
pure fn alli(&self, f: fn(uint, t: &T) -> bool) -> bool;
pure fn flat_map<U>(&self, f: fn(t: &T) -> ~[U]) -> ~[U];
pure fn filter_mapped<U: Copy>(&self, f: fn(t: &T) -> Option<U>) -> ~[U];
}
/// Extension methods for vectors
impl<T> ImmutableVector<T> for &[T] {
/// Return a slice that points into another slice.
#[inline]
pure fn view(&self, start: uint, end: uint) -> &self/[T] {
view(*self, start, end)
}
/// Reduce a vector from right to left
#[inline]
pure fn foldr<U: Copy>(&self, z: U, p: fn(t: &T, u: U) -> U) -> U {
foldr(*self, z, p)
}
/// Apply a function to each element of a vector and return the results
#[inline]
pure fn map<U>(&self, f: fn(t: &T) -> U) -> ~[U] { map(*self, f) }
/**
* Apply a function to the index and value of each element in the vector
* and return the results
*/
pure fn mapi<U>(&self, f: fn(uint, t: &T) -> U) -> ~[U] {
mapi(*self, f)
}
#[inline]
fn map_r<U>(&self, f: fn(x: &T) -> U) -> ~[U] {
let mut r = ~[];
let mut i = 0;
while i < self.len() {
r.push(f(&self[i]));
i += 1;
}
r
}
/**
* Returns true if the function returns true for all elements.
*
* If the vector is empty, true is returned.
*/
pure fn alli(&self, f: fn(uint, t: &T) -> bool) -> bool {
alli(*self, f)
}
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
#[inline]
pure fn flat_map<U>(&self, f: fn(t: &T) -> ~[U]) -> ~[U] {
flat_map(*self, f)
}
/**
* Apply a function to each element of a vector and return the results
*
* If function `f` returns `none` then that element is excluded from
* the resulting vector.
*/
#[inline]
pure fn filter_mapped<U: Copy>(&self, f: fn(t: &T) -> Option<U>) -> ~[U] {
filter_mapped(*self, f)
}
}
pub trait ImmutableEqVector<T: Eq> {
pure fn position(&self, f: fn(t: &T) -> bool) -> Option<uint>;
pure fn position_elem(&self, t: &T) -> Option<uint>;
pure fn rposition(&self, f: fn(t: &T) -> bool) -> Option<uint>;
pure fn rposition_elem(&self, t: &T) -> Option<uint>;
}
impl<T: Eq> ImmutableEqVector<T> for &[T] {
/**
* Find the first index matching some predicate
*
* Apply function `f` to each element of `v`. When function `f` returns
* true then an option containing the index is returned. If `f` matches no
* elements then none is returned.
*/
#[inline]
pure fn position(&self, f: fn(t: &T) -> bool) -> Option<uint> {
position(*self, f)
}
/// Find the first index containing a matching value
#[inline]
pure fn position_elem(&self, x: &T) -> Option<uint> {
position_elem(*self, x)
}
/**
* Find the last index matching some predicate
*
* Apply function `f` to each element of `v` in reverse order. When
* function `f` returns true then an option containing the index is
* returned. If `f` matches no elements then none is returned.
*/
#[inline]
pure fn rposition(&self, f: fn(t: &T) -> bool) -> Option<uint> {
rposition(*self, f)
}
/// Find the last index containing a matching value
#[inline]
pure fn rposition_elem(&self, t: &T) -> Option<uint> {
rposition_elem(*self, t)
}
}
pub trait ImmutableCopyableVector<T> {
pure fn filtered(&self, f: fn(&T) -> bool) -> ~[T];
pure fn rfind(&self, f: fn(t: &T) -> bool) -> Option<T>;
pure fn partitioned(&self, f: fn(&T) -> bool) -> (~[T], ~[T]);
}
/// Extension methods for vectors
impl<T: Copy> ImmutableCopyableVector<T> for &[T] {
/**
* Construct a new vector from the elements of a vector for which some
* predicate holds.
*
* Apply function `f` to each element of `v` and return a vector
* containing only those elements for which `f` returned true.
*/
#[inline]
pure fn filtered(&self, f: fn(t: &T) -> bool) -> ~[T] {
filtered(*self, f)
}
/**
* Search for the last element that matches a given predicate
*
* Apply function `f` to each element of `v` in reverse order. When
* function `f` returns true then an option containing the element is
* returned. If `f` matches no elements then none is returned.
*/
#[inline]
pure fn rfind(&self, f: fn(t: &T) -> bool) -> Option<T> {
rfind(*self, f)
}
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
#[inline]
pure fn partitioned(&self, f: fn(&T) -> bool) -> (~[T], ~[T]) {
partitioned(*self, f)
}
}
pub trait OwnedVector<T> {
fn push(&mut self, t: T);
fn push_all_move(&mut self, rhs: ~[T]);
fn pop(&mut self) -> T;
fn shift(&mut self) -> T;
fn unshift(&mut self, x: T);
fn insert(&mut self, i: uint, x:T);
fn remove(&mut self, i: uint) -> T;
fn swap_remove(&mut self, index: uint) -> T;
fn truncate(&mut self, newlen: uint);
fn retain(&mut self, f: pure fn(t: &T) -> bool);
fn consume(self, f: fn(uint, v: T));
fn filter(self, f: fn(t: &T) -> bool) -> ~[T];
fn partition(self, f: pure fn(&T) -> bool) -> (~[T], ~[T]);
}
impl<T> OwnedVector<T> for ~[T] {
#[inline]
fn push(&mut self, t: T) {
push(self, t);
}
#[inline]
fn push_all_move(&mut self, rhs: ~[T]) {
push_all_move(self, rhs);
}
#[inline]
fn pop(&mut self) -> T {
pop(self)
}
#[inline]
fn shift(&mut self) -> T {
shift(self)
}
#[inline]
fn unshift(&mut self, x: T) {
unshift(self, x)
}
#[inline]
fn insert(&mut self, i: uint, x:T) {
insert(self, i, x)
}
#[inline]
fn remove(&mut self, i: uint) -> T {
remove(self, i)
}
#[inline]
fn swap_remove(&mut self, index: uint) -> T {
swap_remove(self, index)
}
#[inline]
fn truncate(&mut self, newlen: uint) {
truncate(self, newlen);
}
#[inline]
fn retain(&mut self, f: pure fn(t: &T) -> bool) {
retain(self, f);
}
#[inline]
fn consume(self, f: fn(uint, v: T)) {
consume(self, f)
}
#[inline]
fn filter(self, f: fn(&T) -> bool) -> ~[T] {
filter(self, f)
}
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
#[inline]
fn partition(self, f: fn(&T) -> bool) -> (~[T], ~[T]) {
partition(self, f)
}
}
impl<T> Mutable for ~[T] {
/// Clear the vector, removing all values.
fn clear(&mut self) { self.truncate(0) }
}
pub trait OwnedCopyableVector<T: Copy> {
fn push_all(&mut self, rhs: &[const T]);
fn grow(&mut self, n: uint, initval: &T);
fn grow_fn(&mut self, n: uint, op: iter::InitOp<T>);
fn grow_set(&mut self, index: uint, initval: &T, val: T);
}
impl<T: Copy> OwnedCopyableVector<T> for ~[T] {
#[inline]
fn push_all(&mut self, rhs: &[const T]) {
push_all(self, rhs);
}
#[inline]
fn grow(&mut self, n: uint, initval: &T) {
grow(self, n, initval);
}
#[inline]
fn grow_fn(&mut self, n: uint, op: iter::InitOp<T>) {
grow_fn(self, n, op);
}
#[inline]
fn grow_set(&mut self, index: uint, initval: &T, val: T) {
grow_set(self, index, initval, val);
}
}
trait OwnedEqVector<T: Eq> {
fn dedup(&mut self);
}
impl<T: Eq> OwnedEqVector<T> for ~[T] {
#[inline]
fn dedup(&mut self) {
dedup(self)
}
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb
pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] {
raw::from_buf_raw(ptr, elts)
}
/// The internal 'unboxed' representation of a vector
pub struct UnboxedVecRepr {
mut fill: uint,
mut alloc: uint,
data: u8
}
/// Unsafe operations
pub mod raw {
use kinds::Copy;
use managed;
use option::{None, Some};
use option;
use ptr::addr_of;
use ptr;
use sys;
use vec::{UnboxedVecRepr, as_const_buf, as_mut_buf, len, with_capacity};
use vec::rusti;
/// The internal representation of a (boxed) vector
pub struct VecRepr {
box_header: managed::raw::BoxHeaderRepr,
unboxed: UnboxedVecRepr
}
pub struct SliceRepr {
mut data: *u8,
mut len: uint
}
/**
* Sets the length of a vector
*
* This will explicitly set the size of the vector, without actually
* modifing its buffers, so it is up to the caller to ensure that
* the vector is actually the specified size.
*/
#[inline(always)]
pub unsafe fn set_len<T>(v: &mut ~[T], new_len: uint) {
let repr: **VecRepr = ::cast::transmute(v);
(**repr).unboxed.fill = new_len * sys::nonzero_size_of::<T>();
}
/**
* Returns an unsafe pointer to the vector's buffer
*
* The caller must ensure that the vector outlives the pointer this
* function returns, or else it will end up pointing to garbage.
*
* Modifying the vector may cause its buffer to be reallocated, which
* would also make any pointers to it invalid.
*/
#[inline(always)]
pub unsafe fn to_ptr<T>(v: &[T]) -> *T {
let repr: **SliceRepr = ::cast::transmute(&v);
return ::cast::reinterpret_cast(&addr_of(&((**repr).data)));
}
/** see `to_ptr()` */
#[inline(always)]
pub unsafe fn to_const_ptr<T>(v: &[const T]) -> *const T {
let repr: **SliceRepr = ::cast::transmute(&v);
return ::cast::reinterpret_cast(&addr_of(&((**repr).data)));
}
/** see `to_ptr()` */
#[inline(always)]
pub unsafe fn to_mut_ptr<T>(v: &mut [T]) -> *mut T {
let repr: **SliceRepr = ::cast::transmute(&v);
return ::cast::reinterpret_cast(&addr_of(&((**repr).data)));
}
/**
* Form a slice from a pointer and length (as a number of units,
* not bytes).
*/
#[inline(always)]
pub unsafe fn buf_as_slice<T,U>(p: *T,
len: uint,
f: fn(v: &[T]) -> U) -> U {
let pair = (p, len * sys::nonzero_size_of::<T>());
let v : *(&blk/[T]) =
::cast::reinterpret_cast(&addr_of(&pair));
f(*v)
}
/**
* Unchecked vector indexing.
*/
#[inline(always)]
pub unsafe fn get<T: Copy>(v: &[const T], i: uint) -> T {
as_const_buf(v, |p, _len| *ptr::const_offset(p, i))
}
/**
* Unchecked vector index assignment. Does not drop the
* old value and hence is only suitable when the vector
* is newly allocated.
*/
#[inline(always)]
pub unsafe fn init_elem<T>(v: &mut [T], i: uint, val: T) {
let mut box = Some(val);
do as_mut_buf(v) |p, _len| {
let mut box2 = None;
box2 <-> box;
rusti::move_val_init(&mut(*ptr::mut_offset(p, i)),
option::unwrap(box2));
}
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Was in raw, but needs to be called by net_tcp::on_tcp_read_cb
#[inline(always)]
pub unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> ~[T] {
let mut dst = with_capacity(elts);
set_len(&mut dst, elts);
as_mut_buf(dst, |p_dst, _len_dst| ptr::copy_memory(p_dst, ptr, elts));
dst
}
/**
* Copies data from one vector to another.
*
* Copies `count` bytes from `src` to `dst`. The source and destination
* may overlap.
*/
#[inline(always)]
pub unsafe fn copy_memory<T>(dst: &mut [T], src: &[const T],
count: uint) {
assert dst.len() >= count;
assert src.len() >= count;
do as_mut_buf(dst) |p_dst, _len_dst| {
do as_const_buf(src) |p_src, _len_src| {
ptr::copy_memory(p_dst, p_src, count)
}
}
}
}
/// Operations on `[u8]`
pub mod bytes {
use libc;
use uint;
use vec::len;
use vec::raw;
use vec;
/// Bytewise string comparison
pub pure fn cmp(a: &~[u8], b: &~[u8]) -> int {
let a_len = len(*a);
let b_len = len(*b);
let n = uint::min(a_len, b_len) as libc::size_t;
let r = unsafe {
libc::memcmp(raw::to_ptr(*a) as *libc::c_void,
raw::to_ptr(*b) as *libc::c_void, n) as int
};
if r != 0 { r } else {
if a_len == b_len {
0
} else if a_len < b_len {
-1
} else {
1
}
}
}
/// Bytewise less than or equal
pub pure fn lt(a: &~[u8], b: &~[u8]) -> bool { cmp(a, b) < 0 }
/// Bytewise less than or equal
pub pure fn le(a: &~[u8], b: &~[u8]) -> bool { cmp(a, b) <= 0 }
/// Bytewise equality
pub pure fn eq(a: &~[u8], b: &~[u8]) -> bool { cmp(a, b) == 0 }
/// Bytewise inequality
pub pure fn ne(a: &~[u8], b: &~[u8]) -> bool { cmp(a, b) != 0 }
/// Bytewise greater than or equal
pub pure fn ge(a: &~[u8], b: &~[u8]) -> bool { cmp(a, b) >= 0 }
/// Bytewise greater than
pub pure fn gt(a: &~[u8], b: &~[u8]) -> bool { cmp(a, b) > 0 }
/**
* Copies data from one vector to another.
*
* Copies `count` bytes from `src` to `dst`. The source and destination
* may overlap.
*/
#[inline(always)]
pub fn copy_memory(dst: &mut [u8], src: &[const u8], count: uint) {
// Bound checks are done at vec::raw::copy_memory.
unsafe { vec::raw::copy_memory(dst, src, count) }
}
}
// ___________________________________________________________________________
// ITERATION TRAIT METHODS
//
// This cannot be used with iter-trait.rs because of the region pointer
// required in the slice.
impl<A> iter::BaseIter<A> for &[A] {
pub pure fn each(&self, blk: fn(v: &A) -> bool) {
// FIXME(#2263)---should be able to call each(self, blk)
for each(*self) |e| {
if (!blk(e)) {
return;
}
}
}
pure fn size_hint(&self) -> Option<uint> { Some(len(*self)) }
}
// FIXME(#4148): This should be redundant
impl<A> iter::BaseIter<A> for ~[A] {
pub pure fn each(&self, blk: fn(v: &A) -> bool) {
// FIXME(#2263)---should be able to call each(self, blk)
for each(*self) |e| {
if (!blk(e)) {
return;
}
}
}
pure fn size_hint(&self) -> Option<uint> { Some(len(*self)) }
}
// FIXME(#4148): This should be redundant
impl<A> iter::BaseIter<A> for @[A] {
pub pure fn each(&self, blk: fn(v: &A) -> bool) {
// FIXME(#2263)---should be able to call each(self, blk)
for each(*self) |e| {
if (!blk(e)) {
return;
}
}
}
pure fn size_hint(&self) -> Option<uint> { Some(len(*self)) }
}
impl<A> iter::ExtendedIter<A> for &[A] {
pub pure fn eachi(&self, blk: fn(uint, v: &A) -> bool) {
iter::eachi(self, blk)
}
pub pure fn all(&self, blk: fn(&A) -> bool) -> bool {
iter::all(self, blk)
}
pub pure fn any(&self, blk: fn(&A) -> bool) -> bool {
iter::any(self, blk)
}
pub pure fn foldl<B>(&self, b0: B, blk: fn(&B, &A) -> B) -> B {
iter::foldl(self, b0, blk)
}
pub pure fn position(&self, f: fn(&A) -> bool) -> Option<uint> {
iter::position(self, f)
}
pure fn map_to_vec<B>(&self, op: fn(&A) -> B) -> ~[B] {
iter::map_to_vec(self, op)
}
pure fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: fn(&A) -> IB)
-> ~[B] {
iter::flat_map_to_vec(self, op)
}
}
// FIXME(#4148): This should be redundant
impl<A> iter::ExtendedIter<A> for ~[A] {
pub pure fn eachi(&self, blk: fn(uint, v: &A) -> bool) {
iter::eachi(self, blk)
}
pub pure fn all(&self, blk: fn(&A) -> bool) -> bool {
iter::all(self, blk)
}
pub pure fn any(&self, blk: fn(&A) -> bool) -> bool {
iter::any(self, blk)
}
pub pure fn foldl<B>(&self, b0: B, blk: fn(&B, &A) -> B) -> B {
iter::foldl(self, b0, blk)
}
pub pure fn position(&self, f: fn(&A) -> bool) -> Option<uint> {
iter::position(self, f)
}
pure fn map_to_vec<B>(&self, op: fn(&A) -> B) -> ~[B] {
iter::map_to_vec(self, op)
}
pure fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: fn(&A) -> IB)
-> ~[B] {
iter::flat_map_to_vec(self, op)
}
}
// FIXME(#4148): This should be redundant
impl<A> iter::ExtendedIter<A> for @[A] {
pub pure fn eachi(&self, blk: fn(uint, v: &A) -> bool) {
iter::eachi(self, blk)
}
pub pure fn all(&self, blk: fn(&A) -> bool) -> bool {
iter::all(self, blk)
}
pub pure fn any(&self, blk: fn(&A) -> bool) -> bool {
iter::any(self, blk)
}
pub pure fn foldl<B>(&self, b0: B, blk: fn(&B, &A) -> B) -> B {
iter::foldl(self, b0, blk)
}
pub pure fn position(&self, f: fn(&A) -> bool) -> Option<uint> {
iter::position(self, f)
}
pure fn map_to_vec<B>(&self, op: fn(&A) -> B) -> ~[B] {
iter::map_to_vec(self, op)
}
pure fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: fn(&A) -> IB)
-> ~[B] {
iter::flat_map_to_vec(self, op)
}
}
impl<A: Eq> iter::EqIter<A> for &[A] {
pub pure fn contains(&self, x: &A) -> bool { iter::contains(self, x) }
pub pure fn count(&self, x: &A) -> uint { iter::count(self, x) }
}
// FIXME(#4148): This should be redundant
impl<A: Eq> iter::EqIter<A> for ~[A] {
pub pure fn contains(&self, x: &A) -> bool { iter::contains(self, x) }
pub pure fn count(&self, x: &A) -> uint { iter::count(self, x) }
}
// FIXME(#4148): This should be redundant
impl<A: Eq> iter::EqIter<A> for @[A] {
pub pure fn contains(&self, x: &A) -> bool { iter::contains(self, x) }
pub pure fn count(&self, x: &A) -> uint { iter::count(self, x) }
}
impl<A: Copy> iter::CopyableIter<A> for &[A] {
pure fn filter_to_vec(&self, pred: fn(&A) -> bool) -> ~[A] {
iter::filter_to_vec(self, pred)
}
pure fn to_vec(&self) -> ~[A] { iter::to_vec(self) }
pub pure fn find(&self, f: fn(&A) -> bool) -> Option<A> {
iter::find(self, f)
}
}
// FIXME(#4148): This should be redundant
impl<A: Copy> iter::CopyableIter<A> for ~[A] {
pure fn filter_to_vec(&self, pred: fn(&A) -> bool) -> ~[A] {
iter::filter_to_vec(self, pred)
}
pure fn to_vec(&self) -> ~[A] { iter::to_vec(self) }
pub pure fn find(&self, f: fn(&A) -> bool) -> Option<A> {
iter::find(self, f)
}
}
// FIXME(#4148): This should be redundant
impl<A: Copy> iter::CopyableIter<A> for @[A] {
pure fn filter_to_vec(&self, pred: fn(&A) -> bool) -> ~[A] {
iter::filter_to_vec(self, pred)
}
pure fn to_vec(&self) -> ~[A] { iter::to_vec(self) }
pub pure fn find(&self, f: fn(&A) -> bool) -> Option<A> {
iter::find(self, f)
}
}
impl<A: Copy Ord> iter::CopyableOrderedIter<A> for &[A] {
pure fn min(&self) -> A { iter::min(self) }
pure fn max(&self) -> A { iter::max(self) }
}
// FIXME(#4148): This should be redundant
impl<A: Copy Ord> iter::CopyableOrderedIter<A> for ~[A] {
pure fn min(&self) -> A { iter::min(self) }
pure fn max(&self) -> A { iter::max(self) }
}
// FIXME(#4148): This should be redundant
impl<A: Copy Ord> iter::CopyableOrderedIter<A> for @[A] {
pure fn min(&self) -> A { iter::min(self) }
pure fn max(&self) -> A { iter::max(self) }
}
impl<A:Copy> iter::CopyableNonstrictIter<A> for &[A] {
pure fn each_val(&const self, f: fn(A) -> bool) {
let mut i = 0;
while i < self.len() {
if !f(copy self[i]) { break; }
i += 1;
}
}
}
// FIXME(#4148): This should be redundant
impl<A:Copy> iter::CopyableNonstrictIter<A> for ~[A] {
pure fn each_val(&const self, f: fn(A) -> bool) {
let mut i = 0;
while i < self.len() {
if !f(copy self[i]) { break; }
i += 1;
}
}
}
// FIXME(#4148): This should be redundant
impl<A:Copy> iter::CopyableNonstrictIter<A> for @[A] {
pure fn each_val(&const self, f: fn(A) -> bool) {
let mut i = 0;
while i < self.len() {
if !f(copy self[i]) { break; }
i += 1;
}
}
}
// ___________________________________________________________________________
#[cfg(test)]
mod tests {
use option::{None, Option, Some};
use option;
use vec::*;
fn square(n: uint) -> uint { return n * n; }
fn square_ref(n: &uint) -> uint { return square(*n); }
pure fn is_three(n: &uint) -> bool { return *n == 3u; }
pure fn is_odd(n: &uint) -> bool { return *n % 2u == 1u; }
pure fn is_equal(x: &uint, y:&uint) -> bool { return *x == *y; }
fn square_if_odd_r(n: &uint) -> Option<uint> {
return if *n % 2u == 1u { Some(*n * *n) } else { None };
}
fn square_if_odd_v(n: uint) -> Option<uint> {
return if n % 2u == 1u { Some(n * n) } else { None };
}
fn add(x: uint, y: &uint) -> uint { return x + *y; }
#[test]
fn test_unsafe_ptrs() {
unsafe {
// Test on-stack copy-from-buf.
let a = ~[1, 2, 3];
let mut ptr = raw::to_ptr(a);
let b = from_buf(ptr, 3u);
assert (len(b) == 3u);
assert (b[0] == 1);
assert (b[1] == 2);
assert (b[2] == 3);
// Test on-heap copy-from-buf.
let c = ~[1, 2, 3, 4, 5];
ptr = raw::to_ptr(c);
let d = from_buf(ptr, 5u);
assert (len(d) == 5u);
assert (d[0] == 1);
assert (d[1] == 2);
assert (d[2] == 3);
assert (d[3] == 4);
assert (d[4] == 5);
}
}
#[test]
fn test_from_fn() {
// Test on-stack from_fn.
let mut v = from_fn(3u, square);
assert (len(v) == 3u);
assert (v[0] == 0u);
assert (v[1] == 1u);
assert (v[2] == 4u);
// Test on-heap from_fn.
v = from_fn(5u, square);
assert (len(v) == 5u);
assert (v[0] == 0u);
assert (v[1] == 1u);
assert (v[2] == 4u);
assert (v[3] == 9u);
assert (v[4] == 16u);
}
#[test]
fn test_from_elem() {
// Test on-stack from_elem.
let mut v = from_elem(2u, 10u);
assert (len(v) == 2u);
assert (v[0] == 10u);
assert (v[1] == 10u);
// Test on-heap from_elem.
v = from_elem(6u, 20u);
assert (v[0] == 20u);
assert (v[1] == 20u);
assert (v[2] == 20u);
assert (v[3] == 20u);
assert (v[4] == 20u);
assert (v[5] == 20u);
}
#[test]
fn test_is_empty() {
assert (is_empty::<int>(~[]));
assert (!is_empty(~[0]));
}
#[test]
fn test_len_divzero() {
type Z = [i8 * 0];
let v0 : &[Z] = &[];
let v1 : &[Z] = &[[]];
let v2 : &[Z] = &[[], []];
assert(sys::size_of::<Z>() == 0);
assert(len(v0) == 0);
assert(len(v1) == 1);
assert(len(v2) == 2);
}
#[test]
fn test_head() {
let a = ~[11, 12];
assert (head(a) == 11);
}
#[test]
fn test_tail() {
let mut a = ~[11];
assert (tail(a) == ~[]);
a = ~[11, 12];
assert (tail(a) == ~[12]);
}
#[test]
fn test_last() {
let mut n = last_opt(~[]);
assert (n.is_none());
n = last_opt(~[1, 2, 3]);
assert (n == Some(3));
n = last_opt(~[1, 2, 3, 4, 5]);
assert (n == Some(5));
}
#[test]
fn test_slice() {
// Test on-stack -> on-stack slice.
let mut v = slice(~[1, 2, 3], 1u, 3u);
assert (len(v) == 2u);
assert (v[0] == 2);
assert (v[1] == 3);
// Test on-heap -> on-stack slice.
v = slice(~[1, 2, 3, 4, 5], 0u, 3u);
assert (len(v) == 3u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (v[2] == 3);
// Test on-heap -> on-heap slice.
v = slice(~[1, 2, 3, 4, 5, 6], 1u, 6u);
assert (len(v) == 5u);
assert (v[0] == 2);
assert (v[1] == 3);
assert (v[2] == 4);
assert (v[3] == 5);
assert (v[4] == 6);
}
#[test]
fn test_pop() {
// Test on-stack pop.
let mut v = ~[1, 2, 3];
let mut e = v.pop();
assert (len(v) == 2u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (e == 3);
// Test on-heap pop.
v = ~[1, 2, 3, 4, 5];
e = v.pop();
assert (len(v) == 4u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (v[2] == 3);
assert (v[3] == 4);
assert (e == 5);
}
#[test]
fn test_swap_remove() {
let mut v = ~[1, 2, 3, 4, 5];
let mut e = v.swap_remove(0);
assert (len(v) == 4);
assert e == 1;
assert (v[0] == 5);
e = v.swap_remove(3);
assert (len(v) == 3);
assert e == 4;
assert (v[0] == 5);
assert (v[1] == 2);
assert (v[2] == 3);
}
#[test]
fn test_swap_remove_noncopyable() {
// Tests that we don't accidentally run destructors twice.
let mut v = ~[::private::exclusive(()), ::private::exclusive(()),
::private::exclusive(())];
let mut _e = v.swap_remove(0);
assert (len(v) == 2);
_e = v.swap_remove(1);
assert (len(v) == 1);
_e = v.swap_remove(0);
assert (len(v) == 0);
}
#[test]
fn test_push() {
// Test on-stack push().
let mut v = ~[];
v.push(1);
assert (len(v) == 1u);
assert (v[0] == 1);
// Test on-heap push().
v.push(2);
assert (len(v) == 2u);
assert (v[0] == 1);
assert (v[1] == 2);
}
#[test]
fn test_grow() {
// Test on-stack grow().
let mut v = ~[];
v.grow(2u, &1);
assert (len(v) == 2u);
assert (v[0] == 1);
assert (v[1] == 1);
// Test on-heap grow().
v.grow(3u, &2);
assert (len(v) == 5u);
assert (v[0] == 1);
assert (v[1] == 1);
assert (v[2] == 2);
assert (v[3] == 2);
assert (v[4] == 2);
}
#[test]
fn test_grow_fn() {
let mut v = ~[];
v.grow_fn(3u, square);
assert (len(v) == 3u);
assert (v[0] == 0u);
assert (v[1] == 1u);
assert (v[2] == 4u);
}
#[test]
fn test_grow_set() {
let mut v = ~[1, 2, 3];
v.grow_set(4u, &4, 5);
assert (len(v) == 5u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (v[2] == 3);
assert (v[3] == 4);
assert (v[4] == 5);
}
#[test]
fn test_truncate() {
let mut v = ~[@6,@5,@4];
v.truncate(1);
assert(v.len() == 1);
assert(*(v[0]) == 6);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_clear() {
let mut v = ~[@6,@5,@4];
v.clear();
assert(v.len() == 0);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_dedup() {
fn case(a: ~[uint], b: ~[uint]) {
let mut v = a;
v.dedup();
assert(v == b);
}
case(~[], ~[]);
case(~[1], ~[1]);
case(~[1,1], ~[1]);
case(~[1,2,3], ~[1,2,3]);
case(~[1,1,2,3], ~[1,2,3]);
case(~[1,2,2,3], ~[1,2,3]);
case(~[1,2,3,3], ~[1,2,3]);
case(~[1,1,2,2,2,3,3], ~[1,2,3]);
}
#[test]
fn test_dedup_unique() {
let mut v0 = ~[~1, ~1, ~2, ~3];
v0.dedup();
let mut v1 = ~[~1, ~2, ~2, ~3];
v1.dedup();
let mut v2 = ~[~1, ~2, ~3, ~3];
v2.dedup();
/*
* If the ~pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_dedup_shared() {
let mut v0 = ~[@1, @1, @2, @3];
v0.dedup();
let mut v1 = ~[@1, @2, @2, @3];
v1.dedup();
let mut v2 = ~[@1, @2, @3, @3];
v2.dedup();
/*
* If the @pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_map() {
// Test on-stack map.
let mut v = ~[1u, 2u, 3u];
let mut w = map(v, square_ref);
assert (len(w) == 3u);
assert (w[0] == 1u);
assert (w[1] == 4u);
assert (w[2] == 9u);
// Test on-heap map.
v = ~[1u, 2u, 3u, 4u, 5u];
w = map(v, square_ref);
assert (len(w) == 5u);
assert (w[0] == 1u);
assert (w[1] == 4u);
assert (w[2] == 9u);
assert (w[3] == 16u);
assert (w[4] == 25u);
}
#[test]
fn test_map2() {
fn times(x: &int, y: &int) -> int { return *x * *y; }
let f = times;
let v0 = ~[1, 2, 3, 4, 5];
let v1 = ~[5, 4, 3, 2, 1];
let u = map2::<int, int, int>(v0, v1, f);
let mut i = 0;
while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; }
}
#[test]
fn test_filter_mapped() {
// Test on-stack filter-map.
let mut v = ~[1u, 2u, 3u];
let mut w = filter_mapped(v, square_if_odd_r);
assert (len(w) == 2u);
assert (w[0] == 1u);
assert (w[1] == 9u);
// Test on-heap filter-map.
v = ~[1u, 2u, 3u, 4u, 5u];
w = filter_mapped(v, square_if_odd_r);
assert (len(w) == 3u);
assert (w[0] == 1u);
assert (w[1] == 9u);
assert (w[2] == 25u);
fn halve(i: &int) -> Option<int> {
if *i % 2 == 0 {
return option::Some::<int>(*i / 2);
} else {
return option::None::<int>;
}
}
fn halve_for_sure(i: &int) -> int { return *i / 2; }
let all_even: ~[int] = ~[0, 2, 8, 6];
let all_odd1: ~[int] = ~[1, 7, 3];
let all_odd2: ~[int] = ~[];
let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3];
let mix_dest: ~[int] = ~[1, 3, 0, 0];
assert (filter_mapped(all_even, halve) ==
map(all_even, halve_for_sure));
assert (filter_mapped(all_odd1, halve) == ~[]);
assert (filter_mapped(all_odd2, halve) == ~[]);
assert (filter_mapped(mix, halve) == mix_dest);
}
#[test]
fn test_filter_map() {
// Test on-stack filter-map.
let mut v = ~[1u, 2u, 3u];
let mut w = filter_map(v, square_if_odd_v);
assert (len(w) == 2u);
assert (w[0] == 1u);
assert (w[1] == 9u);
// Test on-heap filter-map.
v = ~[1u, 2u, 3u, 4u, 5u];
w = filter_map(v, square_if_odd_v);
assert (len(w) == 3u);
assert (w[0] == 1u);
assert (w[1] == 9u);
assert (w[2] == 25u);
fn halve(i: int) -> Option<int> {
if i % 2 == 0 {
return option::Some::<int>(i / 2);
} else {
return option::None::<int>;
}
}
fn halve_for_sure(i: &int) -> int { return *i / 2; }
let all_even: ~[int] = ~[0, 2, 8, 6];
let all_even0: ~[int] = copy all_even;
let all_odd1: ~[int] = ~[1, 7, 3];
let all_odd2: ~[int] = ~[];
let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3];
let mix_dest: ~[int] = ~[1, 3, 0, 0];
assert (filter_map(all_even, halve) ==
map(all_even0, halve_for_sure));
assert (filter_map(all_odd1, halve) == ~[]);
assert (filter_map(all_odd2, halve) == ~[]);
assert (filter_map(mix, halve) == mix_dest);
}
#[test]
fn test_filter() {
assert filter(~[1u, 2u, 3u], is_odd) == ~[1u, 3u];
assert filter(~[1u, 2u, 4u, 8u, 16u], is_three) == ~[];
}
#[test]
fn test_retain() {
let mut v = ~[1, 2, 3, 4, 5];
v.retain(is_odd);
assert v == ~[1, 3, 5];
}
#[test]
fn test_foldl() {
// Test on-stack fold.
let mut v = ~[1u, 2u, 3u];
let mut sum = foldl(0u, v, add);
assert (sum == 6u);
// Test on-heap fold.
v = ~[1u, 2u, 3u, 4u, 5u];
sum = foldl(0u, v, add);
assert (sum == 15u);
}
#[test]
fn test_foldl2() {
fn sub(a: int, b: &int) -> int {
a - *b
}
let mut v = ~[1, 2, 3, 4];
let sum = foldl(0, v, sub);
assert sum == -10;
}
#[test]
fn test_foldr() {
fn sub(a: &int, b: int) -> int {
*a - b
}
let mut v = ~[1, 2, 3, 4];
let sum = foldr(v, 0, sub);
assert sum == -2;
}
#[test]
fn test_each_empty() {
for each::<int>(~[]) |_v| {
fail!(); // should never be executed
}
}
#[test]
fn test_iter_nonempty() {
let mut i = 0;
for each(~[1, 2, 3]) |v| {
i += *v;
}
assert i == 6;
}
#[test]
fn test_iteri() {
let mut i = 0;
for eachi(~[1, 2, 3]) |j, v| {
if i == 0 { assert *v == 1; }
assert j + 1u == *v as uint;
i += *v;
}
assert i == 6;
}
#[test]
fn test_reach_empty() {
for rev_each::<int>(~[]) |_v| {
fail!(); // should never execute
}
}
#[test]
fn test_reach_nonempty() {
let mut i = 0;
for rev_each(~[1, 2, 3]) |v| {
if i == 0 { assert *v == 3; }
i += *v
}
assert i == 6;
}
#[test]
fn test_reachi() {
let mut i = 0;
for rev_eachi(~[0, 1, 2]) |j, v| {
if i == 0 { assert *v == 2; }
assert j == *v as uint;
i += *v;
}
assert i == 3;
}
#[test]
fn test_each_permutation() {
let mut results: ~[~[int]];
results = ~[];
for each_permutation(~[]) |v| { results.push(from_slice(v)); }
assert results == ~[~[]];
results = ~[];
for each_permutation(~[7]) |v| { results.push(from_slice(v)); }
assert results == ~[~[7]];
results = ~[];
for each_permutation(~[1,1]) |v| { results.push(from_slice(v)); }
assert results == ~[~[1,1],~[1,1]];
results = ~[];
for each_permutation(~[5,2,0]) |v| { results.push(from_slice(v)); }
assert results ==
~[~[5,2,0],~[5,0,2],~[2,5,0],~[2,0,5],~[0,5,2],~[0,2,5]];
}
#[test]
fn test_any_and_all() {
assert (any(~[1u, 2u, 3u], is_three));
assert (!any(~[0u, 1u, 2u], is_three));
assert (any(~[1u, 2u, 3u, 4u, 5u], is_three));
assert (!any(~[1u, 2u, 4u, 5u, 6u], is_three));
assert (all(~[3u, 3u, 3u], is_three));
assert (!all(~[3u, 3u, 2u], is_three));
assert (all(~[3u, 3u, 3u, 3u, 3u], is_three));
assert (!all(~[3u, 3u, 0u, 1u, 2u], is_three));
}
#[test]
fn test_any2_and_all2() {
assert (any2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
assert (any2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
assert (!any2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
assert (any2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
assert (all2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
assert (!all2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
assert (!all2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
assert (!all2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
}
#[test]
fn test_zip_unzip() {
let v1 = ~[1, 2, 3];
let v2 = ~[4, 5, 6];
let z1 = zip(v1, v2);
assert ((1, 4) == z1[0]);
assert ((2, 5) == z1[1]);
assert ((3, 6) == z1[2]);
let (left, right) = unzip(z1);
assert ((1, 4) == (left[0], right[0]));
assert ((2, 5) == (left[1], right[1]));
assert ((3, 6) == (left[2], right[2]));
}
#[test]
fn test_position_elem() {
assert position_elem(~[], &1).is_none();
let v1 = ~[1, 2, 3, 3, 2, 5];
assert position_elem(v1, &1) == Some(0u);
assert position_elem(v1, &2) == Some(1u);
assert position_elem(v1, &5) == Some(5u);
assert position_elem(v1, &4).is_none();
}
#[test]
fn test_position() {
fn less_than_three(i: &int) -> bool { return *i < 3; }
fn is_eighteen(i: &int) -> bool { return *i == 18; }
assert position(~[], less_than_three).is_none();
let v1 = ~[5, 4, 3, 2, 1];
assert position(v1, less_than_three) == Some(3u);
assert position(v1, is_eighteen).is_none();
}
#[test]
fn test_position_between() {
assert position_between(~[], 0u, 0u, f).is_none();
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert position_between(v, 0u, 0u, f).is_none();
assert position_between(v, 0u, 1u, f).is_none();
assert position_between(v, 0u, 2u, f) == Some(1u);
assert position_between(v, 0u, 3u, f) == Some(1u);
assert position_between(v, 0u, 4u, f) == Some(1u);
assert position_between(v, 1u, 1u, f).is_none();
assert position_between(v, 1u, 2u, f) == Some(1u);
assert position_between(v, 1u, 3u, f) == Some(1u);
assert position_between(v, 1u, 4u, f) == Some(1u);
assert position_between(v, 2u, 2u, f).is_none();
assert position_between(v, 2u, 3u, f).is_none();
assert position_between(v, 2u, 4u, f) == Some(3u);
assert position_between(v, 3u, 3u, f).is_none();
assert position_between(v, 3u, 4u, f) == Some(3u);
assert position_between(v, 4u, 4u, f).is_none();
}
#[test]
fn test_find() {
assert find(~[], f).is_none();
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert find(v, f) == Some((1, 'b'));
assert find(v, g).is_none();
}
#[test]
fn test_find_between() {
assert find_between(~[], 0u, 0u, f).is_none();
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert find_between(v, 0u, 0u, f).is_none();
assert find_between(v, 0u, 1u, f).is_none();
assert find_between(v, 0u, 2u, f) == Some((1, 'b'));
assert find_between(v, 0u, 3u, f) == Some((1, 'b'));
assert find_between(v, 0u, 4u, f) == Some((1, 'b'));
assert find_between(v, 1u, 1u, f).is_none();
assert find_between(v, 1u, 2u, f) == Some((1, 'b'));
assert find_between(v, 1u, 3u, f) == Some((1, 'b'));
assert find_between(v, 1u, 4u, f) == Some((1, 'b'));
assert find_between(v, 2u, 2u, f).is_none();
assert find_between(v, 2u, 3u, f).is_none();
assert find_between(v, 2u, 4u, f) == Some((3, 'b'));
assert find_between(v, 3u, 3u, f).is_none();
assert find_between(v, 3u, 4u, f) == Some((3, 'b'));
assert find_between(v, 4u, 4u, f).is_none();
}
#[test]
fn test_rposition() {
assert find(~[], f).is_none();
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert position(v, f) == Some(1u);
assert position(v, g).is_none();
}
#[test]
fn test_rposition_between() {
assert rposition_between(~[], 0u, 0u, f).is_none();
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert rposition_between(v, 0u, 0u, f).is_none();
assert rposition_between(v, 0u, 1u, f).is_none();
assert rposition_between(v, 0u, 2u, f) == Some(1u);
assert rposition_between(v, 0u, 3u, f) == Some(1u);
assert rposition_between(v, 0u, 4u, f) == Some(3u);
assert rposition_between(v, 1u, 1u, f).is_none();
assert rposition_between(v, 1u, 2u, f) == Some(1u);
assert rposition_between(v, 1u, 3u, f) == Some(1u);
assert rposition_between(v, 1u, 4u, f) == Some(3u);
assert rposition_between(v, 2u, 2u, f).is_none();
assert rposition_between(v, 2u, 3u, f).is_none();
assert rposition_between(v, 2u, 4u, f) == Some(3u);
assert rposition_between(v, 3u, 3u, f).is_none();
assert rposition_between(v, 3u, 4u, f) == Some(3u);
assert rposition_between(v, 4u, 4u, f).is_none();
}
#[test]
fn test_rfind() {
assert rfind(~[], f).is_none();
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert rfind(v, f) == Some((3, 'b'));
assert rfind(v, g).is_none();
}
#[test]
fn test_rfind_between() {
assert rfind_between(~[], 0u, 0u, f).is_none();
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert rfind_between(v, 0u, 0u, f).is_none();
assert rfind_between(v, 0u, 1u, f).is_none();
assert rfind_between(v, 0u, 2u, f) == Some((1, 'b'));
assert rfind_between(v, 0u, 3u, f) == Some((1, 'b'));
assert rfind_between(v, 0u, 4u, f) == Some((3, 'b'));
assert rfind_between(v, 1u, 1u, f).is_none();
assert rfind_between(v, 1u, 2u, f) == Some((1, 'b'));
assert rfind_between(v, 1u, 3u, f) == Some((1, 'b'));
assert rfind_between(v, 1u, 4u, f) == Some((3, 'b'));
assert rfind_between(v, 2u, 2u, f).is_none();
assert rfind_between(v, 2u, 3u, f).is_none();
assert rfind_between(v, 2u, 4u, f) == Some((3, 'b'));
assert rfind_between(v, 3u, 3u, f).is_none();
assert rfind_between(v, 3u, 4u, f) == Some((3, 'b'));
assert rfind_between(v, 4u, 4u, f).is_none();
}
#[test]
fn reverse_and_reversed() {
let mut v: ~[int] = ~[10, 20];
assert (v[0] == 10);
assert (v[1] == 20);
reverse(v);
assert (v[0] == 20);
assert (v[1] == 10);
let v2 = reversed::<int>(~[10, 20]);
assert (v2[0] == 20);
assert (v2[1] == 10);
v[0] = 30;
assert (v2[0] == 20);
// Make sure they work with 0-length vectors too.
let v4 = reversed::<int>(~[]);
assert (v4 == ~[]);
let mut v3: ~[int] = ~[];
reverse::<int>(v3);
}
#[test]
fn reversed_mut() {
let mut v2 = reversed::<int>(~[10, 20]);
assert (v2[0] == 20);
assert (v2[1] == 10);
}
#[test]
fn test_init() {
let v = init(~[1, 2, 3]);
assert v == ~[1, 2];
}
#[test]
fn test_split() {
fn f(x: &int) -> bool { *x == 3 }
assert split(~[], f) == ~[];
assert split(~[1, 2], f) == ~[~[1, 2]];
assert split(~[3, 1, 2], f) == ~[~[], ~[1, 2]];
assert split(~[1, 2, 3], f) == ~[~[1, 2], ~[]];
assert split(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]];
}
#[test]
fn test_splitn() {
fn f(x: &int) -> bool { *x == 3 }
assert splitn(~[], 1u, f) == ~[];
assert splitn(~[1, 2], 1u, f) == ~[~[1, 2]];
assert splitn(~[3, 1, 2], 1u, f) == ~[~[], ~[1, 2]];
assert splitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]];
assert splitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
~[~[1, 2], ~[4, 3, 5]];
}
#[test]
fn test_rsplit() {
fn f(x: &int) -> bool { *x == 3 }
assert rsplit(~[], f) == ~[];
assert rsplit(~[1, 2], f) == ~[~[1, 2]];
assert rsplit(~[1, 2, 3], f) == ~[~[1, 2], ~[]];
assert rsplit(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]];
}
#[test]
fn test_rsplitn() {
fn f(x: &int) -> bool { *x == 3 }
assert rsplitn(~[], 1u, f) == ~[];
assert rsplitn(~[1, 2], 1u, f) == ~[~[1, 2]];
assert rsplitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]];
assert rsplitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
~[~[1, 2, 3, 4], ~[5]];
}
#[test]
fn test_partition() {
// FIXME (#4355 maybe): using v.partition here crashes
assert partition(~[], |x: &int| *x < 3) == (~[], ~[]);
assert partition(~[1, 2, 3], |x: &int| *x < 4) == (~[1, 2, 3], ~[]);
assert partition(~[1, 2, 3], |x: &int| *x < 2) == (~[1], ~[2, 3]);
assert partition(~[1, 2, 3], |x: &int| *x < 0) == (~[], ~[1, 2, 3]);
}
#[test]
fn test_partitioned() {
assert (~[]).partitioned(|x: &int| *x < 3) == (~[], ~[]);
assert (~[1, 2, 3]).partitioned(|x: &int| *x < 4) ==
(~[1, 2, 3], ~[]);
assert (~[1, 2, 3]).partitioned(|x: &int| *x < 2) ==
(~[1], ~[2, 3]);
assert (~[1, 2, 3]).partitioned(|x: &int| *x < 0) ==
(~[], ~[1, 2, 3]);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_init_empty() {
init::<int>(~[]);
}
#[test]
fn test_concat() {
assert concat(~[~[1], ~[2,3]]) == ~[1, 2, 3];
}
#[test]
fn test_connect() {
assert connect(~[], &0) == ~[];
assert connect(~[~[1], ~[2, 3]], &0) == ~[1, 0, 2, 3];
assert connect(~[~[1], ~[2], ~[3]], &0) == ~[1, 0, 2, 0, 3];
}
#[test]
fn test_windowed () {
assert ~[~[1u,2u,3u],~[2u,3u,4u],~[3u,4u,5u],~[4u,5u,6u]]
== windowed (3u, ~[1u,2u,3u,4u,5u,6u]);
assert ~[~[1u,2u,3u,4u],~[2u,3u,4u,5u],~[3u,4u,5u,6u]]
== windowed (4u, ~[1u,2u,3u,4u,5u,6u]);
assert ~[] == windowed (7u, ~[1u,2u,3u,4u,5u,6u]);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_windowed_() {
let _x = windowed (0u, ~[1u,2u,3u,4u,5u,6u]);
}
#[test]
fn cast_to_mut_no_copy() {
unsafe {
let x = ~[1, 2, 3];
let addr = raw::to_ptr(x);
let x_mut = cast_to_mut(x);
let addr_mut = raw::to_ptr(x_mut);
assert addr == addr_mut;
}
}
#[test]
fn cast_from_mut_no_copy() {
unsafe {
let x = ~[mut 1, 2, 3];
let addr = raw::to_ptr(x);
let x_imm = cast_from_mut(x);
let addr_imm = raw::to_ptr(x_imm);
assert addr == addr_imm;
}
}
#[test]
fn test_unshift() {
let mut x = ~[1, 2, 3];
x.unshift(0);
assert x == ~[0, 1, 2, 3];
}
#[test]
fn test_insert() {
let mut a = ~[1, 2, 4];
a.insert(2, 3);
assert a == ~[1, 2, 3, 4];
let mut a = ~[1, 2, 3];
a.insert(0, 0);
assert a == ~[0, 1, 2, 3];
let mut a = ~[1, 2, 3];
a.insert(3, 4);
assert a == ~[1, 2, 3, 4];
let mut a = ~[];
a.insert(0, 1);
assert a == ~[1];
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_insert_oob() {
let mut a = ~[1, 2, 3];
a.insert(4, 5);
}
#[test]
fn test_remove() {
let mut a = ~[1, 2, 3, 4];
a.remove(2);
assert a == ~[1, 2, 4];
let mut a = ~[1, 2, 3];
a.remove(0);
assert a == ~[2, 3];
let mut a = ~[1];
a.remove(0);
assert a == ~[];
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_remove_oob() {
let mut a = ~[1, 2, 3];
a.remove(3);
}
#[test]
fn test_capacity() {
let mut v = ~[0u64];
reserve(&mut v, 10u);
assert capacity(&v) == 10u;
let mut v = ~[0u32];
reserve(&mut v, 10u);
assert capacity(&v) == 10u;
}
#[test]
fn test_view() {
let v = ~[1, 2, 3, 4, 5];
let v = v.view(1u, 3u);
assert(len(v) == 2u);
assert(v[0] == 2);
assert(v[1] == 3);
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_from_fn_fail() {
do from_fn(100) |v| {
if v == 50 { fail!() }
(~0, @0)
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_build_fail() {
do build |push| {
push((~0, @0));
push((~0, @0));
push((~0, @0));
push((~0, @0));
fail!();
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_split_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do split(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_split_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do split(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_splitn_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do splitn(v, 100) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_splitn_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do split(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplit_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplit(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplit_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplit(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplitn_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplitn(v, 100) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplitn_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplitn(v, 100) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_consume_fail() {
let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do consume(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 1;
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_grow_fn_fail() {
let mut v = ~[];
do v.grow_fn(100) |i| {
if i == 50 {
fail!()
}
(~0, @0)
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_map_fail() {
let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_map_consume_fail() {
let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map_consume(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_mapi_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do mapi(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_flat_map_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_map2_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map2(v, v) |_elt1, _elt2| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_filter_mapped_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do filter_mapped(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
Some((~0, @0))
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_filter_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do v.filtered |_elt| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_foldl_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do foldl((~0, @0), v) |_a, _b| {
if i == 2 {
fail!()
}
i += 0;
(~0, @0)
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_foldr_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do foldr(v, (~0, @0)) |_a, _b| {
if i == 2 {
fail!()
}
i += 0;
(~0, @0)
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_any_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do any(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_any2_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do any(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_all_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do all(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_alli_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do alli(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_all2_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do all2(v, v) |_elt1, _elt2| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_find_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do find(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_position_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do position(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_rposition_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rposition(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_each_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do each(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_eachi_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do eachi(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 0;
false
}
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_permute_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
for each_permutation(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_as_imm_buf_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do as_imm_buf(v) |_buf, _i| {
fail!()
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_as_const_buf_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do as_const_buf(v) |_buf, _i| {
fail!()
}
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_as_mut_buf_fail() {
let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do as_mut_buf(v) |_buf, _i| {
fail!()
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_copy_memory_oob() {
unsafe {
let mut a = [1, 2, 3, 4];
let b = [1, 2, 3, 4, 5];
raw::copy_memory(a, b, 5);
}
}
}
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: