rust/src/librustc/middle/const_eval.rs
Niko Matsakis 096a28607f librustc: Make Copy opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.

A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.

For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.

This breaks code like:

    #[deriving(Show)]
    struct Point2D {
        x: int,
        y: int,
    }

    fn main() {
        let mypoint = Point2D {
            x: 1,
            y: 1,
        };
        let otherpoint = mypoint;
        println!("{}{}", mypoint, otherpoint);
    }

Change this code to:

    #[deriving(Show)]
    struct Point2D {
        x: int,
        y: int,
    }

    impl Copy for Point2D {}

    fn main() {
        let mypoint = Point2D {
            x: 1,
            y: 1,
        };
        let otherpoint = mypoint;
        println!("{}{}", mypoint, otherpoint);
    }

This is the backwards-incompatible part of #13231.

Part of RFC #3.

[breaking-change]
2014-12-08 13:47:44 -05:00

631 lines
24 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
#![allow(unsigned_negation)]
pub use self::const_val::*;
pub use self::constness::*;
use metadata::csearch;
use middle::{astencode, def};
use middle::pat_util::def_to_path;
use middle::ty::{mod};
use middle::astconv_util::{ast_ty_to_prim_ty};
use util::nodemap::DefIdMap;
use syntax::ast::{mod, Expr};
use syntax::parse::token::InternedString;
use syntax::ptr::P;
use syntax::visit::{mod, Visitor};
use syntax::{ast_map, ast_util, codemap};
use std::rc::Rc;
use std::collections::hash_map::Vacant;
//
// This pass classifies expressions by their constant-ness.
//
// Constant-ness comes in 3 flavours:
//
// - Integer-constants: can be evaluated by the frontend all the way down
// to their actual value. They are used in a few places (enum
// discriminants, switch arms) and are a subset of
// general-constants. They cover all the integer and integer-ish
// literals (nil, bool, int, uint, char, iNN, uNN) and all integer
// operators and copies applied to them.
//
// - General-constants: can be evaluated by LLVM but not necessarily by
// the frontend; usually due to reliance on target-specific stuff such
// as "where in memory the value goes" or "what floating point mode the
// target uses". This _includes_ integer-constants, plus the following
// constructors:
//
// fixed-size vectors and strings: [] and ""/_
// vector and string slices: &[] and &""
// tuples: (,)
// enums: foo(...)
// floating point literals and operators
// & and * pointers
// copies of general constants
//
// (in theory, probably not at first: if/match on integer-const
// conditions / discriminants)
//
// - Non-constants: everything else.
//
pub enum constness {
integral_const,
general_const,
non_const
}
impl Copy for constness {}
type constness_cache = DefIdMap<constness>;
pub fn join(a: constness, b: constness) -> constness {
match (a, b) {
(integral_const, integral_const) => integral_const,
(integral_const, general_const)
| (general_const, integral_const)
| (general_const, general_const) => general_const,
_ => non_const
}
}
pub fn join_all<It: Iterator<constness>>(cs: It) -> constness {
cs.fold(integral_const, |a, b| join(a, b))
}
fn lookup_const<'a>(tcx: &'a ty::ctxt, e: &Expr) -> Option<&'a Expr> {
let opt_def = tcx.def_map.borrow().get(&e.id).cloned();
match opt_def {
Some(def::DefConst(def_id)) => {
lookup_const_by_id(tcx, def_id)
}
Some(def::DefVariant(enum_def, variant_def, _)) => {
lookup_variant_by_id(tcx, enum_def, variant_def)
}
_ => None
}
}
fn lookup_variant_by_id<'a>(tcx: &'a ty::ctxt,
enum_def: ast::DefId,
variant_def: ast::DefId)
-> Option<&'a Expr> {
fn variant_expr<'a>(variants: &'a [P<ast::Variant>], id: ast::NodeId)
-> Option<&'a Expr> {
for variant in variants.iter() {
if variant.node.id == id {
return variant.node.disr_expr.as_ref().map(|e| &**e);
}
}
None
}
if ast_util::is_local(enum_def) {
match tcx.map.find(enum_def.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemEnum(ast::EnumDef { ref variants }, _) => {
variant_expr(variants.as_slice(), variant_def.node)
}
_ => None
},
Some(_) => None
}
} else {
match tcx.extern_const_variants.borrow().get(&variant_def) {
Some(&ast::DUMMY_NODE_ID) => return None,
Some(&expr_id) => {
return Some(tcx.map.expect_expr(expr_id));
}
None => {}
}
let expr_id = match csearch::maybe_get_item_ast(tcx, enum_def,
|a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) {
csearch::found(&ast::IIItem(ref item)) => match item.node {
ast::ItemEnum(ast::EnumDef { ref variants }, _) => {
// NOTE this doesn't do the right thing, it compares inlined
// NodeId's to the original variant_def's NodeId, but they
// come from different crates, so they will likely never match.
variant_expr(variants.as_slice(), variant_def.node).map(|e| e.id)
}
_ => None
},
_ => None
};
tcx.extern_const_variants.borrow_mut().insert(variant_def,
expr_id.unwrap_or(ast::DUMMY_NODE_ID));
expr_id.map(|id| tcx.map.expect_expr(id))
}
}
pub fn lookup_const_by_id<'a>(tcx: &'a ty::ctxt, def_id: ast::DefId)
-> Option<&'a Expr> {
if ast_util::is_local(def_id) {
match tcx.map.find(def_id.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemConst(_, ref const_expr) => {
Some(&**const_expr)
}
_ => None
},
Some(_) => None
}
} else {
match tcx.extern_const_statics.borrow().get(&def_id) {
Some(&ast::DUMMY_NODE_ID) => return None,
Some(&expr_id) => {
return Some(tcx.map.expect_expr(expr_id));
}
None => {}
}
let expr_id = match csearch::maybe_get_item_ast(tcx, def_id,
|a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) {
csearch::found(&ast::IIItem(ref item)) => match item.node {
ast::ItemConst(_, ref const_expr) => Some(const_expr.id),
_ => None
},
_ => None
};
tcx.extern_const_statics.borrow_mut().insert(def_id,
expr_id.unwrap_or(ast::DUMMY_NODE_ID));
expr_id.map(|id| tcx.map.expect_expr(id))
}
}
struct ConstEvalVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
ccache: constness_cache,
}
impl<'a, 'tcx> ConstEvalVisitor<'a, 'tcx> {
fn classify(&mut self, e: &Expr) -> constness {
let did = ast_util::local_def(e.id);
match self.ccache.get(&did) {
Some(&x) => return x,
None => {}
}
let cn = match e.node {
ast::ExprLit(ref lit) => {
match lit.node {
ast::LitStr(..) | ast::LitFloat(..) => general_const,
_ => integral_const
}
}
ast::ExprUnary(_, ref inner) | ast::ExprParen(ref inner) =>
self.classify(&**inner),
ast::ExprBinary(_, ref a, ref b) =>
join(self.classify(&**a), self.classify(&**b)),
ast::ExprTup(ref es) |
ast::ExprVec(ref es) =>
join_all(es.iter().map(|e| self.classify(&**e))),
ast::ExprStruct(_, ref fs, None) => {
let cs = fs.iter().map(|f| self.classify(&*f.expr));
join_all(cs)
}
ast::ExprCast(ref base, _) => {
let ty = ty::expr_ty(self.tcx, e);
let base = self.classify(&**base);
if ty::type_is_integral(ty) {
join(integral_const, base)
} else if ty::type_is_fp(ty) {
join(general_const, base)
} else {
non_const
}
}
ast::ExprField(ref base, _) => self.classify(&**base),
ast::ExprTupField(ref base, _) => self.classify(&**base),
ast::ExprIndex(ref base, ref idx) =>
join(self.classify(&**base), self.classify(&**idx)),
ast::ExprAddrOf(ast::MutImmutable, ref base) =>
self.classify(&**base),
// FIXME: (#3728) we can probably do something CCI-ish
// surrounding nonlocal constants. But we don't yet.
ast::ExprPath(_) => self.lookup_constness(e),
ast::ExprRepeat(..) => general_const,
ast::ExprBlock(ref block) => {
match block.expr {
Some(ref e) => self.classify(&**e),
None => integral_const
}
}
_ => non_const
};
self.ccache.insert(did, cn);
cn
}
fn lookup_constness(&self, e: &Expr) -> constness {
match lookup_const(self.tcx, e) {
Some(rhs) => {
let ty = ty::expr_ty(self.tcx, &*rhs);
if ty::type_is_integral(ty) {
integral_const
} else {
general_const
}
}
None => non_const
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for ConstEvalVisitor<'a, 'tcx> {
fn visit_expr_post(&mut self, e: &Expr) {
self.classify(e);
}
}
pub fn process_crate(tcx: &ty::ctxt) {
visit::walk_crate(&mut ConstEvalVisitor {
tcx: tcx,
ccache: DefIdMap::new(),
}, tcx.map.krate());
tcx.sess.abort_if_errors();
}
// FIXME (#33): this doesn't handle big integer/float literals correctly
// (nor does the rest of our literal handling).
#[deriving(Clone, PartialEq)]
pub enum const_val {
const_float(f64),
const_int(i64),
const_uint(u64),
const_str(InternedString),
const_binary(Rc<Vec<u8> >),
const_bool(bool)
}
pub fn const_expr_to_pat(tcx: &ty::ctxt, expr: &Expr) -> P<ast::Pat> {
let pat = match expr.node {
ast::ExprTup(ref exprs) =>
ast::PatTup(exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr)).collect()),
ast::ExprCall(ref callee, ref args) => {
let def = tcx.def_map.borrow()[callee.id].clone();
if let Vacant(entry) = tcx.def_map.borrow_mut().entry(expr.id) {
entry.set(def);
}
let path = match def {
def::DefStruct(def_id) => def_to_path(tcx, def_id),
def::DefVariant(_, variant_did, _) => def_to_path(tcx, variant_did),
_ => unreachable!()
};
let pats = args.iter().map(|expr| const_expr_to_pat(tcx, &**expr)).collect();
ast::PatEnum(path, Some(pats))
}
ast::ExprStruct(ref path, ref fields, None) => {
let field_pats = fields.iter().map(|field| codemap::Spanned {
span: codemap::DUMMY_SP,
node: ast::FieldPat {
ident: field.ident.node,
pat: const_expr_to_pat(tcx, &*field.expr),
is_shorthand: false,
},
}).collect();
ast::PatStruct(path.clone(), field_pats, false)
}
ast::ExprVec(ref exprs) => {
let pats = exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr)).collect();
ast::PatVec(pats, None, vec![])
}
ast::ExprPath(ref path) => {
let opt_def = tcx.def_map.borrow().get(&expr.id).cloned();
match opt_def {
Some(def::DefStruct(..)) =>
ast::PatStruct(path.clone(), vec![], false),
Some(def::DefVariant(..)) =>
ast::PatEnum(path.clone(), None),
_ => {
match lookup_const(tcx, expr) {
Some(actual) => return const_expr_to_pat(tcx, actual),
_ => unreachable!()
}
}
}
}
_ => ast::PatLit(P(expr.clone()))
};
P(ast::Pat { id: expr.id, node: pat, span: expr.span })
}
pub fn eval_const_expr(tcx: &ty::ctxt, e: &Expr) -> const_val {
match eval_const_expr_partial(tcx, e) {
Ok(r) => r,
Err(s) => tcx.sess.span_fatal(e.span, s.as_slice())
}
}
pub fn eval_const_expr_partial(tcx: &ty::ctxt, e: &Expr) -> Result<const_val, String> {
fn fromb(b: bool) -> Result<const_val, String> { Ok(const_int(b as i64)) }
match e.node {
ast::ExprUnary(ast::UnNeg, ref inner) => {
match eval_const_expr_partial(tcx, &**inner) {
Ok(const_float(f)) => Ok(const_float(-f)),
Ok(const_int(i)) => Ok(const_int(-i)),
Ok(const_uint(i)) => Ok(const_uint(-i)),
Ok(const_str(_)) => Err("negate on string".to_string()),
Ok(const_bool(_)) => Err("negate on boolean".to_string()),
ref err => ((*err).clone())
}
}
ast::ExprUnary(ast::UnNot, ref inner) => {
match eval_const_expr_partial(tcx, &**inner) {
Ok(const_int(i)) => Ok(const_int(!i)),
Ok(const_uint(i)) => Ok(const_uint(!i)),
Ok(const_bool(b)) => Ok(const_bool(!b)),
_ => Err("not on float or string".to_string())
}
}
ast::ExprBinary(op, ref a, ref b) => {
match (eval_const_expr_partial(tcx, &**a),
eval_const_expr_partial(tcx, &**b)) {
(Ok(const_float(a)), Ok(const_float(b))) => {
match op {
ast::BiAdd => Ok(const_float(a + b)),
ast::BiSub => Ok(const_float(a - b)),
ast::BiMul => Ok(const_float(a * b)),
ast::BiDiv => Ok(const_float(a / b)),
ast::BiRem => Ok(const_float(a % b)),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b),
_ => Err("can't do this op on floats".to_string())
}
}
(Ok(const_int(a)), Ok(const_int(b))) => {
match op {
ast::BiAdd => Ok(const_int(a + b)),
ast::BiSub => Ok(const_int(a - b)),
ast::BiMul => Ok(const_int(a * b)),
ast::BiDiv if b == 0 => {
Err("attempted to divide by zero".to_string())
}
ast::BiDiv => Ok(const_int(a / b)),
ast::BiRem if b == 0 => {
Err("attempted remainder with a divisor of \
zero".to_string())
}
ast::BiRem => Ok(const_int(a % b)),
ast::BiAnd | ast::BiBitAnd => Ok(const_int(a & b)),
ast::BiOr | ast::BiBitOr => Ok(const_int(a | b)),
ast::BiBitXor => Ok(const_int(a ^ b)),
ast::BiShl => Ok(const_int(a << b as uint)),
ast::BiShr => Ok(const_int(a >> b as uint)),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b)
}
}
(Ok(const_uint(a)), Ok(const_uint(b))) => {
match op {
ast::BiAdd => Ok(const_uint(a + b)),
ast::BiSub => Ok(const_uint(a - b)),
ast::BiMul => Ok(const_uint(a * b)),
ast::BiDiv if b == 0 => {
Err("attempted to divide by zero".to_string())
}
ast::BiDiv => Ok(const_uint(a / b)),
ast::BiRem if b == 0 => {
Err("attempted remainder with a divisor of \
zero".to_string())
}
ast::BiRem => Ok(const_uint(a % b)),
ast::BiAnd | ast::BiBitAnd => Ok(const_uint(a & b)),
ast::BiOr | ast::BiBitOr => Ok(const_uint(a | b)),
ast::BiBitXor => Ok(const_uint(a ^ b)),
ast::BiShl => Ok(const_uint(a << b as uint)),
ast::BiShr => Ok(const_uint(a >> b as uint)),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b),
}
}
// shifts can have any integral type as their rhs
(Ok(const_int(a)), Ok(const_uint(b))) => {
match op {
ast::BiShl => Ok(const_int(a << b as uint)),
ast::BiShr => Ok(const_int(a >> b as uint)),
_ => Err("can't do this op on an int and uint".to_string())
}
}
(Ok(const_uint(a)), Ok(const_int(b))) => {
match op {
ast::BiShl => Ok(const_uint(a << b as uint)),
ast::BiShr => Ok(const_uint(a >> b as uint)),
_ => Err("can't do this op on a uint and int".to_string())
}
}
(Ok(const_bool(a)), Ok(const_bool(b))) => {
Ok(const_bool(match op {
ast::BiAnd => a && b,
ast::BiOr => a || b,
ast::BiBitXor => a ^ b,
ast::BiBitAnd => a & b,
ast::BiBitOr => a | b,
ast::BiEq => a == b,
ast::BiNe => a != b,
_ => return Err("can't do this op on bools".to_string())
}))
}
_ => Err("bad operands for binary".to_string())
}
}
ast::ExprCast(ref base, ref target_ty) => {
// This tends to get called w/o the type actually having been
// populated in the ctxt, which was causing things to blow up
// (#5900). Fall back to doing a limited lookup to get past it.
let ety = ty::expr_ty_opt(tcx, e)
.or_else(|| ast_ty_to_prim_ty(tcx, &**target_ty))
.unwrap_or_else(|| {
tcx.sess.span_fatal(target_ty.span,
"target type not found for const cast")
});
macro_rules! define_casts(
($val:ident, {
$($ty_pat:pat => (
$intermediate_ty:ty,
$const_type:ident,
$target_ty:ty
)),*
}) => (match ety.sty {
$($ty_pat => {
match $val {
const_bool(b) => Ok($const_type(b as $intermediate_ty as $target_ty)),
const_uint(u) => Ok($const_type(u as $intermediate_ty as $target_ty)),
const_int(i) => Ok($const_type(i as $intermediate_ty as $target_ty)),
const_float(f) => Ok($const_type(f as $intermediate_ty as $target_ty)),
_ => Err(concat!(
"can't cast this type to ", stringify!($const_type)
).to_string())
}
},)*
_ => Err("can't cast this type".to_string())
})
)
eval_const_expr_partial(tcx, &**base)
.and_then(|val| define_casts!(val, {
ty::ty_int(ast::TyI) => (int, const_int, i64),
ty::ty_int(ast::TyI8) => (i8, const_int, i64),
ty::ty_int(ast::TyI16) => (i16, const_int, i64),
ty::ty_int(ast::TyI32) => (i32, const_int, i64),
ty::ty_int(ast::TyI64) => (i64, const_int, i64),
ty::ty_uint(ast::TyU) => (uint, const_uint, u64),
ty::ty_uint(ast::TyU8) => (u8, const_uint, u64),
ty::ty_uint(ast::TyU16) => (u16, const_uint, u64),
ty::ty_uint(ast::TyU32) => (u32, const_uint, u64),
ty::ty_uint(ast::TyU64) => (u64, const_uint, u64),
ty::ty_float(ast::TyF32) => (f32, const_float, f64),
ty::ty_float(ast::TyF64) => (f64, const_float, f64)
}))
}
ast::ExprPath(_) => {
match lookup_const(tcx, e) {
Some(actual_e) => eval_const_expr_partial(tcx, &*actual_e),
None => Err("non-constant path in constant expr".to_string())
}
}
ast::ExprLit(ref lit) => Ok(lit_to_const(&**lit)),
ast::ExprParen(ref e) => eval_const_expr_partial(tcx, &**e),
ast::ExprBlock(ref block) => {
match block.expr {
Some(ref expr) => eval_const_expr_partial(tcx, &**expr),
None => Ok(const_int(0i64))
}
}
ast::ExprTupField(ref base, index) => {
// Get the base tuple if it is constant
if let Some(&ast::ExprTup(ref fields)) = lookup_const(tcx, &**base).map(|s| &s.node) {
// Check that the given index is within bounds and evaluate its value
if fields.len() > index.node {
return eval_const_expr_partial(tcx, &*fields[index.node])
} else {
return Err("tuple index out of bounds".to_string())
}
}
Err("non-constant struct in constant expr".to_string())
}
ast::ExprField(ref base, field_name) => {
// Get the base expression if it is a struct and it is constant
if let Some(&ast::ExprStruct(_, ref fields, _)) = lookup_const(tcx, &**base)
.map(|s| &s.node) {
// Check that the given field exists and evaluate it
if let Some(f) = fields.iter().find(|f|
f.ident.node.as_str() == field_name.node.as_str()) {
return eval_const_expr_partial(tcx, &*f.expr)
} else {
return Err("nonexistent struct field".to_string())
}
}
Err("non-constant struct in constant expr".to_string())
}
_ => Err("unsupported constant expr".to_string())
}
}
pub fn lit_to_const(lit: &ast::Lit) -> const_val {
match lit.node {
ast::LitStr(ref s, _) => const_str((*s).clone()),
ast::LitBinary(ref data) => {
const_binary(Rc::new(data.iter().map(|x| *x).collect()))
}
ast::LitByte(n) => const_uint(n as u64),
ast::LitChar(n) => const_uint(n as u64),
ast::LitInt(n, ast::SignedIntLit(_, ast::Plus)) |
ast::LitInt(n, ast::UnsuffixedIntLit(ast::Plus)) => const_int(n as i64),
ast::LitInt(n, ast::SignedIntLit(_, ast::Minus)) |
ast::LitInt(n, ast::UnsuffixedIntLit(ast::Minus)) => const_int(-(n as i64)),
ast::LitInt(n, ast::UnsignedIntLit(_)) => const_uint(n),
ast::LitFloat(ref n, _) |
ast::LitFloatUnsuffixed(ref n) => {
const_float(from_str::<f64>(n.get()).unwrap() as f64)
}
ast::LitBool(b) => const_bool(b)
}
}
fn compare_vals<T: PartialOrd>(a: T, b: T) -> Option<int> {
Some(if a == b { 0 } else if a < b { -1 } else { 1 })
}
pub fn compare_const_vals(a: &const_val, b: &const_val) -> Option<int> {
match (a, b) {
(&const_int(a), &const_int(b)) => compare_vals(a, b),
(&const_uint(a), &const_uint(b)) => compare_vals(a, b),
(&const_float(a), &const_float(b)) => compare_vals(a, b),
(&const_str(ref a), &const_str(ref b)) => compare_vals(a, b),
(&const_bool(a), &const_bool(b)) => compare_vals(a, b),
(&const_binary(ref a), &const_binary(ref b)) => compare_vals(a, b),
_ => None
}
}
pub fn compare_lit_exprs(tcx: &ty::ctxt, a: &Expr, b: &Expr) -> Option<int> {
compare_const_vals(&eval_const_expr(tcx, a), &eval_const_expr(tcx, b))
}