rust/src/librustc_trans_utils/collector.rs

1082 lines
43 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Translation Item Collection
//! ===========================
//!
//! This module is responsible for discovering all items that will contribute to
//! to code generation of the crate. The important part here is that it not only
//! needs to find syntax-level items (functions, structs, etc) but also all
//! their monomorphized instantiations. Every non-generic, non-const function
//! maps to one LLVM artifact. Every generic function can produce
//! from zero to N artifacts, depending on the sets of type arguments it
//! is instantiated with.
//! This also applies to generic items from other crates: A generic definition
//! in crate X might produce monomorphizations that are compiled into crate Y.
//! We also have to collect these here.
//!
//! The following kinds of "translation items" are handled here:
//!
//! - Functions
//! - Methods
//! - Closures
//! - Statics
//! - Drop glue
//!
//! The following things also result in LLVM artifacts, but are not collected
//! here, since we instantiate them locally on demand when needed in a given
//! codegen unit:
//!
//! - Constants
//! - Vtables
//! - Object Shims
//!
//!
//! General Algorithm
//! -----------------
//! Let's define some terms first:
//!
//! - A "translation item" is something that results in a function or global in
//! the LLVM IR of a codegen unit. Translation items do not stand on their
//! own, they can reference other translation items. For example, if function
//! `foo()` calls function `bar()` then the translation item for `foo()`
//! references the translation item for function `bar()`. In general, the
//! definition for translation item A referencing a translation item B is that
//! the LLVM artifact produced for A references the LLVM artifact produced
//! for B.
//!
//! - Translation items and the references between them form a directed graph,
//! where the translation items are the nodes and references form the edges.
//! Let's call this graph the "translation item graph".
//!
//! - The translation item graph for a program contains all translation items
//! that are needed in order to produce the complete LLVM IR of the program.
//!
//! The purpose of the algorithm implemented in this module is to build the
//! translation item graph for the current crate. It runs in two phases:
//!
//! 1. Discover the roots of the graph by traversing the HIR of the crate.
//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
//! representation of the item corresponding to a given node, until no more
//! new nodes are found.
//!
//! ### Discovering roots
//!
//! The roots of the translation item graph correspond to the non-generic
//! syntactic items in the source code. We find them by walking the HIR of the
//! crate, and whenever we hit upon a function, method, or static item, we
//! create a translation item consisting of the items DefId and, since we only
//! consider non-generic items, an empty type-substitution set.
//!
//! ### Finding neighbor nodes
//! Given a translation item node, we can discover neighbors by inspecting its
//! MIR. We walk the MIR and any time we hit upon something that signifies a
//! reference to another translation item, we have found a neighbor. Since the
//! translation item we are currently at is always monomorphic, we also know the
//! concrete type arguments of its neighbors, and so all neighbors again will be
//! monomorphic. The specific forms a reference to a neighboring node can take
//! in MIR are quite diverse. Here is an overview:
//!
//! #### Calling Functions/Methods
//! The most obvious form of one translation item referencing another is a
//! function or method call (represented by a CALL terminator in MIR). But
//! calls are not the only thing that might introduce a reference between two
//! function translation items, and as we will see below, they are just a
//! specialized of the form described next, and consequently will don't get any
//! special treatment in the algorithm.
//!
//! #### Taking a reference to a function or method
//! A function does not need to actually be called in order to be a neighbor of
//! another function. It suffices to just take a reference in order to introduce
//! an edge. Consider the following example:
//!
//! ```rust
//! fn print_val<T: Display>(x: T) {
//! println!("{}", x);
//! }
//!
//! fn call_fn(f: &Fn(i32), x: i32) {
//! f(x);
//! }
//!
//! fn main() {
//! let print_i32 = print_val::<i32>;
//! call_fn(&print_i32, 0);
//! }
//! ```
//! The MIR of none of these functions will contain an explicit call to
//! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
//! an instance of this function. Thus, whenever we encounter a function or
//! method in operand position, we treat it as a neighbor of the current
//! translation item. Calls are just a special case of that.
//!
//! #### Closures
//! In a way, closures are a simple case. Since every closure object needs to be
//! constructed somewhere, we can reliably discover them by observing
//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
//! true for closures inlined from other crates.
//!
//! #### Drop glue
//! Drop glue translation items are introduced by MIR drop-statements. The
//! generated translation item will again have drop-glue item neighbors if the
//! type to be dropped contains nested values that also need to be dropped. It
//! might also have a function item neighbor for the explicit `Drop::drop`
//! implementation of its type.
//!
//! #### Unsizing Casts
//! A subtle way of introducing neighbor edges is by casting to a trait object.
//! Since the resulting fat-pointer contains a reference to a vtable, we need to
//! instantiate all object-save methods of the trait, as we need to store
//! pointers to these functions even if they never get called anywhere. This can
//! be seen as a special case of taking a function reference.
//!
//! #### Boxes
//! Since `Box` expression have special compiler support, no explicit calls to
//! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
//! compiler will generate them. We have to observe `Rvalue::Box` expressions
//! and Box-typed drop-statements for that purpose.
//!
//!
//! Interaction with Cross-Crate Inlining
//! -------------------------------------
//! The binary of a crate will not only contain machine code for the items
//! defined in the source code of that crate. It will also contain monomorphic
//! instantiations of any extern generic functions and of functions marked with
//! #[inline].
//! The collection algorithm handles this more or less transparently. If it is
//! about to create a translation item for something with an external `DefId`,
//! it will take a look if the MIR for that item is available, and if so just
//! proceed normally. If the MIR is not available, it assumes that the item is
//! just linked to and no node is created; which is exactly what we want, since
//! no machine code should be generated in the current crate for such an item.
//!
//! Eager and Lazy Collection Mode
//! ------------------------------
//! Translation item collection can be performed in one of two modes:
//!
//! - Lazy mode means that items will only be instantiated when actually
//! referenced. The goal is to produce the least amount of machine code
//! possible.
//!
//! - Eager mode is meant to be used in conjunction with incremental compilation
//! where a stable set of translation items is more important than a minimal
//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
//! in the crate, even of no drop call for that type exists (yet). It will
//! also instantiate default implementations of trait methods, something that
//! otherwise is only done on demand.
//!
//!
//! Open Issues
//! -----------
//! Some things are not yet fully implemented in the current version of this
//! module.
//!
//! ### Initializers of Constants and Statics
//! Since no MIR is constructed yet for initializer expressions of constants and
//! statics we cannot inspect these properly.
//!
//! ### Const Fns
//! Ideally, no translation item should be generated for const fns unless there
//! is a call to them that cannot be evaluated at compile time. At the moment
//! this is not implemented however: a translation item will be produced
//! regardless of whether it is actually needed or not.
use rustc::hir;
use rustc::hir::itemlikevisit::ItemLikeVisitor;
use rustc::hir::map as hir_map;
use rustc::hir::def_id::DefId;
use rustc::middle::const_val::ConstVal;
use rustc::middle::lang_items::{ExchangeMallocFnLangItem};
use rustc::middle::trans::TransItem;
use rustc::traits;
use rustc::ty::subst::Substs;
use rustc::ty::{self, TypeFoldable, Ty, TyCtxt};
use rustc::ty::adjustment::CustomCoerceUnsized;
use rustc::mir::{self, Location};
use rustc::mir::visit::Visitor as MirVisitor;
use common::{def_ty, instance_ty, type_has_metadata};
use monomorphize::{self, Instance};
use rustc::util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
use trans_item::{TransItemExt, DefPathBasedNames, InstantiationMode};
use rustc_data_structures::bitvec::BitVector;
use syntax::attr;
#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
pub enum TransItemCollectionMode {
Eager,
Lazy
}
/// Maps every translation item to all translation items it references in its
/// body.
pub struct InliningMap<'tcx> {
// Maps a source translation item to the range of translation items
// accessed by it.
// The two numbers in the tuple are the start (inclusive) and
// end index (exclusive) within the `targets` vecs.
index: FxHashMap<TransItem<'tcx>, (usize, usize)>,
targets: Vec<TransItem<'tcx>>,
// Contains one bit per translation item in the `targets` field. That bit
// is true if that translation item needs to be inlined into every CGU.
inlines: BitVector,
}
impl<'tcx> InliningMap<'tcx> {
fn new() -> InliningMap<'tcx> {
InliningMap {
index: FxHashMap(),
targets: Vec::new(),
inlines: BitVector::new(1024),
}
}
fn record_accesses<I>(&mut self,
source: TransItem<'tcx>,
new_targets: I)
where I: Iterator<Item=(TransItem<'tcx>, bool)> + ExactSizeIterator
{
assert!(!self.index.contains_key(&source));
let start_index = self.targets.len();
let new_items_count = new_targets.len();
let new_items_count_total = new_items_count + self.targets.len();
self.targets.reserve(new_items_count);
self.inlines.grow(new_items_count_total);
for (i, (target, inline)) in new_targets.enumerate() {
self.targets.push(target);
if inline {
self.inlines.insert(i + start_index);
}
}
let end_index = self.targets.len();
self.index.insert(source, (start_index, end_index));
}
// Internally iterate over all items referenced by `source` which will be
// made available for inlining.
pub fn with_inlining_candidates<F>(&self, source: TransItem<'tcx>, mut f: F)
where F: FnMut(TransItem<'tcx>)
{
if let Some(&(start_index, end_index)) = self.index.get(&source) {
for (i, candidate) in self.targets[start_index .. end_index]
.iter()
.enumerate() {
if self.inlines.contains(start_index + i) {
f(*candidate);
}
}
}
}
// Internally iterate over all items and the things each accesses.
pub fn iter_accesses<F>(&self, mut f: F)
where F: FnMut(TransItem<'tcx>, &[TransItem<'tcx>])
{
for (&accessor, &(start_index, end_index)) in &self.index {
f(accessor, &self.targets[start_index .. end_index])
}
}
}
pub fn collect_crate_translation_items<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
mode: TransItemCollectionMode)
-> (FxHashSet<TransItem<'tcx>>,
InliningMap<'tcx>) {
let roots = collect_roots(tcx, mode);
debug!("Building translation item graph, beginning at roots");
let mut visited = FxHashSet();
let mut recursion_depths = DefIdMap();
let mut inlining_map = InliningMap::new();
for root in roots {
collect_items_rec(tcx,
root,
&mut visited,
&mut recursion_depths,
&mut inlining_map);
}
(visited, inlining_map)
}
// Find all non-generic items by walking the HIR. These items serve as roots to
// start monomorphizing from.
fn collect_roots<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
mode: TransItemCollectionMode)
-> Vec<TransItem<'tcx>> {
debug!("Collecting roots");
let mut roots = Vec::new();
{
let entry_fn = tcx.sess.entry_fn.borrow().map(|(node_id, _)| {
tcx.hir.local_def_id(node_id)
});
let mut visitor = RootCollector {
tcx,
mode,
entry_fn,
output: &mut roots,
};
tcx.hir.krate().visit_all_item_likes(&mut visitor);
}
// We can only translate items that are instantiable - items all of
// whose predicates hold. Luckily, items that aren't instantiable
// can't actually be used, so we can just skip translating them.
roots.retain(|root| root.is_instantiable(tcx));
roots
}
// Collect all monomorphized translation items reachable from `starting_point`
fn collect_items_rec<'a, 'tcx: 'a>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
starting_point: TransItem<'tcx>,
visited: &mut FxHashSet<TransItem<'tcx>>,
recursion_depths: &mut DefIdMap<usize>,
inlining_map: &mut InliningMap<'tcx>) {
if !visited.insert(starting_point.clone()) {
// We've been here already, no need to search again.
return;
}
debug!("BEGIN collect_items_rec({})", starting_point.to_string(tcx));
let mut neighbors = Vec::new();
let recursion_depth_reset;
match starting_point {
TransItem::Static(node_id) => {
let def_id = tcx.hir.local_def_id(node_id);
let instance = Instance::mono(tcx, def_id);
// Sanity check whether this ended up being collected accidentally
debug_assert!(should_trans_locally(tcx, &instance));
let ty = instance_ty(tcx, &instance);
visit_drop_use(tcx, ty, true, &mut neighbors);
recursion_depth_reset = None;
collect_neighbours(tcx, instance, true, &mut neighbors);
}
TransItem::Fn(instance) => {
// Sanity check whether this ended up being collected accidentally
debug_assert!(should_trans_locally(tcx, &instance));
// Keep track of the monomorphization recursion depth
recursion_depth_reset = Some(check_recursion_limit(tcx,
instance,
recursion_depths));
check_type_length_limit(tcx, instance);
collect_neighbours(tcx, instance, false, &mut neighbors);
}
TransItem::GlobalAsm(..) => {
recursion_depth_reset = None;
}
}
record_accesses(tcx, starting_point, &neighbors[..], inlining_map);
for neighbour in neighbors {
collect_items_rec(tcx, neighbour, visited, recursion_depths, inlining_map);
}
if let Some((def_id, depth)) = recursion_depth_reset {
recursion_depths.insert(def_id, depth);
}
debug!("END collect_items_rec({})", starting_point.to_string(tcx));
}
fn record_accesses<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
caller: TransItem<'tcx>,
callees: &[TransItem<'tcx>],
inlining_map: &mut InliningMap<'tcx>) {
let is_inlining_candidate = |trans_item: &TransItem<'tcx>| {
trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
};
let accesses = callees.into_iter()
.map(|trans_item| {
(*trans_item, is_inlining_candidate(trans_item))
});
inlining_map.record_accesses(caller, accesses);
}
fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>,
recursion_depths: &mut DefIdMap<usize>)
-> (DefId, usize) {
let def_id = instance.def_id();
let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
debug!(" => recursion depth={}", recursion_depth);
let recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
// HACK: drop_in_place creates tight monomorphization loops. Give
// it more margin.
recursion_depth / 4
} else {
recursion_depth
};
// Code that needs to instantiate the same function recursively
// more than the recursion limit is assumed to be causing an
// infinite expansion.
if recursion_depth > tcx.sess.recursion_limit.get() {
let error = format!("reached the recursion limit while instantiating `{}`",
instance);
if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
} else {
tcx.sess.fatal(&error);
}
}
recursion_depths.insert(def_id, recursion_depth + 1);
(def_id, recursion_depth)
}
fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>)
{
let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
debug!(" => type length={}", type_length);
// Rust code can easily create exponentially-long types using only a
// polynomial recursion depth. Even with the default recursion
// depth, you can easily get cases that take >2^60 steps to run,
// which means that rustc basically hangs.
//
// Bail out in these cases to avoid that bad user experience.
let type_length_limit = tcx.sess.type_length_limit.get();
if type_length > type_length_limit {
// The instance name is already known to be too long for rustc. Use
// `{:.64}` to avoid blasting the user's terminal with thousands of
// lines of type-name.
let instance_name = instance.to_string();
let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
instance_name);
let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
} else {
tcx.sess.struct_fatal(&msg)
};
diag.note(&format!(
"consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
type_length_limit*2));
diag.emit();
tcx.sess.abort_if_errors();
}
}
struct MirNeighborCollector<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
mir: &'a mir::Mir<'tcx>,
output: &'a mut Vec<TransItem<'tcx>>,
param_substs: &'tcx Substs<'tcx>,
const_context: bool,
}
impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
debug!("visiting rvalue {:?}", *rvalue);
match *rvalue {
// When doing an cast from a regular pointer to a fat pointer, we
// have to instantiate all methods of the trait being cast to, so we
// can build the appropriate vtable.
mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
let target_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&target_ty);
let source_ty = operand.ty(self.mir, self.tcx);
let source_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&source_ty);
let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.tcx,
source_ty,
target_ty);
// This could also be a different Unsize instruction, like
// from a fixed sized array to a slice. But we are only
// interested in things that produce a vtable.
if target_ty.is_trait() && !source_ty.is_trait() {
create_trans_items_for_vtable_methods(self.tcx,
target_ty,
source_ty,
self.output);
}
}
mir::Rvalue::Cast(mir::CastKind::ReifyFnPointer, ref operand, _) => {
let fn_ty = operand.ty(self.mir, self.tcx);
let fn_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&fn_ty);
visit_fn_use(self.tcx, fn_ty, false, &mut self.output);
}
mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
let source_ty = operand.ty(self.mir, self.tcx);
let source_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&source_ty);
match source_ty.sty {
ty::TyClosure(def_id, substs) => {
let instance = monomorphize::resolve_closure(
self.tcx, def_id, substs, ty::ClosureKind::FnOnce);
self.output.push(create_fn_trans_item(instance));
}
_ => bug!(),
}
}
mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
let tcx = self.tcx;
let exchange_malloc_fn_def_id = tcx
.lang_items()
.require(ExchangeMallocFnLangItem)
.unwrap_or_else(|e| tcx.sess.fatal(&e));
let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
if should_trans_locally(tcx, &instance) {
self.output.push(create_fn_trans_item(instance));
}
}
_ => { /* not interesting */ }
}
self.super_rvalue(rvalue, location);
}
fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
debug!("visiting const {:?} @ {:?}", *constant, location);
if let ConstVal::Unevaluated(def_id, substs) = constant.val {
let substs = self.tcx.trans_apply_param_substs(self.param_substs,
&substs);
let instance = ty::Instance::resolve(self.tcx,
ty::ParamEnv::empty(traits::Reveal::All),
def_id,
substs).unwrap();
collect_neighbours(self.tcx, instance, true, self.output);
}
self.super_const(constant);
}
fn visit_terminator_kind(&mut self,
block: mir::BasicBlock,
kind: &mir::TerminatorKind<'tcx>,
location: Location) {
debug!("visiting terminator {:?} @ {:?}", kind, location);
let tcx = self.tcx;
match *kind {
mir::TerminatorKind::Call { ref func, .. } => {
let callee_ty = func.ty(self.mir, tcx);
let callee_ty = tcx.trans_apply_param_substs(self.param_substs, &callee_ty);
let constness = match (self.const_context, &callee_ty.sty) {
(true, &ty::TyFnDef(def_id, substs)) if self.tcx.is_const_fn(def_id) => {
let instance =
ty::Instance::resolve(self.tcx,
ty::ParamEnv::empty(traits::Reveal::All),
def_id,
substs).unwrap();
Some(instance)
}
_ => None
};
if let Some(const_fn_instance) = constness {
// If this is a const fn, called from a const context, we
// have to visit its body in order to find any fn reifications
// it might contain.
collect_neighbours(self.tcx,
const_fn_instance,
true,
self.output);
} else {
visit_fn_use(self.tcx, callee_ty, true, &mut self.output);
}
}
mir::TerminatorKind::Drop { ref location, .. } |
mir::TerminatorKind::DropAndReplace { ref location, .. } => {
let ty = location.ty(self.mir, self.tcx)
.to_ty(self.tcx);
let ty = tcx.trans_apply_param_substs(self.param_substs, &ty);
visit_drop_use(self.tcx, ty, true, self.output);
}
mir::TerminatorKind::Goto { .. } |
mir::TerminatorKind::SwitchInt { .. } |
mir::TerminatorKind::Resume |
mir::TerminatorKind::Return |
mir::TerminatorKind::Unreachable |
mir::TerminatorKind::Assert { .. } => {}
mir::TerminatorKind::GeneratorDrop |
mir::TerminatorKind::Yield { .. } |
mir::TerminatorKind::FalseEdges { .. } => bug!(),
}
self.super_terminator_kind(block, kind, location);
}
fn visit_static(&mut self,
static_: &mir::Static<'tcx>,
context: mir::visit::LvalueContext<'tcx>,
location: Location) {
debug!("visiting static {:?} @ {:?}", static_.def_id, location);
let tcx = self.tcx;
let instance = Instance::mono(tcx, static_.def_id);
if should_trans_locally(tcx, &instance) {
let node_id = tcx.hir.as_local_node_id(static_.def_id).unwrap();
self.output.push(TransItem::Static(node_id));
}
self.super_static(static_, context, location);
}
}
fn visit_drop_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
output: &mut Vec<TransItem<'tcx>>)
{
let instance = monomorphize::resolve_drop_in_place(tcx, ty);
visit_instance_use(tcx, instance, is_direct_call, output);
}
fn visit_fn_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
output: &mut Vec<TransItem<'tcx>>)
{
if let ty::TyFnDef(def_id, substs) = ty.sty {
let instance = ty::Instance::resolve(tcx,
ty::ParamEnv::empty(traits::Reveal::All),
def_id,
substs).unwrap();
visit_instance_use(tcx, instance, is_direct_call, output);
}
}
fn visit_instance_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: ty::Instance<'tcx>,
is_direct_call: bool,
output: &mut Vec<TransItem<'tcx>>)
{
debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
if !should_trans_locally(tcx, &instance) {
return
}
match instance.def {
ty::InstanceDef::Intrinsic(def_id) => {
if !is_direct_call {
bug!("intrinsic {:?} being reified", def_id);
}
}
ty::InstanceDef::Virtual(..) |
ty::InstanceDef::DropGlue(_, None) => {
// don't need to emit shim if we are calling directly.
if !is_direct_call {
output.push(create_fn_trans_item(instance));
}
}
ty::InstanceDef::DropGlue(_, Some(_)) => {
output.push(create_fn_trans_item(instance));
}
ty::InstanceDef::ClosureOnceShim { .. } |
ty::InstanceDef::Item(..) |
ty::InstanceDef::FnPtrShim(..) |
ty::InstanceDef::CloneShim(..) => {
output.push(create_fn_trans_item(instance));
}
}
}
// Returns true if we should translate an instance in the local crate.
// Returns false if we can just link to the upstream crate and therefore don't
// need a translation item.
fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
-> bool {
let def_id = match instance.def {
ty::InstanceDef::Item(def_id) => def_id,
ty::InstanceDef::ClosureOnceShim { .. } |
ty::InstanceDef::Virtual(..) |
ty::InstanceDef::FnPtrShim(..) |
ty::InstanceDef::DropGlue(..) |
ty::InstanceDef::Intrinsic(_) |
ty::InstanceDef::CloneShim(..) => return true
};
match tcx.hir.get_if_local(def_id) {
Some(hir_map::NodeForeignItem(..)) => {
false // foreign items are linked against, not translated.
}
Some(_) => true,
None => {
if tcx.is_exported_symbol(def_id) ||
tcx.is_foreign_item(def_id)
{
// We can link to the item in question, no instance needed
// in this crate
false
} else {
if !tcx.is_mir_available(def_id) {
bug!("Cannot create local trans-item for {:?}", def_id)
}
true
}
}
}
}
/// For given pair of source and target type that occur in an unsizing coercion,
/// this function finds the pair of types that determines the vtable linking
/// them.
///
/// For example, the source type might be `&SomeStruct` and the target type\
/// might be `&SomeTrait` in a cast like:
///
/// let src: &SomeStruct = ...;
/// let target = src as &SomeTrait;
///
/// Then the output of this function would be (SomeStruct, SomeTrait) since for
/// constructing the `target` fat-pointer we need the vtable for that pair.
///
/// Things can get more complicated though because there's also the case where
/// the unsized type occurs as a field:
///
/// ```rust
/// struct ComplexStruct<T: ?Sized> {
/// a: u32,
/// b: f64,
/// c: T
/// }
/// ```
///
/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
/// for the pair of `T` (which is a trait) and the concrete type that `T` was
/// originally coerced from:
///
/// let src: &ComplexStruct<SomeStruct> = ...;
/// let target = src as &ComplexStruct<SomeTrait>;
///
/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
/// `(SomeStruct, SomeTrait)`.
///
/// Finally, there is also the case of custom unsizing coercions, e.g. for
/// smart pointers such as `Rc` and `Arc`.
fn find_vtable_types_for_unsizing<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
source_ty: Ty<'tcx>,
target_ty: Ty<'tcx>)
-> (Ty<'tcx>, Ty<'tcx>) {
let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
if type_has_metadata(tcx, inner_source) {
(inner_source, inner_target)
} else {
tcx.struct_lockstep_tails(inner_source, inner_target)
}
};
match (&source_ty.sty, &target_ty.sty) {
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
ptr_vtable(a, b)
}
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
}
(&ty::TyAdt(source_adt_def, source_substs),
&ty::TyAdt(target_adt_def, target_substs)) => {
assert_eq!(source_adt_def, target_adt_def);
let kind =
monomorphize::custom_coerce_unsize_info(tcx, source_ty, target_ty);
let coerce_index = match kind {
CustomCoerceUnsized::Struct(i) => i
};
let source_fields = &source_adt_def.struct_variant().fields;
let target_fields = &target_adt_def.struct_variant().fields;
assert!(coerce_index < source_fields.len() &&
source_fields.len() == target_fields.len());
find_vtable_types_for_unsizing(tcx,
source_fields[coerce_index].ty(tcx,
source_substs),
target_fields[coerce_index].ty(tcx,
target_substs))
}
_ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
source_ty,
target_ty)
}
}
fn create_fn_trans_item<'a, 'tcx>(instance: Instance<'tcx>) -> TransItem<'tcx> {
debug!("create_fn_trans_item(instance={})", instance);
TransItem::Fn(instance)
}
/// Creates a `TransItem` for each method that is referenced by the vtable for
/// the given trait/impl pair.
fn create_trans_items_for_vtable_methods<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
trait_ty: Ty<'tcx>,
impl_ty: Ty<'tcx>,
output: &mut Vec<TransItem<'tcx>>) {
assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
!impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
if let Some(principal) = trait_ty.principal() {
let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
assert!(!poly_trait_ref.has_escaping_regions());
// Walk all methods of the trait, including those of its supertraits
let methods = tcx.vtable_methods(poly_trait_ref);
let methods = methods.iter().cloned().filter_map(|method| method)
.map(|(def_id, substs)| ty::Instance::resolve(
tcx,
ty::ParamEnv::empty(traits::Reveal::All),
def_id,
substs).unwrap())
.filter(|&instance| should_trans_locally(tcx, &instance))
.map(|instance| create_fn_trans_item(instance));
output.extend(methods);
}
// Also add the destructor
visit_drop_use(tcx, impl_ty, false, output);
}
}
//=-----------------------------------------------------------------------------
// Root Collection
//=-----------------------------------------------------------------------------
struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
mode: TransItemCollectionMode,
output: &'b mut Vec<TransItem<'tcx>>,
entry_fn: Option<DefId>,
}
impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
fn visit_item(&mut self, item: &'v hir::Item) {
match item.node {
hir::ItemExternCrate(..) |
hir::ItemUse(..) |
hir::ItemForeignMod(..) |
hir::ItemTy(..) |
hir::ItemAutoImpl(..) |
hir::ItemTrait(..) |
hir::ItemMod(..) => {
// Nothing to do, just keep recursing...
}
hir::ItemImpl(..) => {
if self.mode == TransItemCollectionMode::Eager {
create_trans_items_for_default_impls(self.tcx,
item,
self.output);
}
}
hir::ItemEnum(_, ref generics) |
hir::ItemStruct(_, ref generics) |
hir::ItemUnion(_, ref generics) => {
if !generics.is_parameterized() {
if self.mode == TransItemCollectionMode::Eager {
let def_id = self.tcx.hir.local_def_id(item.id);
debug!("RootCollector: ADT drop-glue for {}",
def_id_to_string(self.tcx, def_id));
let ty = def_ty(self.tcx, def_id, Substs::empty());
visit_drop_use(self.tcx, ty, true, self.output);
}
}
}
hir::ItemGlobalAsm(..) => {
debug!("RootCollector: ItemGlobalAsm({})",
def_id_to_string(self.tcx,
self.tcx.hir.local_def_id(item.id)));
self.output.push(TransItem::GlobalAsm(item.id));
}
hir::ItemStatic(..) => {
debug!("RootCollector: ItemStatic({})",
def_id_to_string(self.tcx,
self.tcx.hir.local_def_id(item.id)));
self.output.push(TransItem::Static(item.id));
}
hir::ItemConst(..) => {
// const items only generate translation items if they are
// actually used somewhere. Just declaring them is insufficient.
}
hir::ItemFn(..) => {
let tcx = self.tcx;
let def_id = tcx.hir.local_def_id(item.id);
if self.is_root(def_id) {
debug!("RootCollector: ItemFn({})",
def_id_to_string(tcx, def_id));
let instance = Instance::mono(tcx, def_id);
self.output.push(TransItem::Fn(instance));
}
}
}
}
fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
// Even if there's a default body with no explicit generics,
// it's still generic over some `Self: Trait`, so not a root.
}
fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
match ii.node {
hir::ImplItemKind::Method(hir::MethodSig { .. }, _) => {
let tcx = self.tcx;
let def_id = tcx.hir.local_def_id(ii.id);
if self.is_root(def_id) {
debug!("RootCollector: MethodImplItem({})",
def_id_to_string(tcx, def_id));
let instance = Instance::mono(tcx, def_id);
self.output.push(TransItem::Fn(instance));
}
}
_ => { /* Nothing to do here */ }
}
}
}
impl<'b, 'a, 'v> RootCollector<'b, 'a, 'v> {
fn is_root(&self, def_id: DefId) -> bool {
!item_has_type_parameters(self.tcx, def_id) && match self.mode {
TransItemCollectionMode::Eager => {
true
}
TransItemCollectionMode::Lazy => {
self.entry_fn == Some(def_id) ||
self.tcx.is_exported_symbol(def_id) ||
attr::contains_name(&self.tcx.get_attrs(def_id),
"rustc_std_internal_symbol")
}
}
}
}
fn item_has_type_parameters<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
let generics = tcx.generics_of(def_id);
generics.parent_types as usize + generics.types.len() > 0
}
fn create_trans_items_for_default_impls<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
item: &'tcx hir::Item,
output: &mut Vec<TransItem<'tcx>>) {
match item.node {
hir::ItemImpl(_,
_,
_,
ref generics,
..,
ref impl_item_refs) => {
if generics.is_type_parameterized() {
return
}
let impl_def_id = tcx.hir.local_def_id(item.id);
debug!("create_trans_items_for_default_impls(item={})",
def_id_to_string(tcx, impl_def_id));
if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
let callee_substs = tcx.erase_regions(&trait_ref.substs);
let overridden_methods: FxHashSet<_> =
impl_item_refs.iter()
.map(|iiref| iiref.name)
.collect();
for method in tcx.provided_trait_methods(trait_ref.def_id) {
if overridden_methods.contains(&method.name) {
continue;
}
if !tcx.generics_of(method.def_id).types.is_empty() {
continue;
}
let instance = ty::Instance::resolve(tcx,
ty::ParamEnv::empty(traits::Reveal::All),
method.def_id,
callee_substs).unwrap();
let trans_item = create_fn_trans_item(instance);
if trans_item.is_instantiable(tcx) && should_trans_locally(tcx, &instance) {
output.push(trans_item);
}
}
}
}
_ => {
bug!()
}
}
}
/// Scan the MIR in order to find function calls, closures, and drop-glue
fn collect_neighbours<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>,
const_context: bool,
output: &mut Vec<TransItem<'tcx>>)
{
let mir = tcx.instance_mir(instance.def);
let mut visitor = MirNeighborCollector {
tcx,
mir: &mir,
output,
param_substs: instance.substs,
const_context,
};
visitor.visit_mir(&mir);
for promoted in &mir.promoted {
visitor.mir = promoted;
visitor.visit_mir(promoted);
}
}
fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> String {
let mut output = String::new();
let printer = DefPathBasedNames::new(tcx, false, false);
printer.push_def_path(def_id, &mut output);
output
}