rust/compiler/rustc_borrowck/src/lib.rs
Oli Scherer 0f6e06b7c0 Lazily resolve type-alias-impl-trait defining uses
by using an opaque type obligation to bubble up comparisons between opaque types and other types

Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.
2022-02-02 15:40:11 +00:00

2323 lines
93 KiB
Rust

//! This query borrow-checks the MIR to (further) ensure it is not broken.
#![feature(bool_to_option)]
#![feature(box_patterns)]
#![feature(crate_visibility_modifier)]
#![feature(let_else)]
#![feature(min_specialization)]
#![feature(stmt_expr_attributes)]
#![feature(trusted_step)]
#![feature(try_blocks)]
#![recursion_limit = "256"]
#![cfg_attr(not(bootstrap), allow(rustc::potential_query_instability))]
#[macro_use]
extern crate rustc_middle;
#[macro_use]
extern crate tracing;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::graph::dominators::Dominators;
use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, ErrorReported};
use rustc_hir as hir;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::Node;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_middle::mir::{
traversal, Body, ClearCrossCrate, Local, Location, Mutability, Operand, Place, PlaceElem,
PlaceRef, VarDebugInfoContents,
};
use rustc_middle::mir::{AggregateKind, BasicBlock, BorrowCheckResult, BorrowKind};
use rustc_middle::mir::{Field, ProjectionElem, Promoted, Rvalue, Statement, StatementKind};
use rustc_middle::mir::{InlineAsmOperand, Terminator, TerminatorKind};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, CapturedPlace, ParamEnv, RegionVid, TyCtxt};
use rustc_session::lint::builtin::{MUTABLE_BORROW_RESERVATION_CONFLICT, UNUSED_MUT};
use rustc_span::{Span, Symbol, DUMMY_SP};
use either::Either;
use smallvec::SmallVec;
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::mem;
use std::rc::Rc;
use rustc_mir_dataflow::impls::{
EverInitializedPlaces, MaybeInitializedPlaces, MaybeUninitializedPlaces,
};
use rustc_mir_dataflow::move_paths::{InitIndex, MoveOutIndex, MovePathIndex};
use rustc_mir_dataflow::move_paths::{InitLocation, LookupResult, MoveData, MoveError};
use rustc_mir_dataflow::Analysis;
use rustc_mir_dataflow::MoveDataParamEnv;
use self::diagnostics::{AccessKind, RegionName};
use self::location::LocationTable;
use self::prefixes::PrefixSet;
use facts::AllFacts;
use self::path_utils::*;
pub mod borrow_set;
mod borrowck_errors;
mod constraint_generation;
mod constraints;
mod dataflow;
mod def_use;
mod diagnostics;
mod facts;
mod invalidation;
mod location;
mod member_constraints;
mod nll;
mod path_utils;
mod place_ext;
mod places_conflict;
mod prefixes;
mod region_infer;
mod renumber;
mod type_check;
mod universal_regions;
mod used_muts;
// A public API provided for the Rust compiler consumers.
pub mod consumers;
use borrow_set::{BorrowData, BorrowSet};
use dataflow::{BorrowIndex, BorrowckFlowState as Flows, BorrowckResults, Borrows};
use nll::{PoloniusOutput, ToRegionVid};
use place_ext::PlaceExt;
use places_conflict::{places_conflict, PlaceConflictBias};
use region_infer::RegionInferenceContext;
// FIXME(eddyb) perhaps move this somewhere more centrally.
#[derive(Debug)]
struct Upvar<'tcx> {
place: CapturedPlace<'tcx>,
/// If true, the capture is behind a reference.
by_ref: bool,
}
const DEREF_PROJECTION: &[PlaceElem<'_>; 1] = &[ProjectionElem::Deref];
pub fn provide(providers: &mut Providers) {
*providers = Providers {
mir_borrowck: |tcx, did| {
if let Some(def) = ty::WithOptConstParam::try_lookup(did, tcx) {
tcx.mir_borrowck_const_arg(def)
} else {
mir_borrowck(tcx, ty::WithOptConstParam::unknown(did))
}
},
mir_borrowck_const_arg: |tcx, (did, param_did)| {
mir_borrowck(tcx, ty::WithOptConstParam { did, const_param_did: Some(param_did) })
},
..*providers
};
}
fn mir_borrowck<'tcx>(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
) -> &'tcx BorrowCheckResult<'tcx> {
let (input_body, promoted) = tcx.mir_promoted(def);
debug!("run query mir_borrowck: {}", tcx.def_path_str(def.did.to_def_id()));
let hir_owner = tcx.hir().local_def_id_to_hir_id(def.did).owner;
let opt_closure_req = tcx.infer_ctxt().with_opaque_type_inference(hir_owner).enter(|infcx| {
let input_body: &Body<'_> = &input_body.borrow();
let promoted: &IndexVec<_, _> = &promoted.borrow();
do_mir_borrowck(&infcx, input_body, promoted, false).0
});
debug!("mir_borrowck done");
tcx.arena.alloc(opt_closure_req)
}
/// Perform the actual borrow checking.
///
/// If `return_body_with_facts` is true, then return the body with non-erased
/// region ids on which the borrow checking was performed together with Polonius
/// facts.
#[instrument(skip(infcx, input_body, input_promoted), fields(id=?input_body.source.with_opt_param().as_local().unwrap()), level = "debug")]
fn do_mir_borrowck<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
input_body: &Body<'tcx>,
input_promoted: &IndexVec<Promoted, Body<'tcx>>,
return_body_with_facts: bool,
) -> (BorrowCheckResult<'tcx>, Option<Box<BodyWithBorrowckFacts<'tcx>>>) {
let def = input_body.source.with_opt_param().as_local().unwrap();
debug!(?def);
let tcx = infcx.tcx;
let param_env = tcx.param_env(def.did);
let id = tcx.hir().local_def_id_to_hir_id(def.did);
let mut local_names = IndexVec::from_elem(None, &input_body.local_decls);
for var_debug_info in &input_body.var_debug_info {
if let VarDebugInfoContents::Place(place) = var_debug_info.value {
if let Some(local) = place.as_local() {
if let Some(prev_name) = local_names[local] {
if var_debug_info.name != prev_name {
span_bug!(
var_debug_info.source_info.span,
"local {:?} has many names (`{}` vs `{}`)",
local,
prev_name,
var_debug_info.name
);
}
}
local_names[local] = Some(var_debug_info.name);
}
}
}
// Gather the upvars of a closure, if any.
let tables = tcx.typeck_opt_const_arg(def);
if let Some(ErrorReported) = tables.tainted_by_errors {
infcx.set_tainted_by_errors();
}
let upvars: Vec<_> = tables
.closure_min_captures_flattened(def.did.to_def_id())
.map(|captured_place| {
let capture = captured_place.info.capture_kind;
let by_ref = match capture {
ty::UpvarCapture::ByValue => false,
ty::UpvarCapture::ByRef(..) => true,
};
Upvar { place: captured_place.clone(), by_ref }
})
.collect();
// Replace all regions with fresh inference variables. This
// requires first making our own copy of the MIR. This copy will
// be modified (in place) to contain non-lexical lifetimes. It
// will have a lifetime tied to the inference context.
let mut body_owned = input_body.clone();
let mut promoted = input_promoted.clone();
let free_regions =
nll::replace_regions_in_mir(infcx, param_env, &mut body_owned, &mut promoted);
let body = &body_owned; // no further changes
let location_table_owned = LocationTable::new(body);
let location_table = &location_table_owned;
let mut errors_buffer = Vec::new();
let (move_data, move_errors): (MoveData<'tcx>, Vec<(Place<'tcx>, MoveError<'tcx>)>) =
match MoveData::gather_moves(&body, tcx, param_env) {
Ok(move_data) => (move_data, Vec::new()),
Err((move_data, move_errors)) => (move_data, move_errors),
};
let promoted_errors = promoted
.iter_enumerated()
.map(|(idx, body)| (idx, MoveData::gather_moves(&body, tcx, param_env)));
let mdpe = MoveDataParamEnv { move_data, param_env };
let mut flow_inits = MaybeInitializedPlaces::new(tcx, &body, &mdpe)
.into_engine(tcx, &body)
.pass_name("borrowck")
.iterate_to_fixpoint()
.into_results_cursor(&body);
let locals_are_invalidated_at_exit = tcx.hir().body_owner_kind(id).is_fn_or_closure();
let borrow_set =
Rc::new(BorrowSet::build(tcx, body, locals_are_invalidated_at_exit, &mdpe.move_data));
let use_polonius = return_body_with_facts || infcx.tcx.sess.opts.debugging_opts.polonius;
// Compute non-lexical lifetimes.
let nll::NllOutput {
regioncx,
opaque_type_values,
polonius_input,
polonius_output,
opt_closure_req,
nll_errors,
} = nll::compute_regions(
infcx,
free_regions,
body,
&promoted,
location_table,
param_env,
&mut flow_inits,
&mdpe.move_data,
&borrow_set,
&upvars,
use_polonius,
);
// Dump MIR results into a file, if that is enabled. This let us
// write unit-tests, as well as helping with debugging.
nll::dump_mir_results(infcx, &body, &regioncx, &opt_closure_req);
// We also have a `#[rustc_regions]` annotation that causes us to dump
// information.
nll::dump_annotation(
infcx,
&body,
&regioncx,
&opt_closure_req,
&opaque_type_values,
&mut errors_buffer,
);
// The various `flow_*` structures can be large. We drop `flow_inits` here
// so it doesn't overlap with the others below. This reduces peak memory
// usage significantly on some benchmarks.
drop(flow_inits);
let regioncx = Rc::new(regioncx);
let flow_borrows = Borrows::new(tcx, body, &regioncx, &borrow_set)
.into_engine(tcx, body)
.pass_name("borrowck")
.iterate_to_fixpoint();
let flow_uninits = MaybeUninitializedPlaces::new(tcx, body, &mdpe)
.into_engine(tcx, body)
.pass_name("borrowck")
.iterate_to_fixpoint();
let flow_ever_inits = EverInitializedPlaces::new(tcx, body, &mdpe)
.into_engine(tcx, body)
.pass_name("borrowck")
.iterate_to_fixpoint();
let movable_generator = !matches!(
tcx.hir().get(id),
Node::Expr(&hir::Expr {
kind: hir::ExprKind::Closure(.., Some(hir::Movability::Static)),
..
})
);
for (idx, move_data_results) in promoted_errors {
let promoted_body = &promoted[idx];
if let Err((move_data, move_errors)) = move_data_results {
let mut promoted_mbcx = MirBorrowckCtxt {
infcx,
param_env,
body: promoted_body,
move_data: &move_data,
location_table, // no need to create a real one for the promoted, it is not used
movable_generator,
fn_self_span_reported: Default::default(),
locals_are_invalidated_at_exit,
access_place_error_reported: Default::default(),
reservation_error_reported: Default::default(),
reservation_warnings: Default::default(),
move_error_reported: BTreeMap::new(),
uninitialized_error_reported: Default::default(),
errors_buffer,
regioncx: regioncx.clone(),
used_mut: Default::default(),
used_mut_upvars: SmallVec::new(),
borrow_set: Rc::clone(&borrow_set),
dominators: Dominators::dummy(), // not used
upvars: Vec::new(),
local_names: IndexVec::from_elem(None, &promoted_body.local_decls),
region_names: RefCell::default(),
next_region_name: RefCell::new(1),
polonius_output: None,
};
promoted_mbcx.report_move_errors(move_errors);
errors_buffer = promoted_mbcx.errors_buffer;
};
}
let dominators = body.dominators();
let mut mbcx = MirBorrowckCtxt {
infcx,
param_env,
body,
move_data: &mdpe.move_data,
location_table,
movable_generator,
locals_are_invalidated_at_exit,
fn_self_span_reported: Default::default(),
access_place_error_reported: Default::default(),
reservation_error_reported: Default::default(),
reservation_warnings: Default::default(),
move_error_reported: BTreeMap::new(),
uninitialized_error_reported: Default::default(),
errors_buffer,
regioncx: Rc::clone(&regioncx),
used_mut: Default::default(),
used_mut_upvars: SmallVec::new(),
borrow_set: Rc::clone(&borrow_set),
dominators,
upvars,
local_names,
region_names: RefCell::default(),
next_region_name: RefCell::new(1),
polonius_output,
};
// Compute and report region errors, if any.
mbcx.report_region_errors(nll_errors);
let results = BorrowckResults {
ever_inits: flow_ever_inits,
uninits: flow_uninits,
borrows: flow_borrows,
};
mbcx.report_move_errors(move_errors);
rustc_mir_dataflow::visit_results(
body,
traversal::reverse_postorder(body).map(|(bb, _)| bb),
&results,
&mut mbcx,
);
// Convert any reservation warnings into lints.
let reservation_warnings = mem::take(&mut mbcx.reservation_warnings);
for (_, (place, span, location, bk, borrow)) in reservation_warnings {
let mut initial_diag = mbcx.report_conflicting_borrow(location, (place, span), bk, &borrow);
let scope = mbcx.body.source_info(location).scope;
let lint_root = match &mbcx.body.source_scopes[scope].local_data {
ClearCrossCrate::Set(data) => data.lint_root,
_ => id,
};
// Span and message don't matter; we overwrite them below anyway
mbcx.infcx.tcx.struct_span_lint_hir(
MUTABLE_BORROW_RESERVATION_CONFLICT,
lint_root,
DUMMY_SP,
|lint| {
let mut diag = lint.build("");
diag.message = initial_diag.styled_message().clone();
diag.span = initial_diag.span.clone();
diag.buffer(&mut mbcx.errors_buffer);
},
);
initial_diag.cancel();
}
// For each non-user used mutable variable, check if it's been assigned from
// a user-declared local. If so, then put that local into the used_mut set.
// Note that this set is expected to be small - only upvars from closures
// would have a chance of erroneously adding non-user-defined mutable vars
// to the set.
let temporary_used_locals: FxHashSet<Local> = mbcx
.used_mut
.iter()
.filter(|&local| !mbcx.body.local_decls[*local].is_user_variable())
.cloned()
.collect();
// For the remaining unused locals that are marked as mutable, we avoid linting any that
// were never initialized. These locals may have been removed as unreachable code; or will be
// linted as unused variables.
let unused_mut_locals =
mbcx.body.mut_vars_iter().filter(|local| !mbcx.used_mut.contains(local)).collect();
mbcx.gather_used_muts(temporary_used_locals, unused_mut_locals);
debug!("mbcx.used_mut: {:?}", mbcx.used_mut);
let used_mut = mbcx.used_mut;
for local in mbcx.body.mut_vars_and_args_iter().filter(|local| !used_mut.contains(local)) {
let local_decl = &mbcx.body.local_decls[local];
let lint_root = match &mbcx.body.source_scopes[local_decl.source_info.scope].local_data {
ClearCrossCrate::Set(data) => data.lint_root,
_ => continue,
};
// Skip over locals that begin with an underscore or have no name
match mbcx.local_names[local] {
Some(name) => {
if name.as_str().starts_with('_') {
continue;
}
}
None => continue,
}
let span = local_decl.source_info.span;
if span.desugaring_kind().is_some() {
// If the `mut` arises as part of a desugaring, we should ignore it.
continue;
}
tcx.struct_span_lint_hir(UNUSED_MUT, lint_root, span, |lint| {
let mut_span = tcx.sess.source_map().span_until_non_whitespace(span);
lint.build("variable does not need to be mutable")
.span_suggestion_short(
mut_span,
"remove this `mut`",
String::new(),
Applicability::MachineApplicable,
)
.emit();
})
}
// Buffer any move errors that we collected and de-duplicated.
for (_, (_, diag)) in mbcx.move_error_reported {
diag.buffer(&mut mbcx.errors_buffer);
}
if !mbcx.errors_buffer.is_empty() {
mbcx.errors_buffer.sort_by_key(|diag| diag.sort_span);
for diag in mbcx.errors_buffer.drain(..) {
mbcx.infcx.tcx.sess.diagnostic().emit_diagnostic(&diag);
}
}
let result = BorrowCheckResult {
concrete_opaque_types: opaque_type_values,
closure_requirements: opt_closure_req,
used_mut_upvars: mbcx.used_mut_upvars,
};
let body_with_facts = if return_body_with_facts {
let output_facts = mbcx.polonius_output.expect("Polonius output was not computed");
Some(Box::new(BodyWithBorrowckFacts {
body: body_owned,
input_facts: *polonius_input.expect("Polonius input facts were not generated"),
output_facts,
location_table: location_table_owned,
}))
} else {
None
};
debug!("do_mir_borrowck: result = {:#?}", result);
(result, body_with_facts)
}
/// A `Body` with information computed by the borrow checker. This struct is
/// intended to be consumed by compiler consumers.
///
/// We need to include the MIR body here because the region identifiers must
/// match the ones in the Polonius facts.
pub struct BodyWithBorrowckFacts<'tcx> {
/// A mir body that contains region identifiers.
pub body: Body<'tcx>,
/// Polonius input facts.
pub input_facts: AllFacts,
/// Polonius output facts.
pub output_facts: Rc<self::nll::PoloniusOutput>,
/// The table that maps Polonius points to locations in the table.
pub location_table: LocationTable,
}
struct MirBorrowckCtxt<'cx, 'tcx> {
infcx: &'cx InferCtxt<'cx, 'tcx>,
param_env: ParamEnv<'tcx>,
body: &'cx Body<'tcx>,
move_data: &'cx MoveData<'tcx>,
/// Map from MIR `Location` to `LocationIndex`; created
/// when MIR borrowck begins.
location_table: &'cx LocationTable,
movable_generator: bool,
/// This keeps track of whether local variables are free-ed when the function
/// exits even without a `StorageDead`, which appears to be the case for
/// constants.
///
/// I'm not sure this is the right approach - @eddyb could you try and
/// figure this out?
locals_are_invalidated_at_exit: bool,
/// This field keeps track of when borrow errors are reported in the access_place function
/// so that there is no duplicate reporting. This field cannot also be used for the conflicting
/// borrow errors that is handled by the `reservation_error_reported` field as the inclusion
/// of the `Span` type (while required to mute some errors) stops the muting of the reservation
/// errors.
access_place_error_reported: FxHashSet<(Place<'tcx>, Span)>,
/// This field keeps track of when borrow conflict errors are reported
/// for reservations, so that we don't report seemingly duplicate
/// errors for corresponding activations.
//
// FIXME: ideally this would be a set of `BorrowIndex`, not `Place`s,
// but it is currently inconvenient to track down the `BorrowIndex`
// at the time we detect and report a reservation error.
reservation_error_reported: FxHashSet<Place<'tcx>>,
/// This fields keeps track of the `Span`s that we have
/// used to report extra information for `FnSelfUse`, to avoid
/// unnecessarily verbose errors.
fn_self_span_reported: FxHashSet<Span>,
/// Migration warnings to be reported for #56254. We delay reporting these
/// so that we can suppress the warning if there's a corresponding error
/// for the activation of the borrow.
reservation_warnings:
FxHashMap<BorrowIndex, (Place<'tcx>, Span, Location, BorrowKind, BorrowData<'tcx>)>,
/// This field keeps track of move errors that are to be reported for given move indices.
///
/// There are situations where many errors can be reported for a single move out (see #53807)
/// and we want only the best of those errors.
///
/// The `report_use_of_moved_or_uninitialized` function checks this map and replaces the
/// diagnostic (if there is one) if the `Place` of the error being reported is a prefix of the
/// `Place` of the previous most diagnostic. This happens instead of buffering the error. Once
/// all move errors have been reported, any diagnostics in this map are added to the buffer
/// to be emitted.
///
/// `BTreeMap` is used to preserve the order of insertions when iterating. This is necessary
/// when errors in the map are being re-added to the error buffer so that errors with the
/// same primary span come out in a consistent order.
move_error_reported: BTreeMap<Vec<MoveOutIndex>, (PlaceRef<'tcx>, DiagnosticBuilder<'cx>)>,
/// This field keeps track of errors reported in the checking of uninitialized variables,
/// so that we don't report seemingly duplicate errors.
uninitialized_error_reported: FxHashSet<PlaceRef<'tcx>>,
/// Errors to be reported buffer
errors_buffer: Vec<Diagnostic>,
/// This field keeps track of all the local variables that are declared mut and are mutated.
/// Used for the warning issued by an unused mutable local variable.
used_mut: FxHashSet<Local>,
/// If the function we're checking is a closure, then we'll need to report back the list of
/// mutable upvars that have been used. This field keeps track of them.
used_mut_upvars: SmallVec<[Field; 8]>,
/// Region inference context. This contains the results from region inference and lets us e.g.
/// find out which CFG points are contained in each borrow region.
regioncx: Rc<RegionInferenceContext<'tcx>>,
/// The set of borrows extracted from the MIR
borrow_set: Rc<BorrowSet<'tcx>>,
/// Dominators for MIR
dominators: Dominators<BasicBlock>,
/// Information about upvars not necessarily preserved in types or MIR
upvars: Vec<Upvar<'tcx>>,
/// Names of local (user) variables (extracted from `var_debug_info`).
local_names: IndexVec<Local, Option<Symbol>>,
/// Record the region names generated for each region in the given
/// MIR def so that we can reuse them later in help/error messages.
region_names: RefCell<FxHashMap<RegionVid, RegionName>>,
/// The counter for generating new region names.
next_region_name: RefCell<usize>,
/// Results of Polonius analysis.
polonius_output: Option<Rc<PoloniusOutput>>,
}
// Check that:
// 1. assignments are always made to mutable locations (FIXME: does that still really go here?)
// 2. loans made in overlapping scopes do not conflict
// 3. assignments do not affect things loaned out as immutable
// 4. moves do not affect things loaned out in any way
impl<'cx, 'tcx> rustc_mir_dataflow::ResultsVisitor<'cx, 'tcx> for MirBorrowckCtxt<'cx, 'tcx> {
type FlowState = Flows<'cx, 'tcx>;
fn visit_statement_before_primary_effect(
&mut self,
flow_state: &Flows<'cx, 'tcx>,
stmt: &'cx Statement<'tcx>,
location: Location,
) {
debug!("MirBorrowckCtxt::process_statement({:?}, {:?}): {:?}", location, stmt, flow_state);
let span = stmt.source_info.span;
self.check_activations(location, span, flow_state);
match &stmt.kind {
StatementKind::Assign(box (lhs, ref rhs)) => {
self.consume_rvalue(location, (rhs, span), flow_state);
self.mutate_place(location, (*lhs, span), Shallow(None), flow_state);
}
StatementKind::FakeRead(box (_, ref place)) => {
// Read for match doesn't access any memory and is used to
// assert that a place is safe and live. So we don't have to
// do any checks here.
//
// FIXME: Remove check that the place is initialized. This is
// needed for now because matches don't have never patterns yet.
// So this is the only place we prevent
// let x: !;
// match x {};
// from compiling.
self.check_if_path_or_subpath_is_moved(
location,
InitializationRequiringAction::Use,
(place.as_ref(), span),
flow_state,
);
}
StatementKind::SetDiscriminant { place, variant_index: _ } => {
self.mutate_place(location, (**place, span), Shallow(None), flow_state);
}
StatementKind::CopyNonOverlapping(box rustc_middle::mir::CopyNonOverlapping {
..
}) => {
span_bug!(
span,
"Unexpected CopyNonOverlapping, should only appear after lower_intrinsics",
)
}
StatementKind::Nop
| StatementKind::Coverage(..)
| StatementKind::AscribeUserType(..)
| StatementKind::Retag { .. }
| StatementKind::StorageLive(..) => {
// `Nop`, `AscribeUserType`, `Retag`, and `StorageLive` are irrelevant
// to borrow check.
}
StatementKind::StorageDead(local) => {
self.access_place(
location,
(Place::from(*local), span),
(Shallow(None), Write(WriteKind::StorageDeadOrDrop)),
LocalMutationIsAllowed::Yes,
flow_state,
);
}
}
}
fn visit_terminator_before_primary_effect(
&mut self,
flow_state: &Flows<'cx, 'tcx>,
term: &'cx Terminator<'tcx>,
loc: Location,
) {
debug!("MirBorrowckCtxt::process_terminator({:?}, {:?}): {:?}", loc, term, flow_state);
let span = term.source_info.span;
self.check_activations(loc, span, flow_state);
match term.kind {
TerminatorKind::SwitchInt { ref discr, switch_ty: _, targets: _ } => {
self.consume_operand(loc, (discr, span), flow_state);
}
TerminatorKind::Drop { place, target: _, unwind: _ } => {
debug!(
"visit_terminator_drop \
loc: {:?} term: {:?} place: {:?} span: {:?}",
loc, term, place, span
);
self.access_place(
loc,
(place, span),
(AccessDepth::Drop, Write(WriteKind::StorageDeadOrDrop)),
LocalMutationIsAllowed::Yes,
flow_state,
);
}
TerminatorKind::DropAndReplace {
place: drop_place,
value: ref new_value,
target: _,
unwind: _,
} => {
self.mutate_place(loc, (drop_place, span), Deep, flow_state);
self.consume_operand(loc, (new_value, span), flow_state);
}
TerminatorKind::Call {
ref func,
ref args,
ref destination,
cleanup: _,
from_hir_call: _,
fn_span: _,
} => {
self.consume_operand(loc, (func, span), flow_state);
for arg in args {
self.consume_operand(loc, (arg, span), flow_state);
}
if let Some((dest, _ /*bb*/)) = *destination {
self.mutate_place(loc, (dest, span), Deep, flow_state);
}
}
TerminatorKind::Assert { ref cond, expected: _, ref msg, target: _, cleanup: _ } => {
self.consume_operand(loc, (cond, span), flow_state);
use rustc_middle::mir::AssertKind;
if let AssertKind::BoundsCheck { ref len, ref index } = *msg {
self.consume_operand(loc, (len, span), flow_state);
self.consume_operand(loc, (index, span), flow_state);
}
}
TerminatorKind::Yield { ref value, resume: _, resume_arg, drop: _ } => {
self.consume_operand(loc, (value, span), flow_state);
self.mutate_place(loc, (resume_arg, span), Deep, flow_state);
}
TerminatorKind::InlineAsm {
template: _,
ref operands,
options: _,
line_spans: _,
destination: _,
cleanup: _,
} => {
for op in operands {
match *op {
InlineAsmOperand::In { reg: _, ref value } => {
self.consume_operand(loc, (value, span), flow_state);
}
InlineAsmOperand::Out { reg: _, late: _, place, .. } => {
if let Some(place) = place {
self.mutate_place(loc, (place, span), Shallow(None), flow_state);
}
}
InlineAsmOperand::InOut { reg: _, late: _, ref in_value, out_place } => {
self.consume_operand(loc, (in_value, span), flow_state);
if let Some(out_place) = out_place {
self.mutate_place(
loc,
(out_place, span),
Shallow(None),
flow_state,
);
}
}
InlineAsmOperand::Const { value: _ }
| InlineAsmOperand::SymFn { value: _ }
| InlineAsmOperand::SymStatic { def_id: _ } => {}
}
}
}
TerminatorKind::Goto { target: _ }
| TerminatorKind::Abort
| TerminatorKind::Unreachable
| TerminatorKind::Resume
| TerminatorKind::Return
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { real_target: _, imaginary_target: _ }
| TerminatorKind::FalseUnwind { real_target: _, unwind: _ } => {
// no data used, thus irrelevant to borrowck
}
}
}
fn visit_terminator_after_primary_effect(
&mut self,
flow_state: &Flows<'cx, 'tcx>,
term: &'cx Terminator<'tcx>,
loc: Location,
) {
let span = term.source_info.span;
match term.kind {
TerminatorKind::Yield { value: _, resume: _, resume_arg: _, drop: _ } => {
if self.movable_generator {
// Look for any active borrows to locals
let borrow_set = self.borrow_set.clone();
for i in flow_state.borrows.iter() {
let borrow = &borrow_set[i];
self.check_for_local_borrow(borrow, span);
}
}
}
TerminatorKind::Resume | TerminatorKind::Return | TerminatorKind::GeneratorDrop => {
// Returning from the function implicitly kills storage for all locals and statics.
// Often, the storage will already have been killed by an explicit
// StorageDead, but we don't always emit those (notably on unwind paths),
// so this "extra check" serves as a kind of backup.
let borrow_set = self.borrow_set.clone();
for i in flow_state.borrows.iter() {
let borrow = &borrow_set[i];
self.check_for_invalidation_at_exit(loc, borrow, span);
}
}
TerminatorKind::Abort
| TerminatorKind::Assert { .. }
| TerminatorKind::Call { .. }
| TerminatorKind::Drop { .. }
| TerminatorKind::DropAndReplace { .. }
| TerminatorKind::FalseEdge { real_target: _, imaginary_target: _ }
| TerminatorKind::FalseUnwind { real_target: _, unwind: _ }
| TerminatorKind::Goto { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::Unreachable
| TerminatorKind::InlineAsm { .. } => {}
}
}
}
use self::AccessDepth::{Deep, Shallow};
use self::ReadOrWrite::{Activation, Read, Reservation, Write};
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum ArtificialField {
ArrayLength,
ShallowBorrow,
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum AccessDepth {
/// From the RFC: "A *shallow* access means that the immediate
/// fields reached at P are accessed, but references or pointers
/// found within are not dereferenced. Right now, the only access
/// that is shallow is an assignment like `x = ...;`, which would
/// be a *shallow write* of `x`."
Shallow(Option<ArtificialField>),
/// From the RFC: "A *deep* access means that all data reachable
/// through the given place may be invalidated or accesses by
/// this action."
Deep,
/// Access is Deep only when there is a Drop implementation that
/// can reach the data behind the reference.
Drop,
}
/// Kind of access to a value: read or write
/// (For informational purposes only)
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum ReadOrWrite {
/// From the RFC: "A *read* means that the existing data may be
/// read, but will not be changed."
Read(ReadKind),
/// From the RFC: "A *write* means that the data may be mutated to
/// new values or otherwise invalidated (for example, it could be
/// de-initialized, as in a move operation).
Write(WriteKind),
/// For two-phase borrows, we distinguish a reservation (which is treated
/// like a Read) from an activation (which is treated like a write), and
/// each of those is furthermore distinguished from Reads/Writes above.
Reservation(WriteKind),
Activation(WriteKind, BorrowIndex),
}
/// Kind of read access to a value
/// (For informational purposes only)
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum ReadKind {
Borrow(BorrowKind),
Copy,
}
/// Kind of write access to a value
/// (For informational purposes only)
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum WriteKind {
StorageDeadOrDrop,
MutableBorrow(BorrowKind),
Mutate,
Move,
}
/// When checking permissions for a place access, this flag is used to indicate that an immutable
/// local place can be mutated.
//
// FIXME: @nikomatsakis suggested that this flag could be removed with the following modifications:
// - Merge `check_access_permissions()` and `check_if_reassignment_to_immutable_state()`.
// - Split `is_mutable()` into `is_assignable()` (can be directly assigned) and
// `is_declared_mutable()`.
// - Take flow state into consideration in `is_assignable()` for local variables.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum LocalMutationIsAllowed {
Yes,
/// We want use of immutable upvars to cause a "write to immutable upvar"
/// error, not an "reassignment" error.
ExceptUpvars,
No,
}
#[derive(Copy, Clone, Debug)]
enum InitializationRequiringAction {
Borrow,
MatchOn,
Use,
Assignment,
PartialAssignment,
}
struct RootPlace<'tcx> {
place_local: Local,
place_projection: &'tcx [PlaceElem<'tcx>],
is_local_mutation_allowed: LocalMutationIsAllowed,
}
impl InitializationRequiringAction {
fn as_noun(self) -> &'static str {
match self {
InitializationRequiringAction::Borrow => "borrow",
InitializationRequiringAction::MatchOn => "use", // no good noun
InitializationRequiringAction::Use => "use",
InitializationRequiringAction::Assignment => "assign",
InitializationRequiringAction::PartialAssignment => "assign to part",
}
}
fn as_verb_in_past_tense(self) -> &'static str {
match self {
InitializationRequiringAction::Borrow => "borrowed",
InitializationRequiringAction::MatchOn => "matched on",
InitializationRequiringAction::Use => "used",
InitializationRequiringAction::Assignment => "assigned",
InitializationRequiringAction::PartialAssignment => "partially assigned",
}
}
}
impl<'cx, 'tcx> MirBorrowckCtxt<'cx, 'tcx> {
fn body(&self) -> &'cx Body<'tcx> {
self.body
}
/// Checks an access to the given place to see if it is allowed. Examines the set of borrows
/// that are in scope, as well as which paths have been initialized, to ensure that (a) the
/// place is initialized and (b) it is not borrowed in some way that would prevent this
/// access.
///
/// Returns `true` if an error is reported.
fn access_place(
&mut self,
location: Location,
place_span: (Place<'tcx>, Span),
kind: (AccessDepth, ReadOrWrite),
is_local_mutation_allowed: LocalMutationIsAllowed,
flow_state: &Flows<'cx, 'tcx>,
) {
let (sd, rw) = kind;
if let Activation(_, borrow_index) = rw {
if self.reservation_error_reported.contains(&place_span.0) {
debug!(
"skipping access_place for activation of invalid reservation \
place: {:?} borrow_index: {:?}",
place_span.0, borrow_index
);
return;
}
}
// Check is_empty() first because it's the common case, and doing that
// way we avoid the clone() call.
if !self.access_place_error_reported.is_empty()
&& self.access_place_error_reported.contains(&(place_span.0, place_span.1))
{
debug!(
"access_place: suppressing error place_span=`{:?}` kind=`{:?}`",
place_span, kind
);
return;
}
let mutability_error = self.check_access_permissions(
place_span,
rw,
is_local_mutation_allowed,
flow_state,
location,
);
let conflict_error =
self.check_access_for_conflict(location, place_span, sd, rw, flow_state);
if let (Activation(_, borrow_idx), true) = (kind.1, conflict_error) {
// Suppress this warning when there's an error being emitted for the
// same borrow: fixing the error is likely to fix the warning.
self.reservation_warnings.remove(&borrow_idx);
}
if conflict_error || mutability_error {
debug!("access_place: logging error place_span=`{:?}` kind=`{:?}`", place_span, kind);
self.access_place_error_reported.insert((place_span.0, place_span.1));
}
}
fn check_access_for_conflict(
&mut self,
location: Location,
place_span: (Place<'tcx>, Span),
sd: AccessDepth,
rw: ReadOrWrite,
flow_state: &Flows<'cx, 'tcx>,
) -> bool {
debug!(
"check_access_for_conflict(location={:?}, place_span={:?}, sd={:?}, rw={:?})",
location, place_span, sd, rw,
);
let mut error_reported = false;
let tcx = self.infcx.tcx;
let body = self.body;
let borrow_set = self.borrow_set.clone();
// Use polonius output if it has been enabled.
let polonius_output = self.polonius_output.clone();
let borrows_in_scope = if let Some(polonius) = &polonius_output {
let location = self.location_table.start_index(location);
Either::Left(polonius.errors_at(location).iter().copied())
} else {
Either::Right(flow_state.borrows.iter())
};
each_borrow_involving_path(
self,
tcx,
body,
location,
(sd, place_span.0),
&borrow_set,
borrows_in_scope,
|this, borrow_index, borrow| match (rw, borrow.kind) {
// Obviously an activation is compatible with its own
// reservation (or even prior activating uses of same
// borrow); so don't check if they interfere.
//
// NOTE: *reservations* do conflict with themselves;
// thus aren't injecting unsoundenss w/ this check.)
(Activation(_, activating), _) if activating == borrow_index => {
debug!(
"check_access_for_conflict place_span: {:?} sd: {:?} rw: {:?} \
skipping {:?} b/c activation of same borrow_index",
place_span,
sd,
rw,
(borrow_index, borrow),
);
Control::Continue
}
(Read(_), BorrowKind::Shared | BorrowKind::Shallow)
| (
Read(ReadKind::Borrow(BorrowKind::Shallow)),
BorrowKind::Unique | BorrowKind::Mut { .. },
) => Control::Continue,
(Write(WriteKind::Move), BorrowKind::Shallow) => {
// Handled by initialization checks.
Control::Continue
}
(Read(kind), BorrowKind::Unique | BorrowKind::Mut { .. }) => {
// Reading from mere reservations of mutable-borrows is OK.
if !is_active(&this.dominators, borrow, location) {
assert!(allow_two_phase_borrow(borrow.kind));
return Control::Continue;
}
error_reported = true;
match kind {
ReadKind::Copy => {
this.report_use_while_mutably_borrowed(location, place_span, borrow)
.buffer(&mut this.errors_buffer);
}
ReadKind::Borrow(bk) => {
this.report_conflicting_borrow(location, place_span, bk, borrow)
.buffer(&mut this.errors_buffer);
}
}
Control::Break
}
(
Reservation(WriteKind::MutableBorrow(bk)),
BorrowKind::Shallow | BorrowKind::Shared,
) if { tcx.migrate_borrowck() && this.borrow_set.contains(&location) } => {
let bi = this.borrow_set.get_index_of(&location).unwrap();
debug!(
"recording invalid reservation of place: {:?} with \
borrow index {:?} as warning",
place_span.0, bi,
);
// rust-lang/rust#56254 - This was previously permitted on
// the 2018 edition so we emit it as a warning. We buffer
// these sepately so that we only emit a warning if borrow
// checking was otherwise successful.
this.reservation_warnings
.insert(bi, (place_span.0, place_span.1, location, bk, borrow.clone()));
// Don't suppress actual errors.
Control::Continue
}
(Reservation(kind) | Activation(kind, _) | Write(kind), _) => {
match rw {
Reservation(..) => {
debug!(
"recording invalid reservation of \
place: {:?}",
place_span.0
);
this.reservation_error_reported.insert(place_span.0);
}
Activation(_, activating) => {
debug!(
"observing check_place for activation of \
borrow_index: {:?}",
activating
);
}
Read(..) | Write(..) => {}
}
error_reported = true;
match kind {
WriteKind::MutableBorrow(bk) => {
this.report_conflicting_borrow(location, place_span, bk, borrow)
.buffer(&mut this.errors_buffer);
}
WriteKind::StorageDeadOrDrop => this
.report_borrowed_value_does_not_live_long_enough(
location,
borrow,
place_span,
Some(kind),
),
WriteKind::Mutate => {
this.report_illegal_mutation_of_borrowed(location, place_span, borrow)
}
WriteKind::Move => {
this.report_move_out_while_borrowed(location, place_span, borrow)
}
}
Control::Break
}
},
);
error_reported
}
fn mutate_place(
&mut self,
location: Location,
place_span: (Place<'tcx>, Span),
kind: AccessDepth,
flow_state: &Flows<'cx, 'tcx>,
) {
// Write of P[i] or *P requires P init'd.
self.check_if_assigned_path_is_moved(location, place_span, flow_state);
// Special case: you can assign an immutable local variable
// (e.g., `x = ...`) so long as it has never been initialized
// before (at this point in the flow).
if let Some(local) = place_span.0.as_local() {
if let Mutability::Not = self.body.local_decls[local].mutability {
// check for reassignments to immutable local variables
self.check_if_reassignment_to_immutable_state(
location, local, place_span, flow_state,
);
return;
}
}
// Otherwise, use the normal access permission rules.
self.access_place(
location,
place_span,
(kind, Write(WriteKind::Mutate)),
LocalMutationIsAllowed::No,
flow_state,
);
}
fn consume_rvalue(
&mut self,
location: Location,
(rvalue, span): (&'cx Rvalue<'tcx>, Span),
flow_state: &Flows<'cx, 'tcx>,
) {
match *rvalue {
Rvalue::Ref(_ /*rgn*/, bk, place) => {
let access_kind = match bk {
BorrowKind::Shallow => {
(Shallow(Some(ArtificialField::ShallowBorrow)), Read(ReadKind::Borrow(bk)))
}
BorrowKind::Shared => (Deep, Read(ReadKind::Borrow(bk))),
BorrowKind::Unique | BorrowKind::Mut { .. } => {
let wk = WriteKind::MutableBorrow(bk);
if allow_two_phase_borrow(bk) {
(Deep, Reservation(wk))
} else {
(Deep, Write(wk))
}
}
};
self.access_place(
location,
(place, span),
access_kind,
LocalMutationIsAllowed::No,
flow_state,
);
let action = if bk == BorrowKind::Shallow {
InitializationRequiringAction::MatchOn
} else {
InitializationRequiringAction::Borrow
};
self.check_if_path_or_subpath_is_moved(
location,
action,
(place.as_ref(), span),
flow_state,
);
}
Rvalue::AddressOf(mutability, place) => {
let access_kind = match mutability {
Mutability::Mut => (
Deep,
Write(WriteKind::MutableBorrow(BorrowKind::Mut {
allow_two_phase_borrow: false,
})),
),
Mutability::Not => (Deep, Read(ReadKind::Borrow(BorrowKind::Shared))),
};
self.access_place(
location,
(place, span),
access_kind,
LocalMutationIsAllowed::No,
flow_state,
);
self.check_if_path_or_subpath_is_moved(
location,
InitializationRequiringAction::Borrow,
(place.as_ref(), span),
flow_state,
);
}
Rvalue::ThreadLocalRef(_) => {}
Rvalue::Use(ref operand)
| Rvalue::Repeat(ref operand, _)
| Rvalue::UnaryOp(_ /*un_op*/, ref operand)
| Rvalue::Cast(_ /*cast_kind*/, ref operand, _ /*ty*/)
| Rvalue::ShallowInitBox(ref operand, _ /*ty*/) => {
self.consume_operand(location, (operand, span), flow_state)
}
Rvalue::Len(place) | Rvalue::Discriminant(place) => {
let af = match *rvalue {
Rvalue::Len(..) => Some(ArtificialField::ArrayLength),
Rvalue::Discriminant(..) => None,
_ => unreachable!(),
};
self.access_place(
location,
(place, span),
(Shallow(af), Read(ReadKind::Copy)),
LocalMutationIsAllowed::No,
flow_state,
);
self.check_if_path_or_subpath_is_moved(
location,
InitializationRequiringAction::Use,
(place.as_ref(), span),
flow_state,
);
}
Rvalue::BinaryOp(_bin_op, box (ref operand1, ref operand2))
| Rvalue::CheckedBinaryOp(_bin_op, box (ref operand1, ref operand2)) => {
self.consume_operand(location, (operand1, span), flow_state);
self.consume_operand(location, (operand2, span), flow_state);
}
Rvalue::NullaryOp(_op, _ty) => {
// nullary ops take no dynamic input; no borrowck effect.
}
Rvalue::Aggregate(ref aggregate_kind, ref operands) => {
// We need to report back the list of mutable upvars that were
// moved into the closure and subsequently used by the closure,
// in order to populate our used_mut set.
match **aggregate_kind {
AggregateKind::Closure(def_id, _) | AggregateKind::Generator(def_id, _, _) => {
let BorrowCheckResult { used_mut_upvars, .. } =
self.infcx.tcx.mir_borrowck(def_id.expect_local());
debug!("{:?} used_mut_upvars={:?}", def_id, used_mut_upvars);
for field in used_mut_upvars {
self.propagate_closure_used_mut_upvar(&operands[field.index()]);
}
}
AggregateKind::Adt(..)
| AggregateKind::Array(..)
| AggregateKind::Tuple { .. } => (),
}
for operand in operands {
self.consume_operand(location, (operand, span), flow_state);
}
}
}
}
fn propagate_closure_used_mut_upvar(&mut self, operand: &Operand<'tcx>) {
let propagate_closure_used_mut_place = |this: &mut Self, place: Place<'tcx>| {
// We have three possibilities here:
// a. We are modifying something through a mut-ref
// b. We are modifying something that is local to our parent
// c. Current body is a nested closure, and we are modifying path starting from
// a Place captured by our parent closure.
// Handle (c), the path being modified is exactly the path captured by our parent
if let Some(field) = this.is_upvar_field_projection(place.as_ref()) {
this.used_mut_upvars.push(field);
return;
}
for (place_ref, proj) in place.iter_projections().rev() {
// Handle (a)
if proj == ProjectionElem::Deref {
match place_ref.ty(this.body(), this.infcx.tcx).ty.kind() {
// We aren't modifying a variable directly
ty::Ref(_, _, hir::Mutability::Mut) => return,
_ => {}
}
}
// Handle (c)
if let Some(field) = this.is_upvar_field_projection(place_ref) {
this.used_mut_upvars.push(field);
return;
}
}
// Handle(b)
this.used_mut.insert(place.local);
};
// This relies on the current way that by-value
// captures of a closure are copied/moved directly
// when generating MIR.
match *operand {
Operand::Move(place) | Operand::Copy(place) => {
match place.as_local() {
Some(local) if !self.body.local_decls[local].is_user_variable() => {
if self.body.local_decls[local].ty.is_mutable_ptr() {
// The variable will be marked as mutable by the borrow.
return;
}
// This is an edge case where we have a `move` closure
// inside a non-move closure, and the inner closure
// contains a mutation:
//
// let mut i = 0;
// || { move || { i += 1; }; };
//
// In this case our usual strategy of assuming that the
// variable will be captured by mutable reference is
// wrong, since `i` can be copied into the inner
// closure from a shared reference.
//
// As such we have to search for the local that this
// capture comes from and mark it as being used as mut.
let temp_mpi = self.move_data.rev_lookup.find_local(local);
let init = if let [init_index] = *self.move_data.init_path_map[temp_mpi] {
&self.move_data.inits[init_index]
} else {
bug!("temporary should be initialized exactly once")
};
let loc = match init.location {
InitLocation::Statement(stmt) => stmt,
_ => bug!("temporary initialized in arguments"),
};
let body = self.body;
let bbd = &body[loc.block];
let stmt = &bbd.statements[loc.statement_index];
debug!("temporary assigned in: stmt={:?}", stmt);
if let StatementKind::Assign(box (_, Rvalue::Ref(_, _, source))) = stmt.kind
{
propagate_closure_used_mut_place(self, source);
} else {
bug!(
"closures should only capture user variables \
or references to user variables"
);
}
}
_ => propagate_closure_used_mut_place(self, place),
}
}
Operand::Constant(..) => {}
}
}
fn consume_operand(
&mut self,
location: Location,
(operand, span): (&'cx Operand<'tcx>, Span),
flow_state: &Flows<'cx, 'tcx>,
) {
match *operand {
Operand::Copy(place) => {
// copy of place: check if this is "copy of frozen path"
// (FIXME: see check_loans.rs)
self.access_place(
location,
(place, span),
(Deep, Read(ReadKind::Copy)),
LocalMutationIsAllowed::No,
flow_state,
);
// Finally, check if path was already moved.
self.check_if_path_or_subpath_is_moved(
location,
InitializationRequiringAction::Use,
(place.as_ref(), span),
flow_state,
);
}
Operand::Move(place) => {
// move of place: check if this is move of already borrowed path
self.access_place(
location,
(place, span),
(Deep, Write(WriteKind::Move)),
LocalMutationIsAllowed::Yes,
flow_state,
);
// Finally, check if path was already moved.
self.check_if_path_or_subpath_is_moved(
location,
InitializationRequiringAction::Use,
(place.as_ref(), span),
flow_state,
);
}
Operand::Constant(_) => {}
}
}
/// Checks whether a borrow of this place is invalidated when the function
/// exits
fn check_for_invalidation_at_exit(
&mut self,
location: Location,
borrow: &BorrowData<'tcx>,
span: Span,
) {
debug!("check_for_invalidation_at_exit({:?})", borrow);
let place = borrow.borrowed_place;
let mut root_place = PlaceRef { local: place.local, projection: &[] };
// FIXME(nll-rfc#40): do more precise destructor tracking here. For now
// we just know that all locals are dropped at function exit (otherwise
// we'll have a memory leak) and assume that all statics have a destructor.
//
// FIXME: allow thread-locals to borrow other thread locals?
let (might_be_alive, will_be_dropped) =
if self.body.local_decls[root_place.local].is_ref_to_thread_local() {
// Thread-locals might be dropped after the function exits
// We have to dereference the outer reference because
// borrows don't conflict behind shared references.
root_place.projection = DEREF_PROJECTION;
(true, true)
} else {
(false, self.locals_are_invalidated_at_exit)
};
if !will_be_dropped {
debug!("place_is_invalidated_at_exit({:?}) - won't be dropped", place);
return;
}
let sd = if might_be_alive { Deep } else { Shallow(None) };
if places_conflict::borrow_conflicts_with_place(
self.infcx.tcx,
&self.body,
place,
borrow.kind,
root_place,
sd,
places_conflict::PlaceConflictBias::Overlap,
) {
debug!("check_for_invalidation_at_exit({:?}): INVALID", place);
// FIXME: should be talking about the region lifetime instead
// of just a span here.
let span = self.infcx.tcx.sess.source_map().end_point(span);
self.report_borrowed_value_does_not_live_long_enough(
location,
borrow,
(place, span),
None,
)
}
}
/// Reports an error if this is a borrow of local data.
/// This is called for all Yield expressions on movable generators
fn check_for_local_borrow(&mut self, borrow: &BorrowData<'tcx>, yield_span: Span) {
debug!("check_for_local_borrow({:?})", borrow);
if borrow_of_local_data(borrow.borrowed_place) {
let err = self.cannot_borrow_across_generator_yield(
self.retrieve_borrow_spans(borrow).var_or_use(),
yield_span,
);
err.buffer(&mut self.errors_buffer);
}
}
fn check_activations(&mut self, location: Location, span: Span, flow_state: &Flows<'cx, 'tcx>) {
// Two-phase borrow support: For each activation that is newly
// generated at this statement, check if it interferes with
// another borrow.
let borrow_set = self.borrow_set.clone();
for &borrow_index in borrow_set.activations_at_location(location) {
let borrow = &borrow_set[borrow_index];
// only mutable borrows should be 2-phase
assert!(match borrow.kind {
BorrowKind::Shared | BorrowKind::Shallow => false,
BorrowKind::Unique | BorrowKind::Mut { .. } => true,
});
self.access_place(
location,
(borrow.borrowed_place, span),
(Deep, Activation(WriteKind::MutableBorrow(borrow.kind), borrow_index)),
LocalMutationIsAllowed::No,
flow_state,
);
// We do not need to call `check_if_path_or_subpath_is_moved`
// again, as we already called it when we made the
// initial reservation.
}
}
fn check_if_reassignment_to_immutable_state(
&mut self,
location: Location,
local: Local,
place_span: (Place<'tcx>, Span),
flow_state: &Flows<'cx, 'tcx>,
) {
debug!("check_if_reassignment_to_immutable_state({:?})", local);
// Check if any of the initializiations of `local` have happened yet:
if let Some(init_index) = self.is_local_ever_initialized(local, flow_state) {
// And, if so, report an error.
let init = &self.move_data.inits[init_index];
let span = init.span(&self.body);
self.report_illegal_reassignment(location, place_span, span, place_span.0);
}
}
fn check_if_full_path_is_moved(
&mut self,
location: Location,
desired_action: InitializationRequiringAction,
place_span: (PlaceRef<'tcx>, Span),
flow_state: &Flows<'cx, 'tcx>,
) {
let maybe_uninits = &flow_state.uninits;
// Bad scenarios:
//
// 1. Move of `a.b.c`, use of `a.b.c`
// 2. Move of `a.b.c`, use of `a.b.c.d` (without first reinitializing `a.b.c.d`)
// 3. Uninitialized `(a.b.c: &_)`, use of `*a.b.c`; note that with
// partial initialization support, one might have `a.x`
// initialized but not `a.b`.
//
// OK scenarios:
//
// 4. Move of `a.b.c`, use of `a.b.d`
// 5. Uninitialized `a.x`, initialized `a.b`, use of `a.b`
// 6. Copied `(a.b: &_)`, use of `*(a.b).c`; note that `a.b`
// must have been initialized for the use to be sound.
// 7. Move of `a.b.c` then reinit of `a.b.c.d`, use of `a.b.c.d`
// The dataflow tracks shallow prefixes distinctly (that is,
// field-accesses on P distinctly from P itself), in order to
// track substructure initialization separately from the whole
// structure.
//
// E.g., when looking at (*a.b.c).d, if the closest prefix for
// which we have a MovePath is `a.b`, then that means that the
// initialization state of `a.b` is all we need to inspect to
// know if `a.b.c` is valid (and from that we infer that the
// dereference and `.d` access is also valid, since we assume
// `a.b.c` is assigned a reference to an initialized and
// well-formed record structure.)
// Therefore, if we seek out the *closest* prefix for which we
// have a MovePath, that should capture the initialization
// state for the place scenario.
//
// This code covers scenarios 1, 2, and 3.
debug!("check_if_full_path_is_moved place: {:?}", place_span.0);
let (prefix, mpi) = self.move_path_closest_to(place_span.0);
if maybe_uninits.contains(mpi) {
self.report_use_of_moved_or_uninitialized(
location,
desired_action,
(prefix, place_span.0, place_span.1),
mpi,
);
} // Only query longest prefix with a MovePath, not further
// ancestors; dataflow recurs on children when parents
// move (to support partial (re)inits).
//
// (I.e., querying parents breaks scenario 7; but may want
// to do such a query based on partial-init feature-gate.)
}
/// Subslices correspond to multiple move paths, so we iterate through the
/// elements of the base array. For each element we check
///
/// * Does this element overlap with our slice.
/// * Is any part of it uninitialized.
fn check_if_subslice_element_is_moved(
&mut self,
location: Location,
desired_action: InitializationRequiringAction,
place_span: (PlaceRef<'tcx>, Span),
maybe_uninits: &BitSet<MovePathIndex>,
from: u64,
to: u64,
) {
if let Some(mpi) = self.move_path_for_place(place_span.0) {
let move_paths = &self.move_data.move_paths;
let root_path = &move_paths[mpi];
for (child_mpi, child_move_path) in root_path.children(move_paths) {
let last_proj = child_move_path.place.projection.last().unwrap();
if let ProjectionElem::ConstantIndex { offset, from_end, .. } = last_proj {
debug_assert!(!from_end, "Array constant indexing shouldn't be `from_end`.");
if (from..to).contains(offset) {
let uninit_child =
self.move_data.find_in_move_path_or_its_descendants(child_mpi, |mpi| {
maybe_uninits.contains(mpi)
});
if let Some(uninit_child) = uninit_child {
self.report_use_of_moved_or_uninitialized(
location,
desired_action,
(place_span.0, place_span.0, place_span.1),
uninit_child,
);
return; // don't bother finding other problems.
}
}
}
}
}
}
fn check_if_path_or_subpath_is_moved(
&mut self,
location: Location,
desired_action: InitializationRequiringAction,
place_span: (PlaceRef<'tcx>, Span),
flow_state: &Flows<'cx, 'tcx>,
) {
let maybe_uninits = &flow_state.uninits;
// Bad scenarios:
//
// 1. Move of `a.b.c`, use of `a` or `a.b`
// partial initialization support, one might have `a.x`
// initialized but not `a.b`.
// 2. All bad scenarios from `check_if_full_path_is_moved`
//
// OK scenarios:
//
// 3. Move of `a.b.c`, use of `a.b.d`
// 4. Uninitialized `a.x`, initialized `a.b`, use of `a.b`
// 5. Copied `(a.b: &_)`, use of `*(a.b).c`; note that `a.b`
// must have been initialized for the use to be sound.
// 6. Move of `a.b.c` then reinit of `a.b.c.d`, use of `a.b.c.d`
self.check_if_full_path_is_moved(location, desired_action, place_span, flow_state);
if let Some((place_base, ProjectionElem::Subslice { from, to, from_end: false })) =
place_span.0.last_projection()
{
let place_ty = place_base.ty(self.body(), self.infcx.tcx);
if let ty::Array(..) = place_ty.ty.kind() {
self.check_if_subslice_element_is_moved(
location,
desired_action,
(place_base, place_span.1),
maybe_uninits,
from,
to,
);
return;
}
}
// A move of any shallow suffix of `place` also interferes
// with an attempt to use `place`. This is scenario 3 above.
//
// (Distinct from handling of scenarios 1+2+4 above because
// `place` does not interfere with suffixes of its prefixes,
// e.g., `a.b.c` does not interfere with `a.b.d`)
//
// This code covers scenario 1.
debug!("check_if_path_or_subpath_is_moved place: {:?}", place_span.0);
if let Some(mpi) = self.move_path_for_place(place_span.0) {
let uninit_mpi = self
.move_data
.find_in_move_path_or_its_descendants(mpi, |mpi| maybe_uninits.contains(mpi));
if let Some(uninit_mpi) = uninit_mpi {
self.report_use_of_moved_or_uninitialized(
location,
desired_action,
(place_span.0, place_span.0, place_span.1),
uninit_mpi,
);
return; // don't bother finding other problems.
}
}
}
/// Currently MoveData does not store entries for all places in
/// the input MIR. For example it will currently filter out
/// places that are Copy; thus we do not track places of shared
/// reference type. This routine will walk up a place along its
/// prefixes, searching for a foundational place that *is*
/// tracked in the MoveData.
///
/// An Err result includes a tag indicated why the search failed.
/// Currently this can only occur if the place is built off of a
/// static variable, as we do not track those in the MoveData.
fn move_path_closest_to(&mut self, place: PlaceRef<'tcx>) -> (PlaceRef<'tcx>, MovePathIndex) {
match self.move_data.rev_lookup.find(place) {
LookupResult::Parent(Some(mpi)) | LookupResult::Exact(mpi) => {
(self.move_data.move_paths[mpi].place.as_ref(), mpi)
}
LookupResult::Parent(None) => panic!("should have move path for every Local"),
}
}
fn move_path_for_place(&mut self, place: PlaceRef<'tcx>) -> Option<MovePathIndex> {
// If returns None, then there is no move path corresponding
// to a direct owner of `place` (which means there is nothing
// that borrowck tracks for its analysis).
match self.move_data.rev_lookup.find(place) {
LookupResult::Parent(_) => None,
LookupResult::Exact(mpi) => Some(mpi),
}
}
fn check_if_assigned_path_is_moved(
&mut self,
location: Location,
(place, span): (Place<'tcx>, Span),
flow_state: &Flows<'cx, 'tcx>,
) {
debug!("check_if_assigned_path_is_moved place: {:?}", place);
// None case => assigning to `x` does not require `x` be initialized.
for (place_base, elem) in place.iter_projections().rev() {
match elem {
ProjectionElem::Index(_/*operand*/) |
ProjectionElem::ConstantIndex { .. } |
// assigning to P[i] requires P to be valid.
ProjectionElem::Downcast(_/*adt_def*/, _/*variant_idx*/) =>
// assigning to (P->variant) is okay if assigning to `P` is okay
//
// FIXME: is this true even if P is an adt with a dtor?
{ }
// assigning to (*P) requires P to be initialized
ProjectionElem::Deref => {
self.check_if_full_path_is_moved(
location, InitializationRequiringAction::Use,
(place_base, span), flow_state);
// (base initialized; no need to
// recur further)
break;
}
ProjectionElem::Subslice { .. } => {
panic!("we don't allow assignments to subslices, location: {:?}",
location);
}
ProjectionElem::Field(..) => {
// if type of `P` has a dtor, then
// assigning to `P.f` requires `P` itself
// be already initialized
let tcx = self.infcx.tcx;
let base_ty = place_base.ty(self.body(), tcx).ty;
match base_ty.kind() {
ty::Adt(def, _) if def.has_dtor(tcx) => {
self.check_if_path_or_subpath_is_moved(
location, InitializationRequiringAction::Assignment,
(place_base, span), flow_state);
// (base initialized; no need to
// recur further)
break;
}
// Once `let s; s.x = V; read(s.x);`,
// is allowed, remove this match arm.
ty::Adt(..) | ty::Tuple(..) => {
check_parent_of_field(self, location, place_base, span, flow_state);
// rust-lang/rust#21232, #54499, #54986: during period where we reject
// partial initialization, do not complain about unnecessary `mut` on
// an attempt to do a partial initialization.
self.used_mut.insert(place.local);
}
_ => {}
}
}
}
}
fn check_parent_of_field<'cx, 'tcx>(
this: &mut MirBorrowckCtxt<'cx, 'tcx>,
location: Location,
base: PlaceRef<'tcx>,
span: Span,
flow_state: &Flows<'cx, 'tcx>,
) {
// rust-lang/rust#21232: Until Rust allows reads from the
// initialized parts of partially initialized structs, we
// will, starting with the 2018 edition, reject attempts
// to write to structs that are not fully initialized.
//
// In other words, *until* we allow this:
//
// 1. `let mut s; s.x = Val; read(s.x);`
//
// we will for now disallow this:
//
// 2. `let mut s; s.x = Val;`
//
// and also this:
//
// 3. `let mut s = ...; drop(s); s.x=Val;`
//
// This does not use check_if_path_or_subpath_is_moved,
// because we want to *allow* reinitializations of fields:
// e.g., want to allow
//
// `let mut s = ...; drop(s.x); s.x=Val;`
//
// This does not use check_if_full_path_is_moved on
// `base`, because that would report an error about the
// `base` as a whole, but in this scenario we *really*
// want to report an error about the actual thing that was
// moved, which may be some prefix of `base`.
// Shallow so that we'll stop at any dereference; we'll
// report errors about issues with such bases elsewhere.
let maybe_uninits = &flow_state.uninits;
// Find the shortest uninitialized prefix you can reach
// without going over a Deref.
let mut shortest_uninit_seen = None;
for prefix in this.prefixes(base, PrefixSet::Shallow) {
let mpi = match this.move_path_for_place(prefix) {
Some(mpi) => mpi,
None => continue,
};
if maybe_uninits.contains(mpi) {
debug!(
"check_parent_of_field updating shortest_uninit_seen from {:?} to {:?}",
shortest_uninit_seen,
Some((prefix, mpi))
);
shortest_uninit_seen = Some((prefix, mpi));
} else {
debug!("check_parent_of_field {:?} is definitely initialized", (prefix, mpi));
}
}
if let Some((prefix, mpi)) = shortest_uninit_seen {
// Check for a reassignment into an uninitialized field of a union (for example,
// after a move out). In this case, do not report an error here. There is an
// exception, if this is the first assignment into the union (that is, there is
// no move out from an earlier location) then this is an attempt at initialization
// of the union - we should error in that case.
let tcx = this.infcx.tcx;
if base.ty(this.body(), tcx).ty.is_union() {
if this.move_data.path_map[mpi].iter().any(|moi| {
this.move_data.moves[*moi].source.is_predecessor_of(location, this.body)
}) {
return;
}
}
this.report_use_of_moved_or_uninitialized(
location,
InitializationRequiringAction::PartialAssignment,
(prefix, base, span),
mpi,
);
}
}
}
/// Checks the permissions for the given place and read or write kind
///
/// Returns `true` if an error is reported.
fn check_access_permissions(
&mut self,
(place, span): (Place<'tcx>, Span),
kind: ReadOrWrite,
is_local_mutation_allowed: LocalMutationIsAllowed,
flow_state: &Flows<'cx, 'tcx>,
location: Location,
) -> bool {
debug!(
"check_access_permissions({:?}, {:?}, is_local_mutation_allowed: {:?})",
place, kind, is_local_mutation_allowed
);
let error_access;
let the_place_err;
match kind {
Reservation(WriteKind::MutableBorrow(
borrow_kind @ (BorrowKind::Unique | BorrowKind::Mut { .. }),
))
| Write(WriteKind::MutableBorrow(
borrow_kind @ (BorrowKind::Unique | BorrowKind::Mut { .. }),
)) => {
let is_local_mutation_allowed = match borrow_kind {
BorrowKind::Unique => LocalMutationIsAllowed::Yes,
BorrowKind::Mut { .. } => is_local_mutation_allowed,
BorrowKind::Shared | BorrowKind::Shallow => unreachable!(),
};
match self.is_mutable(place.as_ref(), is_local_mutation_allowed) {
Ok(root_place) => {
self.add_used_mut(root_place, flow_state);
return false;
}
Err(place_err) => {
error_access = AccessKind::MutableBorrow;
the_place_err = place_err;
}
}
}
Reservation(WriteKind::Mutate) | Write(WriteKind::Mutate) => {
match self.is_mutable(place.as_ref(), is_local_mutation_allowed) {
Ok(root_place) => {
self.add_used_mut(root_place, flow_state);
return false;
}
Err(place_err) => {
error_access = AccessKind::Mutate;
the_place_err = place_err;
}
}
}
Reservation(
WriteKind::Move
| WriteKind::StorageDeadOrDrop
| WriteKind::MutableBorrow(BorrowKind::Shared)
| WriteKind::MutableBorrow(BorrowKind::Shallow),
)
| Write(
WriteKind::Move
| WriteKind::StorageDeadOrDrop
| WriteKind::MutableBorrow(BorrowKind::Shared)
| WriteKind::MutableBorrow(BorrowKind::Shallow),
) => {
if let (Err(_), true) = (
self.is_mutable(place.as_ref(), is_local_mutation_allowed),
self.errors_buffer.is_empty(),
) {
// rust-lang/rust#46908: In pure NLL mode this code path should be
// unreachable, but we use `delay_span_bug` because we can hit this when
// dereferencing a non-Copy raw pointer *and* have `-Ztreat-err-as-bug`
// enabled. We don't want to ICE for that case, as other errors will have
// been emitted (#52262).
self.infcx.tcx.sess.delay_span_bug(
span,
&format!(
"Accessing `{:?}` with the kind `{:?}` shouldn't be possible",
place, kind,
),
);
}
return false;
}
Activation(..) => {
// permission checks are done at Reservation point.
return false;
}
Read(
ReadKind::Borrow(
BorrowKind::Unique
| BorrowKind::Mut { .. }
| BorrowKind::Shared
| BorrowKind::Shallow,
)
| ReadKind::Copy,
) => {
// Access authorized
return false;
}
}
// rust-lang/rust#21232, #54986: during period where we reject
// partial initialization, do not complain about mutability
// errors except for actual mutation (as opposed to an attempt
// to do a partial initialization).
let previously_initialized =
self.is_local_ever_initialized(place.local, flow_state).is_some();
// at this point, we have set up the error reporting state.
if previously_initialized {
self.report_mutability_error(place, span, the_place_err, error_access, location);
true
} else {
false
}
}
fn is_local_ever_initialized(
&self,
local: Local,
flow_state: &Flows<'cx, 'tcx>,
) -> Option<InitIndex> {
let mpi = self.move_data.rev_lookup.find_local(local);
let ii = &self.move_data.init_path_map[mpi];
for &index in ii {
if flow_state.ever_inits.contains(index) {
return Some(index);
}
}
None
}
/// Adds the place into the used mutable variables set
fn add_used_mut(&mut self, root_place: RootPlace<'tcx>, flow_state: &Flows<'cx, 'tcx>) {
match root_place {
RootPlace { place_local: local, place_projection: [], is_local_mutation_allowed } => {
// If the local may have been initialized, and it is now currently being
// mutated, then it is justified to be annotated with the `mut`
// keyword, since the mutation may be a possible reassignment.
if is_local_mutation_allowed != LocalMutationIsAllowed::Yes
&& self.is_local_ever_initialized(local, flow_state).is_some()
{
self.used_mut.insert(local);
}
}
RootPlace {
place_local: _,
place_projection: _,
is_local_mutation_allowed: LocalMutationIsAllowed::Yes,
} => {}
RootPlace {
place_local,
place_projection: place_projection @ [.., _],
is_local_mutation_allowed: _,
} => {
if let Some(field) = self.is_upvar_field_projection(PlaceRef {
local: place_local,
projection: place_projection,
}) {
self.used_mut_upvars.push(field);
}
}
}
}
/// Whether this value can be written or borrowed mutably.
/// Returns the root place if the place passed in is a projection.
fn is_mutable(
&self,
place: PlaceRef<'tcx>,
is_local_mutation_allowed: LocalMutationIsAllowed,
) -> Result<RootPlace<'tcx>, PlaceRef<'tcx>> {
debug!("is_mutable: place={:?}, is_local...={:?}", place, is_local_mutation_allowed);
match place.last_projection() {
None => {
let local = &self.body.local_decls[place.local];
match local.mutability {
Mutability::Not => match is_local_mutation_allowed {
LocalMutationIsAllowed::Yes => Ok(RootPlace {
place_local: place.local,
place_projection: place.projection,
is_local_mutation_allowed: LocalMutationIsAllowed::Yes,
}),
LocalMutationIsAllowed::ExceptUpvars => Ok(RootPlace {
place_local: place.local,
place_projection: place.projection,
is_local_mutation_allowed: LocalMutationIsAllowed::ExceptUpvars,
}),
LocalMutationIsAllowed::No => Err(place),
},
Mutability::Mut => Ok(RootPlace {
place_local: place.local,
place_projection: place.projection,
is_local_mutation_allowed,
}),
}
}
Some((place_base, elem)) => {
match elem {
ProjectionElem::Deref => {
let base_ty = place_base.ty(self.body(), self.infcx.tcx).ty;
// Check the kind of deref to decide
match base_ty.kind() {
ty::Ref(_, _, mutbl) => {
match mutbl {
// Shared borrowed data is never mutable
hir::Mutability::Not => Err(place),
// Mutably borrowed data is mutable, but only if we have a
// unique path to the `&mut`
hir::Mutability::Mut => {
let mode = match self.is_upvar_field_projection(place) {
Some(field) if self.upvars[field.index()].by_ref => {
is_local_mutation_allowed
}
_ => LocalMutationIsAllowed::Yes,
};
self.is_mutable(place_base, mode)
}
}
}
ty::RawPtr(tnm) => {
match tnm.mutbl {
// `*const` raw pointers are not mutable
hir::Mutability::Not => Err(place),
// `*mut` raw pointers are always mutable, regardless of
// context. The users have to check by themselves.
hir::Mutability::Mut => Ok(RootPlace {
place_local: place.local,
place_projection: place.projection,
is_local_mutation_allowed,
}),
}
}
// `Box<T>` owns its content, so mutable if its location is mutable
_ if base_ty.is_box() => {
self.is_mutable(place_base, is_local_mutation_allowed)
}
// Deref should only be for reference, pointers or boxes
_ => bug!("Deref of unexpected type: {:?}", base_ty),
}
}
// All other projections are owned by their base path, so mutable if
// base path is mutable
ProjectionElem::Field(..)
| ProjectionElem::Index(..)
| ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. }
| ProjectionElem::Downcast(..) => {
let upvar_field_projection = self.is_upvar_field_projection(place);
if let Some(field) = upvar_field_projection {
let upvar = &self.upvars[field.index()];
debug!(
"is_mutable: upvar.mutability={:?} local_mutation_is_allowed={:?} \
place={:?}, place_base={:?}",
upvar, is_local_mutation_allowed, place, place_base
);
match (upvar.place.mutability, is_local_mutation_allowed) {
(
Mutability::Not,
LocalMutationIsAllowed::No
| LocalMutationIsAllowed::ExceptUpvars,
) => Err(place),
(Mutability::Not, LocalMutationIsAllowed::Yes)
| (Mutability::Mut, _) => {
// Subtle: this is an upvar
// reference, so it looks like
// `self.foo` -- we want to double
// check that the location `*self`
// is mutable (i.e., this is not a
// `Fn` closure). But if that
// check succeeds, we want to
// *blame* the mutability on
// `place` (that is,
// `self.foo`). This is used to
// propagate the info about
// whether mutability declarations
// are used outwards, so that we register
// the outer variable as mutable. Otherwise a
// test like this fails to record the `mut`
// as needed:
//
// ```
// fn foo<F: FnOnce()>(_f: F) { }
// fn main() {
// let var = Vec::new();
// foo(move || {
// var.push(1);
// });
// }
// ```
let _ =
self.is_mutable(place_base, is_local_mutation_allowed)?;
Ok(RootPlace {
place_local: place.local,
place_projection: place.projection,
is_local_mutation_allowed,
})
}
}
} else {
self.is_mutable(place_base, is_local_mutation_allowed)
}
}
}
}
}
}
/// If `place` is a field projection, and the field is being projected from a closure type,
/// then returns the index of the field being projected. Note that this closure will always
/// be `self` in the current MIR, because that is the only time we directly access the fields
/// of a closure type.
fn is_upvar_field_projection(&self, place_ref: PlaceRef<'tcx>) -> Option<Field> {
path_utils::is_upvar_field_projection(self.infcx.tcx, &self.upvars, place_ref, self.body())
}
}
/// The degree of overlap between 2 places for borrow-checking.
enum Overlap {
/// The places might partially overlap - in this case, we give
/// up and say that they might conflict. This occurs when
/// different fields of a union are borrowed. For example,
/// if `u` is a union, we have no way of telling how disjoint
/// `u.a.x` and `a.b.y` are.
Arbitrary,
/// The places have the same type, and are either completely disjoint
/// or equal - i.e., they can't "partially" overlap as can occur with
/// unions. This is the "base case" on which we recur for extensions
/// of the place.
EqualOrDisjoint,
/// The places are disjoint, so we know all extensions of them
/// will also be disjoint.
Disjoint,
}