rust/src/librustc/middle/mem_categorization.rs
2015-11-03 15:19:07 +00:00

1642 lines
60 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Categorization
//!
//! The job of the categorization module is to analyze an expression to
//! determine what kind of memory is used in evaluating it (for example,
//! where dereferences occur and what kind of pointer is dereferenced;
//! whether the memory is mutable; etc)
//!
//! Categorization effectively transforms all of our expressions into
//! expressions of the following forms (the actual enum has many more
//! possibilities, naturally, but they are all variants of these base
//! forms):
//!
//! E = rvalue // some computed rvalue
//! | x // address of a local variable or argument
//! | *E // deref of a ptr
//! | E.comp // access to an interior component
//!
//! Imagine a routine ToAddr(Expr) that evaluates an expression and returns an
//! address where the result is to be found. If Expr is an lvalue, then this
//! is the address of the lvalue. If Expr is an rvalue, this is the address of
//! some temporary spot in memory where the result is stored.
//!
//! Now, cat_expr() classifies the expression Expr and the address A=ToAddr(Expr)
//! as follows:
//!
//! - cat: what kind of expression was this? This is a subset of the
//! full expression forms which only includes those that we care about
//! for the purpose of the analysis.
//! - mutbl: mutability of the address A
//! - ty: the type of data found at the address A
//!
//! The resulting categorization tree differs somewhat from the expressions
//! themselves. For example, auto-derefs are explicit. Also, an index a[b] is
//! decomposed into two operations: a dereference to reach the array data and
//! then an index to jump forward to the relevant item.
//!
//! ## By-reference upvars
//!
//! One part of the translation which may be non-obvious is that we translate
//! closure upvars into the dereference of a borrowed pointer; this more closely
//! resembles the runtime translation. So, for example, if we had:
//!
//! let mut x = 3;
//! let y = 5;
//! let inc = || x += y;
//!
//! Then when we categorize `x` (*within* the closure) we would yield a
//! result of `*x'`, effectively, where `x'` is a `Categorization::Upvar` reference
//! tied to `x`. The type of `x'` will be a borrowed pointer.
#![allow(non_camel_case_types)]
pub use self::PointerKind::*;
pub use self::InteriorKind::*;
pub use self::FieldName::*;
pub use self::ElementKind::*;
pub use self::MutabilityCategory::*;
pub use self::AliasableReason::*;
pub use self::Note::*;
pub use self::deref_kind::*;
use self::Aliasability::*;
use middle::def_id::DefId;
use front::map as ast_map;
use middle::infer;
use middle::check_const;
use middle::def;
use middle::ty::adjustment;
use middle::ty::{self, Ty};
use rustc_front::hir::{MutImmutable, MutMutable};
use rustc_front::hir;
use syntax::ast;
use syntax::codemap::Span;
use std::fmt;
use std::rc::Rc;
#[derive(Clone, PartialEq)]
pub enum Categorization<'tcx> {
Rvalue(ty::Region), // temporary val, argument is its scope
StaticItem,
Upvar(Upvar), // upvar referenced by closure env
Local(ast::NodeId), // local variable
Deref(cmt<'tcx>, usize, PointerKind), // deref of a ptr
Interior(cmt<'tcx>, InteriorKind), // something interior: field, tuple, etc
Downcast(cmt<'tcx>, DefId), // selects a particular enum variant (*1)
// (*1) downcast is only required if the enum has more than one variant
}
// Represents any kind of upvar
#[derive(Clone, Copy, PartialEq)]
pub struct Upvar {
pub id: ty::UpvarId,
pub kind: ty::ClosureKind
}
// different kinds of pointers:
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub enum PointerKind {
/// `Box<T>`
Unique,
/// `&T`
BorrowedPtr(ty::BorrowKind, ty::Region),
/// `*T`
UnsafePtr(hir::Mutability),
/// Implicit deref of the `&T` that results from an overloaded index `[]`.
Implicit(ty::BorrowKind, ty::Region),
}
// We use the term "interior" to mean "something reachable from the
// base without a pointer dereference", e.g. a field
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub enum InteriorKind {
InteriorField(FieldName),
InteriorElement(InteriorOffsetKind, ElementKind),
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum FieldName {
NamedField(ast::Name),
PositionalField(usize)
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InteriorOffsetKind {
Index, // e.g. `array_expr[index_expr]`
Pattern, // e.g. `fn foo([_, a, _, _]: [A; 4]) { ... }`
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum ElementKind {
VecElement,
OtherElement,
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum MutabilityCategory {
McImmutable, // Immutable.
McDeclared, // Directly declared as mutable.
McInherited, // Inherited from the fact that owner is mutable.
}
// A note about the provenance of a `cmt`. This is used for
// special-case handling of upvars such as mutability inference.
// Upvar categorization can generate a variable number of nested
// derefs. The note allows detecting them without deep pattern
// matching on the categorization.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum Note {
NoteClosureEnv(ty::UpvarId), // Deref through closure env
NoteUpvarRef(ty::UpvarId), // Deref through by-ref upvar
NoteNone // Nothing special
}
// `cmt`: "Category, Mutability, and Type".
//
// a complete categorization of a value indicating where it originated
// and how it is located, as well as the mutability of the memory in
// which the value is stored.
//
// *WARNING* The field `cmt.type` is NOT necessarily the same as the
// result of `node_id_to_type(cmt.id)`. This is because the `id` is
// always the `id` of the node producing the type; in an expression
// like `*x`, the type of this deref node is the deref'd type (`T`),
// but in a pattern like `@x`, the `@x` pattern is again a
// dereference, but its type is the type *before* the dereference
// (`@T`). So use `cmt.ty` to find the type of the value in a consistent
// fashion. For more details, see the method `cat_pattern`
#[derive(Clone, PartialEq)]
pub struct cmt_<'tcx> {
pub id: ast::NodeId, // id of expr/pat producing this value
pub span: Span, // span of same expr/pat
pub cat: Categorization<'tcx>, // categorization of expr
pub mutbl: MutabilityCategory, // mutability of expr as lvalue
pub ty: Ty<'tcx>, // type of the expr (*see WARNING above*)
pub note: Note, // Note about the provenance of this cmt
}
pub type cmt<'tcx> = Rc<cmt_<'tcx>>;
// We pun on *T to mean both actual deref of a ptr as well
// as accessing of components:
#[derive(Copy, Clone)]
pub enum deref_kind {
deref_ptr(PointerKind),
deref_interior(InteriorKind),
}
type DerefKindContext = Option<InteriorOffsetKind>;
// Categorizes a derefable type. Note that we include vectors and strings as
// derefable (we model an index as the combination of a deref and then a
// pointer adjustment).
fn deref_kind(t: Ty, context: DerefKindContext) -> McResult<deref_kind> {
match t.sty {
ty::TyBox(_) => {
Ok(deref_ptr(Unique))
}
ty::TyRef(r, mt) => {
let kind = ty::BorrowKind::from_mutbl(mt.mutbl);
Ok(deref_ptr(BorrowedPtr(kind, *r)))
}
ty::TyRawPtr(ref mt) => {
Ok(deref_ptr(UnsafePtr(mt.mutbl)))
}
ty::TyEnum(..) |
ty::TyStruct(..) => { // newtype
Ok(deref_interior(InteriorField(PositionalField(0))))
}
ty::TyArray(_, _) | ty::TySlice(_) | ty::TyStr => {
// no deref of indexed content without supplying InteriorOffsetKind
if let Some(context) = context {
Ok(deref_interior(InteriorElement(context, element_kind(t))))
} else {
Err(())
}
}
_ => Err(()),
}
}
pub trait ast_node {
fn id(&self) -> ast::NodeId;
fn span(&self) -> Span;
}
impl ast_node for hir::Expr {
fn id(&self) -> ast::NodeId { self.id }
fn span(&self) -> Span { self.span }
}
impl ast_node for hir::Pat {
fn id(&self) -> ast::NodeId { self.id }
fn span(&self) -> Span { self.span }
}
#[derive(Copy, Clone)]
pub struct MemCategorizationContext<'t, 'a: 't, 'tcx : 'a> {
pub typer: &'t infer::InferCtxt<'a, 'tcx>,
}
pub type McResult<T> = Result<T, ()>;
impl MutabilityCategory {
pub fn from_mutbl(m: hir::Mutability) -> MutabilityCategory {
let ret = match m {
MutImmutable => McImmutable,
MutMutable => McDeclared
};
debug!("MutabilityCategory::{}({:?}) => {:?}",
"from_mutbl", m, ret);
ret
}
pub fn from_borrow_kind(borrow_kind: ty::BorrowKind) -> MutabilityCategory {
let ret = match borrow_kind {
ty::ImmBorrow => McImmutable,
ty::UniqueImmBorrow => McImmutable,
ty::MutBorrow => McDeclared,
};
debug!("MutabilityCategory::{}({:?}) => {:?}",
"from_borrow_kind", borrow_kind, ret);
ret
}
fn from_pointer_kind(base_mutbl: MutabilityCategory,
ptr: PointerKind) -> MutabilityCategory {
let ret = match ptr {
Unique => {
base_mutbl.inherit()
}
BorrowedPtr(borrow_kind, _) | Implicit(borrow_kind, _) => {
MutabilityCategory::from_borrow_kind(borrow_kind)
}
UnsafePtr(m) => {
MutabilityCategory::from_mutbl(m)
}
};
debug!("MutabilityCategory::{}({:?}, {:?}) => {:?}",
"from_pointer_kind", base_mutbl, ptr, ret);
ret
}
fn from_local(tcx: &ty::ctxt, id: ast::NodeId) -> MutabilityCategory {
let ret = match tcx.map.get(id) {
ast_map::NodeLocal(p) => match p.node {
hir::PatIdent(bind_mode, _, _) => {
if bind_mode == hir::BindByValue(hir::MutMutable) {
McDeclared
} else {
McImmutable
}
}
_ => tcx.sess.span_bug(p.span, "expected identifier pattern")
},
_ => tcx.sess.span_bug(tcx.map.span(id), "expected identifier pattern")
};
debug!("MutabilityCategory::{}(tcx, id={:?}) => {:?}",
"from_local", id, ret);
ret
}
pub fn inherit(&self) -> MutabilityCategory {
let ret = match *self {
McImmutable => McImmutable,
McDeclared => McInherited,
McInherited => McInherited,
};
debug!("{:?}.inherit() => {:?}", self, ret);
ret
}
pub fn is_mutable(&self) -> bool {
let ret = match *self {
McImmutable => false,
McInherited => true,
McDeclared => true,
};
debug!("{:?}.is_mutable() => {:?}", self, ret);
ret
}
pub fn is_immutable(&self) -> bool {
let ret = match *self {
McImmutable => true,
McDeclared | McInherited => false
};
debug!("{:?}.is_immutable() => {:?}", self, ret);
ret
}
pub fn to_user_str(&self) -> &'static str {
match *self {
McDeclared | McInherited => "mutable",
McImmutable => "immutable",
}
}
}
impl<'t, 'a,'tcx> MemCategorizationContext<'t, 'a, 'tcx> {
pub fn new(typer: &'t infer::InferCtxt<'a, 'tcx>) -> MemCategorizationContext<'t, 'a, 'tcx> {
MemCategorizationContext { typer: typer }
}
fn tcx(&self) -> &'a ty::ctxt<'tcx> {
self.typer.tcx
}
fn expr_ty(&self, expr: &hir::Expr) -> McResult<Ty<'tcx>> {
match self.typer.node_ty(expr.id) {
Ok(t) => Ok(t),
Err(()) => {
debug!("expr_ty({:?}) yielded Err", expr);
Err(())
}
}
}
fn expr_ty_adjusted(&self, expr: &hir::Expr) -> McResult<Ty<'tcx>> {
let unadjusted_ty = try!(self.expr_ty(expr));
Ok(unadjusted_ty.adjust(
self.tcx(), expr.span, expr.id,
self.typer.adjustments().get(&expr.id),
|method_call| self.typer.node_method_ty(method_call)))
}
fn node_ty(&self, id: ast::NodeId) -> McResult<Ty<'tcx>> {
self.typer.node_ty(id)
}
fn pat_ty(&self, pat: &hir::Pat) -> McResult<Ty<'tcx>> {
let base_ty = try!(self.typer.node_ty(pat.id));
// FIXME (Issue #18207): This code detects whether we are
// looking at a `ref x`, and if so, figures out what the type
// *being borrowed* is. But ideally we would put in a more
// fundamental fix to this conflated use of the node id.
let ret_ty = match pat.node {
hir::PatIdent(hir::BindByRef(_), _, _) => {
// a bind-by-ref means that the base_ty will be the type of the ident itself,
// but what we want here is the type of the underlying value being borrowed.
// So peel off one-level, turning the &T into T.
match base_ty.builtin_deref(false, ty::NoPreference) {
Some(t) => t.ty,
None => { return Err(()); }
}
}
_ => base_ty,
};
debug!("pat_ty(pat={:?}) base_ty={:?} ret_ty={:?}",
pat, base_ty, ret_ty);
Ok(ret_ty)
}
pub fn cat_expr(&self, expr: &hir::Expr) -> McResult<cmt<'tcx>> {
match self.typer.adjustments().get(&expr.id) {
None => {
// No adjustments.
self.cat_expr_unadjusted(expr)
}
Some(adjustment) => {
match *adjustment {
adjustment::AdjustDerefRef(
adjustment::AutoDerefRef {
autoref: None, unsize: None, autoderefs, ..}) => {
// Equivalent to *expr or something similar.
self.cat_expr_autoderefd(expr, autoderefs)
}
adjustment::AdjustReifyFnPointer |
adjustment::AdjustUnsafeFnPointer |
adjustment::AdjustDerefRef(_) => {
debug!("cat_expr({:?}): {:?}",
adjustment,
expr);
// Result is an rvalue.
let expr_ty = try!(self.expr_ty_adjusted(expr));
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
}
}
}
}
}
pub fn cat_expr_autoderefd(&self,
expr: &hir::Expr,
autoderefs: usize)
-> McResult<cmt<'tcx>> {
let mut cmt = try!(self.cat_expr_unadjusted(expr));
debug!("cat_expr_autoderefd: autoderefs={}, cmt={:?}",
autoderefs,
cmt);
for deref in 1..autoderefs + 1 {
cmt = try!(self.cat_deref(expr, cmt, deref, None));
}
return Ok(cmt);
}
pub fn cat_expr_unadjusted(&self, expr: &hir::Expr) -> McResult<cmt<'tcx>> {
debug!("cat_expr: id={} expr={:?}", expr.id, expr);
let expr_ty = try!(self.expr_ty(expr));
match expr.node {
hir::ExprUnary(hir::UnDeref, ref e_base) => {
let base_cmt = try!(self.cat_expr(&**e_base));
self.cat_deref(expr, base_cmt, 0, None)
}
hir::ExprField(ref base, f_name) => {
let base_cmt = try!(self.cat_expr(&**base));
debug!("cat_expr(cat_field): id={} expr={:?} base={:?}",
expr.id,
expr,
base_cmt);
Ok(self.cat_field(expr, base_cmt, f_name.node, expr_ty))
}
hir::ExprTupField(ref base, idx) => {
let base_cmt = try!(self.cat_expr(&**base));
Ok(self.cat_tup_field(expr, base_cmt, idx.node, expr_ty))
}
hir::ExprIndex(ref base, _) => {
let method_call = ty::MethodCall::expr(expr.id());
let context = InteriorOffsetKind::Index;
match self.typer.node_method_ty(method_call) {
Some(method_ty) => {
// If this is an index implemented by a method call, then it
// will include an implicit deref of the result.
let ret_ty = self.overloaded_method_return_ty(method_ty);
// The index method always returns an `&T`, so
// dereference it to find the result type.
let elem_ty = match ret_ty.sty {
ty::TyRef(_, mt) => mt.ty,
_ => {
debug!("cat_expr_unadjusted: return type of overloaded index is {:?}?",
ret_ty);
return Err(());
}
};
// The call to index() returns a `&T` value, which
// is an rvalue. That is what we will be
// dereferencing.
let base_cmt = self.cat_rvalue_node(expr.id(), expr.span(), ret_ty);
self.cat_deref_common(expr, base_cmt, 1, elem_ty, Some(context), true)
}
None => {
self.cat_index(expr, try!(self.cat_expr(&**base)), context)
}
}
}
hir::ExprPath(..) => {
let def = self.tcx().def_map.borrow().get(&expr.id).unwrap().full_def();
self.cat_def(expr.id, expr.span, expr_ty, def)
}
hir::ExprAddrOf(..) | hir::ExprCall(..) |
hir::ExprAssign(..) | hir::ExprAssignOp(..) |
hir::ExprClosure(..) | hir::ExprRet(..) |
hir::ExprUnary(..) | hir::ExprRange(..) |
hir::ExprMethodCall(..) | hir::ExprCast(..) |
hir::ExprVec(..) | hir::ExprTup(..) | hir::ExprIf(..) |
hir::ExprBinary(..) | hir::ExprWhile(..) |
hir::ExprBlock(..) | hir::ExprLoop(..) | hir::ExprMatch(..) |
hir::ExprLit(..) | hir::ExprBreak(..) |
hir::ExprAgain(..) | hir::ExprStruct(..) | hir::ExprRepeat(..) |
hir::ExprInlineAsm(..) | hir::ExprBox(..) => {
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
}
}
}
pub fn cat_def(&self,
id: ast::NodeId,
span: Span,
expr_ty: Ty<'tcx>,
def: def::Def)
-> McResult<cmt<'tcx>> {
debug!("cat_def: id={} expr={:?} def={:?}",
id, expr_ty, def);
match def {
def::DefStruct(..) | def::DefVariant(..) | def::DefConst(..) |
def::DefAssociatedConst(..) | def::DefFn(..) | def::DefMethod(..) => {
Ok(self.cat_rvalue_node(id, span, expr_ty))
}
def::DefMod(_) | def::DefForeignMod(_) | def::DefUse(_) |
def::DefTrait(_) | def::DefTy(..) | def::DefPrimTy(_) |
def::DefTyParam(..) |
def::DefLabel(_) | def::DefSelfTy(..) |
def::DefAssociatedTy(..) => {
Ok(Rc::new(cmt_ {
id:id,
span:span,
cat:Categorization::StaticItem,
mutbl: McImmutable,
ty:expr_ty,
note: NoteNone
}))
}
def::DefStatic(_, mutbl) => {
Ok(Rc::new(cmt_ {
id:id,
span:span,
cat:Categorization::StaticItem,
mutbl: if mutbl { McDeclared } else { McImmutable},
ty:expr_ty,
note: NoteNone
}))
}
def::DefUpvar(_, var_id, _, fn_node_id) => {
let ty = try!(self.node_ty(fn_node_id));
match ty.sty {
ty::TyClosure(closure_id, _) => {
match self.typer.closure_kind(closure_id) {
Some(kind) => {
self.cat_upvar(id, span, var_id, fn_node_id, kind)
}
None => {
self.tcx().sess.span_bug(
span,
&*format!("No closure kind for {:?}", closure_id));
}
}
}
_ => {
self.tcx().sess.span_bug(
span,
&format!("Upvar of non-closure {} - {:?}",
fn_node_id,
ty));
}
}
}
def::DefLocal(_, vid) => {
Ok(Rc::new(cmt_ {
id: id,
span: span,
cat: Categorization::Local(vid),
mutbl: MutabilityCategory::from_local(self.tcx(), vid),
ty: expr_ty,
note: NoteNone
}))
}
}
}
// Categorize an upvar, complete with invisible derefs of closure
// environment and upvar reference as appropriate.
fn cat_upvar(&self,
id: ast::NodeId,
span: Span,
var_id: ast::NodeId,
fn_node_id: ast::NodeId,
kind: ty::ClosureKind)
-> McResult<cmt<'tcx>>
{
// An upvar can have up to 3 components. We translate first to a
// `Categorization::Upvar`, which is itself a fiction -- it represents the reference to the
// field from the environment.
//
// `Categorization::Upvar`. Next, we add a deref through the implicit
// environment pointer with an anonymous free region 'env and
// appropriate borrow kind for closure kinds that take self by
// reference. Finally, if the upvar was captured
// by-reference, we add a deref through that reference. The
// region of this reference is an inference variable 'up that
// was previously generated and recorded in the upvar borrow
// map. The borrow kind bk is inferred by based on how the
// upvar is used.
//
// This results in the following table for concrete closure
// types:
//
// | move | ref
// ---------------+----------------------+-------------------------------
// Fn | copied -> &'env | upvar -> &'env -> &'up bk
// FnMut | copied -> &'env mut | upvar -> &'env mut -> &'up bk
// FnOnce | copied | upvar -> &'up bk
let upvar_id = ty::UpvarId { var_id: var_id,
closure_expr_id: fn_node_id };
let var_ty = try!(self.node_ty(var_id));
// Mutability of original variable itself
let var_mutbl = MutabilityCategory::from_local(self.tcx(), var_id);
// Construct the upvar. This represents access to the field
// from the environment (perhaps we should eventually desugar
// this field further, but it will do for now).
let cmt_result = cmt_ {
id: id,
span: span,
cat: Categorization::Upvar(Upvar {id: upvar_id, kind: kind}),
mutbl: var_mutbl,
ty: var_ty,
note: NoteNone
};
// If this is a `FnMut` or `Fn` closure, then the above is
// conceptually a `&mut` or `&` reference, so we have to add a
// deref.
let cmt_result = match kind {
ty::FnOnceClosureKind => {
cmt_result
}
ty::FnMutClosureKind => {
self.env_deref(id, span, upvar_id, var_mutbl, ty::MutBorrow, cmt_result)
}
ty::FnClosureKind => {
self.env_deref(id, span, upvar_id, var_mutbl, ty::ImmBorrow, cmt_result)
}
};
// If this is a by-ref capture, then the upvar we loaded is
// actually a reference, so we have to add an implicit deref
// for that.
let upvar_id = ty::UpvarId { var_id: var_id,
closure_expr_id: fn_node_id };
let upvar_capture = self.typer.upvar_capture(upvar_id).unwrap();
let cmt_result = match upvar_capture {
ty::UpvarCapture::ByValue => {
cmt_result
}
ty::UpvarCapture::ByRef(upvar_borrow) => {
let ptr = BorrowedPtr(upvar_borrow.kind, upvar_borrow.region);
cmt_ {
id: id,
span: span,
cat: Categorization::Deref(Rc::new(cmt_result), 0, ptr),
mutbl: MutabilityCategory::from_borrow_kind(upvar_borrow.kind),
ty: var_ty,
note: NoteUpvarRef(upvar_id)
}
}
};
let ret = Rc::new(cmt_result);
debug!("cat_upvar ret={:?}", ret);
Ok(ret)
}
fn env_deref(&self,
id: ast::NodeId,
span: Span,
upvar_id: ty::UpvarId,
upvar_mutbl: MutabilityCategory,
env_borrow_kind: ty::BorrowKind,
cmt_result: cmt_<'tcx>)
-> cmt_<'tcx>
{
// Look up the node ID of the closure body so we can construct
// a free region within it
let fn_body_id = {
let fn_expr = match self.tcx().map.find(upvar_id.closure_expr_id) {
Some(ast_map::NodeExpr(e)) => e,
_ => unreachable!()
};
match fn_expr.node {
hir::ExprClosure(_, _, ref body) => body.id,
_ => unreachable!()
}
};
// Region of environment pointer
let env_region = ty::ReFree(ty::FreeRegion {
// The environment of a closure is guaranteed to
// outlive any bindings introduced in the body of the
// closure itself.
scope: self.tcx().region_maps.item_extent(fn_body_id),
bound_region: ty::BrEnv
});
let env_ptr = BorrowedPtr(env_borrow_kind, env_region);
let var_ty = cmt_result.ty;
// We need to add the env deref. This means
// that the above is actually immutable and
// has a ref type. However, nothing should
// actually look at the type, so we can get
// away with stuffing a `TyError` in there
// instead of bothering to construct a proper
// one.
let cmt_result = cmt_ {
mutbl: McImmutable,
ty: self.tcx().types.err,
..cmt_result
};
let mut deref_mutbl = MutabilityCategory::from_borrow_kind(env_borrow_kind);
// Issue #18335. If variable is declared as immutable, override the
// mutability from the environment and substitute an `&T` anyway.
match upvar_mutbl {
McImmutable => { deref_mutbl = McImmutable; }
McDeclared | McInherited => { }
}
let ret = cmt_ {
id: id,
span: span,
cat: Categorization::Deref(Rc::new(cmt_result), 0, env_ptr),
mutbl: deref_mutbl,
ty: var_ty,
note: NoteClosureEnv(upvar_id)
};
debug!("env_deref ret {:?}", ret);
ret
}
/// Returns the lifetime of a temporary created by expr with id `id`.
/// This could be `'static` if `id` is part of a constant expression.
pub fn temporary_scope(&self, id: ast::NodeId) -> ty::Region {
match self.typer.temporary_scope(id) {
Some(scope) => ty::ReScope(scope),
None => ty::ReStatic
}
}
pub fn cat_rvalue_node(&self,
id: ast::NodeId,
span: Span,
expr_ty: Ty<'tcx>)
-> cmt<'tcx> {
let qualif = self.tcx().const_qualif_map.borrow().get(&id).cloned()
.unwrap_or(check_const::ConstQualif::NOT_CONST);
// Only promote `[T; 0]` before an RFC for rvalue promotions
// is accepted.
let qualif = match expr_ty.sty {
ty::TyArray(_, 0) => qualif,
_ => check_const::ConstQualif::NOT_CONST
};
// Compute maximum lifetime of this rvalue. This is 'static if
// we can promote to a constant, otherwise equal to enclosing temp
// lifetime.
let re = if qualif.intersects(check_const::ConstQualif::NON_STATIC_BORROWS) {
self.temporary_scope(id)
} else {
ty::ReStatic
};
let ret = self.cat_rvalue(id, span, re, expr_ty);
debug!("cat_rvalue_node ret {:?}", ret);
ret
}
pub fn cat_rvalue(&self,
cmt_id: ast::NodeId,
span: Span,
temp_scope: ty::Region,
expr_ty: Ty<'tcx>) -> cmt<'tcx> {
let ret = Rc::new(cmt_ {
id:cmt_id,
span:span,
cat:Categorization::Rvalue(temp_scope),
mutbl:McDeclared,
ty:expr_ty,
note: NoteNone
});
debug!("cat_rvalue ret {:?}", ret);
ret
}
pub fn cat_field<N:ast_node>(&self,
node: &N,
base_cmt: cmt<'tcx>,
f_name: ast::Name,
f_ty: Ty<'tcx>)
-> cmt<'tcx> {
let ret = Rc::new(cmt_ {
id: node.id(),
span: node.span(),
mutbl: base_cmt.mutbl.inherit(),
cat: Categorization::Interior(base_cmt, InteriorField(NamedField(f_name))),
ty: f_ty,
note: NoteNone
});
debug!("cat_field ret {:?}", ret);
ret
}
pub fn cat_tup_field<N:ast_node>(&self,
node: &N,
base_cmt: cmt<'tcx>,
f_idx: usize,
f_ty: Ty<'tcx>)
-> cmt<'tcx> {
let ret = Rc::new(cmt_ {
id: node.id(),
span: node.span(),
mutbl: base_cmt.mutbl.inherit(),
cat: Categorization::Interior(base_cmt, InteriorField(PositionalField(f_idx))),
ty: f_ty,
note: NoteNone
});
debug!("cat_tup_field ret {:?}", ret);
ret
}
fn cat_deref<N:ast_node>(&self,
node: &N,
base_cmt: cmt<'tcx>,
deref_cnt: usize,
deref_context: DerefKindContext)
-> McResult<cmt<'tcx>> {
let method_call = ty::MethodCall {
expr_id: node.id(),
autoderef: deref_cnt as u32
};
let method_ty = self.typer.node_method_ty(method_call);
debug!("cat_deref: method_call={:?} method_ty={:?}",
method_call, method_ty.map(|ty| ty));
let base_cmt = match method_ty {
Some(method_ty) => {
let ref_ty =
self.tcx().no_late_bound_regions(&method_ty.fn_ret()).unwrap().unwrap();
self.cat_rvalue_node(node.id(), node.span(), ref_ty)
}
None => base_cmt
};
let base_cmt_ty = base_cmt.ty;
match base_cmt_ty.builtin_deref(true, ty::NoPreference) {
Some(mt) => {
let ret = self.cat_deref_common(node, base_cmt, deref_cnt,
mt.ty,
deref_context,
/* implicit: */ false);
debug!("cat_deref ret {:?}", ret);
ret
}
None => {
debug!("Explicit deref of non-derefable type: {:?}",
base_cmt_ty);
return Err(());
}
}
}
fn cat_deref_common<N:ast_node>(&self,
node: &N,
base_cmt: cmt<'tcx>,
deref_cnt: usize,
deref_ty: Ty<'tcx>,
deref_context: DerefKindContext,
implicit: bool)
-> McResult<cmt<'tcx>>
{
let (m, cat) = match try!(deref_kind(base_cmt.ty, deref_context)) {
deref_ptr(ptr) => {
let ptr = if implicit {
match ptr {
BorrowedPtr(bk, r) => Implicit(bk, r),
_ => self.tcx().sess.span_bug(node.span(),
"Implicit deref of non-borrowed pointer")
}
} else {
ptr
};
// for unique ptrs, we inherit mutability from the
// owning reference.
(MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr),
Categorization::Deref(base_cmt, deref_cnt, ptr))
}
deref_interior(interior) => {
(base_cmt.mutbl.inherit(), Categorization::Interior(base_cmt, interior))
}
};
let ret = Rc::new(cmt_ {
id: node.id(),
span: node.span(),
cat: cat,
mutbl: m,
ty: deref_ty,
note: NoteNone
});
debug!("cat_deref_common ret {:?}", ret);
Ok(ret)
}
pub fn cat_index<N:ast_node>(&self,
elt: &N,
mut base_cmt: cmt<'tcx>,
context: InteriorOffsetKind)
-> McResult<cmt<'tcx>> {
//! Creates a cmt for an indexing operation (`[]`).
//!
//! One subtle aspect of indexing that may not be
//! immediately obvious: for anything other than a fixed-length
//! vector, an operation like `x[y]` actually consists of two
//! disjoint (from the point of view of borrowck) operations.
//! The first is a deref of `x` to create a pointer `p` that points
//! at the first element in the array. The second operation is
//! an index which adds `y*sizeof(T)` to `p` to obtain the
//! pointer to `x[y]`. `cat_index` will produce a resulting
//! cmt containing both this deref and the indexing,
//! presuming that `base_cmt` is not of fixed-length type.
//!
//! # Parameters
//! - `elt`: the AST node being indexed
//! - `base_cmt`: the cmt of `elt`
let method_call = ty::MethodCall::expr(elt.id());
let method_ty = self.typer.node_method_ty(method_call);
let element_ty = match method_ty {
Some(method_ty) => {
let ref_ty = self.overloaded_method_return_ty(method_ty);
base_cmt = self.cat_rvalue_node(elt.id(), elt.span(), ref_ty);
// FIXME(#20649) -- why are we using the `self_ty` as the element type...?
let self_ty = method_ty.fn_sig().input(0);
self.tcx().no_late_bound_regions(&self_ty).unwrap()
}
None => {
match base_cmt.ty.builtin_index() {
Some(ty) => ty,
None => {
return Err(());
}
}
}
};
let m = base_cmt.mutbl.inherit();
let ret = interior(elt, base_cmt.clone(), base_cmt.ty,
m, context, element_ty);
debug!("cat_index ret {:?}", ret);
return Ok(ret);
fn interior<'tcx, N: ast_node>(elt: &N,
of_cmt: cmt<'tcx>,
vec_ty: Ty<'tcx>,
mutbl: MutabilityCategory,
context: InteriorOffsetKind,
element_ty: Ty<'tcx>) -> cmt<'tcx>
{
let interior_elem = InteriorElement(context, element_kind(vec_ty));
Rc::new(cmt_ {
id:elt.id(),
span:elt.span(),
cat:Categorization::Interior(of_cmt, interior_elem),
mutbl:mutbl,
ty:element_ty,
note: NoteNone
})
}
}
// Takes either a vec or a reference to a vec and returns the cmt for the
// underlying vec.
fn deref_vec<N:ast_node>(&self,
elt: &N,
base_cmt: cmt<'tcx>,
context: InteriorOffsetKind)
-> McResult<cmt<'tcx>>
{
let ret = match try!(deref_kind(base_cmt.ty, Some(context))) {
deref_ptr(ptr) => {
// for unique ptrs, we inherit mutability from the
// owning reference.
let m = MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr);
// the deref is explicit in the resulting cmt
Rc::new(cmt_ {
id:elt.id(),
span:elt.span(),
cat:Categorization::Deref(base_cmt.clone(), 0, ptr),
mutbl:m,
ty: match base_cmt.ty.builtin_deref(false, ty::NoPreference) {
Some(mt) => mt.ty,
None => self.tcx().sess.bug("Found non-derefable type")
},
note: NoteNone
})
}
deref_interior(_) => {
base_cmt
}
};
debug!("deref_vec ret {:?}", ret);
Ok(ret)
}
/// Given a pattern P like: `[_, ..Q, _]`, where `vec_cmt` is the cmt for `P`, `slice_pat` is
/// the pattern `Q`, returns:
///
/// * a cmt for `Q`
/// * the mutability and region of the slice `Q`
///
/// These last two bits of info happen to be things that borrowck needs.
pub fn cat_slice_pattern(&self,
vec_cmt: cmt<'tcx>,
slice_pat: &hir::Pat)
-> McResult<(cmt<'tcx>, hir::Mutability, ty::Region)> {
let slice_ty = try!(self.node_ty(slice_pat.id));
let (slice_mutbl, slice_r) = vec_slice_info(self.tcx(),
slice_pat,
slice_ty);
let context = InteriorOffsetKind::Pattern;
let cmt_vec = try!(self.deref_vec(slice_pat, vec_cmt, context));
let cmt_slice = try!(self.cat_index(slice_pat, cmt_vec, context));
return Ok((cmt_slice, slice_mutbl, slice_r));
/// In a pattern like [a, b, ..c], normally `c` has slice type, but if you have [a, b,
/// ..ref c], then the type of `ref c` will be `&&[]`, so to extract the slice details we
/// have to recurse through rptrs.
fn vec_slice_info(tcx: &ty::ctxt,
pat: &hir::Pat,
slice_ty: Ty)
-> (hir::Mutability, ty::Region) {
match slice_ty.sty {
ty::TyRef(r, ref mt) => match mt.ty.sty {
ty::TySlice(_) => (mt.mutbl, *r),
_ => vec_slice_info(tcx, pat, mt.ty),
},
_ => {
tcx.sess.span_bug(pat.span,
"type of slice pattern is not a slice");
}
}
}
}
pub fn cat_imm_interior<N:ast_node>(&self,
node: &N,
base_cmt: cmt<'tcx>,
interior_ty: Ty<'tcx>,
interior: InteriorKind)
-> cmt<'tcx> {
let ret = Rc::new(cmt_ {
id: node.id(),
span: node.span(),
mutbl: base_cmt.mutbl.inherit(),
cat: Categorization::Interior(base_cmt, interior),
ty: interior_ty,
note: NoteNone
});
debug!("cat_imm_interior ret={:?}", ret);
ret
}
pub fn cat_downcast<N:ast_node>(&self,
node: &N,
base_cmt: cmt<'tcx>,
downcast_ty: Ty<'tcx>,
variant_did: DefId)
-> cmt<'tcx> {
let ret = Rc::new(cmt_ {
id: node.id(),
span: node.span(),
mutbl: base_cmt.mutbl.inherit(),
cat: Categorization::Downcast(base_cmt, variant_did),
ty: downcast_ty,
note: NoteNone
});
debug!("cat_downcast ret={:?}", ret);
ret
}
pub fn cat_pattern<F>(&self, cmt: cmt<'tcx>, pat: &hir::Pat, mut op: F) -> McResult<()>
where F: FnMut(&MemCategorizationContext<'t, 'a, 'tcx>, cmt<'tcx>, &hir::Pat),
{
self.cat_pattern_(cmt, pat, &mut op)
}
// FIXME(#19596) This is a workaround, but there should be a better way to do this
fn cat_pattern_<F>(&self, cmt: cmt<'tcx>, pat: &hir::Pat, op: &mut F)
-> McResult<()>
where F : FnMut(&MemCategorizationContext<'t, 'a, 'tcx>, cmt<'tcx>, &hir::Pat),
{
// Here, `cmt` is the categorization for the value being
// matched and pat is the pattern it is being matched against.
//
// In general, the way that this works is that we walk down
// the pattern, constructing a cmt that represents the path
// that will be taken to reach the value being matched.
//
// When we encounter named bindings, we take the cmt that has
// been built up and pass it off to guarantee_valid() so that
// we can be sure that the binding will remain valid for the
// duration of the arm.
//
// (*2) There is subtlety concerning the correspondence between
// pattern ids and types as compared to *expression* ids and
// types. This is explained briefly. on the definition of the
// type `cmt`, so go off and read what it says there, then
// come back and I'll dive into a bit more detail here. :) OK,
// back?
//
// In general, the id of the cmt should be the node that
// "produces" the value---patterns aren't executable code
// exactly, but I consider them to "execute" when they match a
// value, and I consider them to produce the value that was
// matched. So if you have something like:
//
// let x = @@3;
// match x {
// @@y { ... }
// }
//
// In this case, the cmt and the relevant ids would be:
//
// CMT Id Type of Id Type of cmt
//
// local(x)->@->@
// ^~~~~~~^ `x` from discr @@int @@int
// ^~~~~~~~~~^ `@@y` pattern node @@int @int
// ^~~~~~~~~~~~~^ `@y` pattern node @int int
//
// You can see that the types of the id and the cmt are in
// sync in the first line, because that id is actually the id
// of an expression. But once we get to pattern ids, the types
// step out of sync again. So you'll see below that we always
// get the type of the *subpattern* and use that.
debug!("cat_pattern: {:?} cmt={:?}",
pat,
cmt);
(*op)(self, cmt.clone(), pat);
let opt_def = if let Some(path_res) = self.tcx().def_map.borrow().get(&pat.id) {
if path_res.depth != 0 {
// Since patterns can be associated constants
// which are resolved during typeck, we might have
// some unresolved patterns reaching this stage
// without aborting
return Err(());
}
Some(path_res.full_def())
} else {
None
};
// Note: This goes up here (rather than within the PatEnum arm
// alone) because struct patterns can refer to struct types or
// to struct variants within enums.
let cmt = match opt_def {
Some(def::DefVariant(enum_did, variant_did, _))
// univariant enums do not need downcasts
if !self.tcx().lookup_adt_def(enum_did).is_univariant() => {
self.cat_downcast(pat, cmt.clone(), cmt.ty, variant_did)
}
_ => cmt
};
match pat.node {
hir::PatWild => {
// _
}
hir::PatEnum(_, None) => {
// variant(..)
}
hir::PatEnum(_, Some(ref subpats)) => {
match opt_def {
Some(def::DefVariant(..)) => {
// variant(x, y, z)
for (i, subpat) in subpats.iter().enumerate() {
let subpat_ty = try!(self.pat_ty(&**subpat)); // see (*2)
let subcmt =
self.cat_imm_interior(
pat, cmt.clone(), subpat_ty,
InteriorField(PositionalField(i)));
try!(self.cat_pattern_(subcmt, &**subpat, op));
}
}
Some(def::DefStruct(..)) => {
for (i, subpat) in subpats.iter().enumerate() {
let subpat_ty = try!(self.pat_ty(&**subpat)); // see (*2)
let cmt_field =
self.cat_imm_interior(
pat, cmt.clone(), subpat_ty,
InteriorField(PositionalField(i)));
try!(self.cat_pattern_(cmt_field, &**subpat, op));
}
}
Some(def::DefConst(..)) | Some(def::DefAssociatedConst(..)) => {
for subpat in subpats {
try!(self.cat_pattern_(cmt.clone(), &**subpat, op));
}
}
_ => {
self.tcx().sess.span_bug(
pat.span,
"enum pattern didn't resolve to enum or struct");
}
}
}
hir::PatQPath(..) => {
// Lone constant: ignore
}
hir::PatIdent(_, _, Some(ref subpat)) => {
try!(self.cat_pattern_(cmt, &**subpat, op));
}
hir::PatIdent(_, _, None) => {
// nullary variant or identifier: ignore
}
hir::PatStruct(_, ref field_pats, _) => {
// {f1: p1, ..., fN: pN}
for fp in field_pats {
let field_ty = try!(self.pat_ty(&*fp.node.pat)); // see (*2)
let cmt_field = self.cat_field(pat, cmt.clone(), fp.node.name, field_ty);
try!(self.cat_pattern_(cmt_field, &*fp.node.pat, op));
}
}
hir::PatTup(ref subpats) => {
// (p1, ..., pN)
for (i, subpat) in subpats.iter().enumerate() {
let subpat_ty = try!(self.pat_ty(&**subpat)); // see (*2)
let subcmt =
self.cat_imm_interior(
pat, cmt.clone(), subpat_ty,
InteriorField(PositionalField(i)));
try!(self.cat_pattern_(subcmt, &**subpat, op));
}
}
hir::PatBox(ref subpat) | hir::PatRegion(ref subpat, _) => {
// box p1, &p1, &mut p1. we can ignore the mutability of
// PatRegion since that information is already contained
// in the type.
let subcmt = try!(self.cat_deref(pat, cmt, 0, None));
try!(self.cat_pattern_(subcmt, &**subpat, op));
}
hir::PatVec(ref before, ref slice, ref after) => {
let context = InteriorOffsetKind::Pattern;
let vec_cmt = try!(self.deref_vec(pat, cmt, context));
let elt_cmt = try!(self.cat_index(pat, vec_cmt, context));
for before_pat in before {
try!(self.cat_pattern_(elt_cmt.clone(), &**before_pat, op));
}
if let Some(ref slice_pat) = *slice {
let slice_ty = try!(self.pat_ty(&**slice_pat));
let slice_cmt = self.cat_rvalue_node(pat.id(), pat.span(), slice_ty);
try!(self.cat_pattern_(slice_cmt, &**slice_pat, op));
}
for after_pat in after {
try!(self.cat_pattern_(elt_cmt.clone(), &**after_pat, op));
}
}
hir::PatLit(_) | hir::PatRange(_, _) => {
/*always ok*/
}
}
Ok(())
}
fn overloaded_method_return_ty(&self,
method_ty: Ty<'tcx>)
-> Ty<'tcx>
{
// When we process an overloaded `*` or `[]` etc, we often
// need to extract the return type of the method. These method
// types are generated by method resolution and always have
// all late-bound regions fully instantiated, so we just want
// to skip past the binder.
self.tcx().no_late_bound_regions(&method_ty.fn_ret())
.unwrap()
.unwrap() // overloaded ops do not diverge, either
}
}
#[derive(Clone, Debug)]
pub enum Aliasability {
FreelyAliasable(AliasableReason),
NonAliasable,
ImmutableUnique(Box<Aliasability>),
}
#[derive(Copy, Clone, Debug)]
pub enum AliasableReason {
AliasableBorrowed,
AliasableClosure(ast::NodeId), // Aliasable due to capture Fn closure env
AliasableOther,
UnaliasableImmutable, // Created as needed upon seeing ImmutableUnique
AliasableStatic,
AliasableStaticMut,
}
impl<'tcx> cmt_<'tcx> {
pub fn guarantor(&self) -> cmt<'tcx> {
//! Returns `self` after stripping away any derefs or
//! interior content. The return value is basically the `cmt` which
//! determines how long the value in `self` remains live.
match self.cat {
Categorization::Rvalue(..) |
Categorization::StaticItem |
Categorization::Local(..) |
Categorization::Deref(_, _, UnsafePtr(..)) |
Categorization::Deref(_, _, BorrowedPtr(..)) |
Categorization::Deref(_, _, Implicit(..)) |
Categorization::Upvar(..) => {
Rc::new((*self).clone())
}
Categorization::Downcast(ref b, _) |
Categorization::Interior(ref b, _) |
Categorization::Deref(ref b, _, Unique) => {
b.guarantor()
}
}
}
/// Returns `FreelyAliasable(_)` if this lvalue represents a freely aliasable pointer type.
pub fn freely_aliasable(&self, ctxt: &ty::ctxt<'tcx>)
-> Aliasability {
// Maybe non-obvious: copied upvars can only be considered
// non-aliasable in once closures, since any other kind can be
// aliased and eventually recused.
match self.cat {
Categorization::Deref(ref b, _, BorrowedPtr(ty::MutBorrow, _)) |
Categorization::Deref(ref b, _, Implicit(ty::MutBorrow, _)) |
Categorization::Deref(ref b, _, BorrowedPtr(ty::UniqueImmBorrow, _)) |
Categorization::Deref(ref b, _, Implicit(ty::UniqueImmBorrow, _)) |
Categorization::Downcast(ref b, _) |
Categorization::Interior(ref b, _) => {
// Aliasability depends on base cmt
b.freely_aliasable(ctxt)
}
Categorization::Deref(ref b, _, Unique) => {
let sub = b.freely_aliasable(ctxt);
if b.mutbl.is_mutable() {
// Aliasability depends on base cmt alone
sub
} else {
// Do not allow mutation through an immutable box.
ImmutableUnique(Box::new(sub))
}
}
Categorization::Rvalue(..) |
Categorization::Local(..) |
Categorization::Upvar(..) |
Categorization::Deref(_, _, UnsafePtr(..)) => { // yes, it's aliasable, but...
NonAliasable
}
Categorization::StaticItem(..) => {
if self.mutbl.is_mutable() {
FreelyAliasable(AliasableStaticMut)
} else {
FreelyAliasable(AliasableStatic)
}
}
Categorization::Deref(ref base, _, BorrowedPtr(ty::ImmBorrow, _)) |
Categorization::Deref(ref base, _, Implicit(ty::ImmBorrow, _)) => {
match base.cat {
Categorization::Upvar(Upvar{ id, .. }) =>
FreelyAliasable(AliasableClosure(id.closure_expr_id)),
_ => FreelyAliasable(AliasableBorrowed)
}
}
}
}
// Digs down through one or two layers of deref and grabs the cmt
// for the upvar if a note indicates there is one.
pub fn upvar(&self) -> Option<cmt<'tcx>> {
match self.note {
NoteClosureEnv(..) | NoteUpvarRef(..) => {
Some(match self.cat {
Categorization::Deref(ref inner, _, _) => {
match inner.cat {
Categorization::Deref(ref inner, _, _) => inner.clone(),
Categorization::Upvar(..) => inner.clone(),
_ => unreachable!()
}
}
_ => unreachable!()
})
}
NoteNone => None
}
}
pub fn descriptive_string(&self, tcx: &ty::ctxt) -> String {
match self.cat {
Categorization::StaticItem => {
"static item".to_string()
}
Categorization::Rvalue(..) => {
"non-lvalue".to_string()
}
Categorization::Local(vid) => {
if tcx.map.is_argument(vid) {
"argument".to_string()
} else {
"local variable".to_string()
}
}
Categorization::Deref(_, _, pk) => {
let upvar = self.upvar();
match upvar.as_ref().map(|i| &i.cat) {
Some(&Categorization::Upvar(ref var)) => {
var.to_string()
}
Some(_) => unreachable!(),
None => {
match pk {
Implicit(..) => {
format!("indexed content")
}
Unique => {
format!("`Box` content")
}
UnsafePtr(..) => {
format!("dereference of raw pointer")
}
BorrowedPtr(..) => {
format!("borrowed content")
}
}
}
}
}
Categorization::Interior(_, InteriorField(NamedField(_))) => {
"field".to_string()
}
Categorization::Interior(_, InteriorField(PositionalField(_))) => {
"anonymous field".to_string()
}
Categorization::Interior(_, InteriorElement(InteriorOffsetKind::Index,
VecElement)) |
Categorization::Interior(_, InteriorElement(InteriorOffsetKind::Index,
OtherElement)) => {
"indexed content".to_string()
}
Categorization::Interior(_, InteriorElement(InteriorOffsetKind::Pattern,
VecElement)) |
Categorization::Interior(_, InteriorElement(InteriorOffsetKind::Pattern,
OtherElement)) => {
"pattern-bound indexed content".to_string()
}
Categorization::Upvar(ref var) => {
var.to_string()
}
Categorization::Downcast(ref cmt, _) => {
cmt.descriptive_string(tcx)
}
}
}
}
impl<'tcx> fmt::Debug for cmt_<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{{{:?} id:{} m:{:?} ty:{:?}}}",
self.cat,
self.id,
self.mutbl,
self.ty)
}
}
impl<'tcx> fmt::Debug for Categorization<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Categorization::StaticItem => write!(f, "static"),
Categorization::Rvalue(r) => write!(f, "rvalue({:?})", r),
Categorization::Local(id) => {
let name = ty::tls::with(|tcx| tcx.local_var_name_str(id));
write!(f, "local({})", name)
}
Categorization::Upvar(upvar) => {
write!(f, "upvar({:?})", upvar)
}
Categorization::Deref(ref cmt, derefs, ptr) => {
write!(f, "{:?}-{:?}{}->", cmt.cat, ptr, derefs)
}
Categorization::Interior(ref cmt, interior) => {
write!(f, "{:?}.{:?}", cmt.cat, interior)
}
Categorization::Downcast(ref cmt, _) => {
write!(f, "{:?}->(enum)", cmt.cat)
}
}
}
}
pub fn ptr_sigil(ptr: PointerKind) -> &'static str {
match ptr {
Unique => "Box",
BorrowedPtr(ty::ImmBorrow, _) |
Implicit(ty::ImmBorrow, _) => "&",
BorrowedPtr(ty::MutBorrow, _) |
Implicit(ty::MutBorrow, _) => "&mut",
BorrowedPtr(ty::UniqueImmBorrow, _) |
Implicit(ty::UniqueImmBorrow, _) => "&unique",
UnsafePtr(_) => "*",
}
}
impl fmt::Debug for PointerKind {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Unique => write!(f, "Box"),
BorrowedPtr(ty::ImmBorrow, ref r) |
Implicit(ty::ImmBorrow, ref r) => {
write!(f, "&{:?}", r)
}
BorrowedPtr(ty::MutBorrow, ref r) |
Implicit(ty::MutBorrow, ref r) => {
write!(f, "&{:?} mut", r)
}
BorrowedPtr(ty::UniqueImmBorrow, ref r) |
Implicit(ty::UniqueImmBorrow, ref r) => {
write!(f, "&{:?} uniq", r)
}
UnsafePtr(_) => write!(f, "*")
}
}
}
impl fmt::Debug for InteriorKind {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
InteriorField(NamedField(fld)) => write!(f, "{}", fld),
InteriorField(PositionalField(i)) => write!(f, "#{}", i),
InteriorElement(..) => write!(f, "[]"),
}
}
}
fn element_kind(t: Ty) -> ElementKind {
match t.sty {
ty::TyRef(_, ty::TypeAndMut{ty, ..}) |
ty::TyBox(ty) => match ty.sty {
ty::TySlice(_) => VecElement,
_ => OtherElement
},
ty::TyArray(..) | ty::TySlice(_) => VecElement,
_ => OtherElement
}
}
impl fmt::Debug for Upvar {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}/{:?}", self.id, self.kind)
}
}
impl fmt::Display for Upvar {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let kind = match self.kind {
ty::FnClosureKind => "Fn",
ty::FnMutClosureKind => "FnMut",
ty::FnOnceClosureKind => "FnOnce",
};
write!(f, "captured outer variable in an `{}` closure", kind)
}
}