rust/compiler/rustc_lint/src/unused.rs
2021-03-09 19:09:34 +01:00

1224 lines
44 KiB
Rust

use crate::Lint;
use crate::{EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext};
use rustc_ast as ast;
use rustc_ast::util::parser;
use rustc_ast::{ExprKind, StmtKind};
use rustc_ast_pretty::pprust;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{pluralize, Applicability};
use rustc_feature::{AttributeType, BuiltinAttribute, BUILTIN_ATTRIBUTE_MAP};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_middle::ty::adjustment;
use rustc_middle::ty::{self, Ty};
use rustc_session::lint::builtin::UNUSED_ATTRIBUTES;
use rustc_span::symbol::Symbol;
use rustc_span::symbol::{kw, sym};
use rustc_span::{BytePos, Span, DUMMY_SP};
use tracing::debug;
declare_lint! {
/// The `unused_must_use` lint detects unused result of a type flagged as
/// `#[must_use]`.
///
/// ### Example
///
/// ```rust
/// fn returns_result() -> Result<(), ()> {
/// Ok(())
/// }
///
/// fn main() {
/// returns_result();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The `#[must_use]` attribute is an indicator that it is a mistake to
/// ignore the value. See [the reference] for more details.
///
/// [the reference]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
pub UNUSED_MUST_USE,
Warn,
"unused result of a type flagged as `#[must_use]`",
report_in_external_macro
}
declare_lint! {
/// The `unused_results` lint checks for the unused result of an
/// expression in a statement.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(unused_results)]
/// fn foo<T>() -> T { panic!() }
///
/// fn main() {
/// foo::<usize>();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Ignoring the return value of a function may indicate a mistake. In
/// cases were it is almost certain that the result should be used, it is
/// recommended to annotate the function with the [`must_use` attribute].
/// Failure to use such a return value will trigger the [`unused_must_use`
/// lint] which is warn-by-default. The `unused_results` lint is
/// essentially the same, but triggers for *all* return values.
///
/// This lint is "allow" by default because it can be noisy, and may not be
/// an actual problem. For example, calling the `remove` method of a `Vec`
/// or `HashMap` returns the previous value, which you may not care about.
/// Using this lint would require explicitly ignoring or discarding such
/// values.
///
/// [`must_use` attribute]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
/// [`unused_must_use` lint]: warn-by-default.html#unused-must-use
pub UNUSED_RESULTS,
Allow,
"unused result of an expression in a statement"
}
declare_lint_pass!(UnusedResults => [UNUSED_MUST_USE, UNUSED_RESULTS]);
impl<'tcx> LateLintPass<'tcx> for UnusedResults {
fn check_stmt(&mut self, cx: &LateContext<'_>, s: &hir::Stmt<'_>) {
let expr = match s.kind {
hir::StmtKind::Semi(ref expr) => &**expr,
_ => return,
};
if let hir::ExprKind::Ret(..) = expr.kind {
return;
}
let ty = cx.typeck_results().expr_ty(&expr);
let type_permits_lack_of_use = check_must_use_ty(cx, ty, &expr, s.span, "", "", 1);
let mut fn_warned = false;
let mut op_warned = false;
let maybe_def_id = match expr.kind {
hir::ExprKind::Call(ref callee, _) => {
match callee.kind {
hir::ExprKind::Path(ref qpath) => {
match cx.qpath_res(qpath, callee.hir_id) {
Res::Def(DefKind::Fn | DefKind::AssocFn, def_id) => Some(def_id),
// `Res::Local` if it was a closure, for which we
// do not currently support must-use linting
_ => None,
}
}
_ => None,
}
}
hir::ExprKind::MethodCall(..) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
_ => None,
};
if let Some(def_id) = maybe_def_id {
fn_warned = check_must_use_def(cx, def_id, s.span, "return value of ", "");
} else if type_permits_lack_of_use {
// We don't warn about unused unit or uninhabited types.
// (See https://github.com/rust-lang/rust/issues/43806 for details.)
return;
}
let must_use_op = match expr.kind {
// Hardcoding operators here seemed more expedient than the
// refactoring that would be needed to look up the `#[must_use]`
// attribute which does exist on the comparison trait methods
hir::ExprKind::Binary(bin_op, ..) => match bin_op.node {
hir::BinOpKind::Eq
| hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ne
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt => Some("comparison"),
hir::BinOpKind::Add
| hir::BinOpKind::Sub
| hir::BinOpKind::Div
| hir::BinOpKind::Mul
| hir::BinOpKind::Rem => Some("arithmetic operation"),
hir::BinOpKind::And | hir::BinOpKind::Or => Some("logical operation"),
hir::BinOpKind::BitXor
| hir::BinOpKind::BitAnd
| hir::BinOpKind::BitOr
| hir::BinOpKind::Shl
| hir::BinOpKind::Shr => Some("bitwise operation"),
},
hir::ExprKind::Unary(..) => Some("unary operation"),
_ => None,
};
if let Some(must_use_op) = must_use_op {
cx.struct_span_lint(UNUSED_MUST_USE, expr.span, |lint| {
lint.build(&format!("unused {} that must be used", must_use_op)).emit()
});
op_warned = true;
}
if !(type_permits_lack_of_use || fn_warned || op_warned) {
cx.struct_span_lint(UNUSED_RESULTS, s.span, |lint| lint.build("unused result").emit());
}
// Returns whether an error has been emitted (and thus another does not need to be later).
fn check_must_use_ty<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
expr: &hir::Expr<'_>,
span: Span,
descr_pre: &str,
descr_post: &str,
plural_len: usize,
) -> bool {
if ty.is_unit()
|| cx.tcx.is_ty_uninhabited_from(
cx.tcx.parent_module(expr.hir_id).to_def_id(),
ty,
cx.param_env,
)
{
return true;
}
let plural_suffix = pluralize!(plural_len);
match *ty.kind() {
ty::Adt(..) if ty.is_box() => {
let boxed_ty = ty.boxed_ty();
let descr_pre = &format!("{}boxed ", descr_pre);
check_must_use_ty(cx, boxed_ty, expr, span, descr_pre, descr_post, plural_len)
}
ty::Adt(def, _) => check_must_use_def(cx, def.did, span, descr_pre, descr_post),
ty::Opaque(def, _) => {
let mut has_emitted = false;
for &(predicate, _) in cx.tcx.explicit_item_bounds(def) {
// We only look at the `DefId`, so it is safe to skip the binder here.
if let ty::PredicateKind::Trait(ref poly_trait_predicate, _) =
predicate.kind().skip_binder()
{
let def_id = poly_trait_predicate.trait_ref.def_id;
let descr_pre =
&format!("{}implementer{} of ", descr_pre, plural_suffix,);
if check_must_use_def(cx, def_id, span, descr_pre, descr_post) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Dynamic(binder, _) => {
let mut has_emitted = false;
for predicate in binder.iter() {
if let ty::ExistentialPredicate::Trait(ref trait_ref) =
predicate.skip_binder()
{
let def_id = trait_ref.def_id;
let descr_post =
&format!(" trait object{}{}", plural_suffix, descr_post,);
if check_must_use_def(cx, def_id, span, descr_pre, descr_post) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Tuple(ref tys) => {
let mut has_emitted = false;
let spans = if let hir::ExprKind::Tup(comps) = &expr.kind {
debug_assert_eq!(comps.len(), tys.len());
comps.iter().map(|e| e.span).collect()
} else {
vec![]
};
for (i, ty) in tys.iter().map(|k| k.expect_ty()).enumerate() {
let descr_post = &format!(" in tuple element {}", i);
let span = *spans.get(i).unwrap_or(&span);
if check_must_use_ty(cx, ty, expr, span, descr_pre, descr_post, plural_len)
{
has_emitted = true;
}
}
has_emitted
}
ty::Array(ty, len) => match len.try_eval_usize(cx.tcx, cx.param_env) {
// If the array is empty we don't lint, to avoid false positives
Some(0) | None => false,
// If the array is definitely non-empty, we can do `#[must_use]` checking.
Some(n) => {
let descr_pre = &format!("{}array{} of ", descr_pre, plural_suffix,);
check_must_use_ty(cx, ty, expr, span, descr_pre, descr_post, n as usize + 1)
}
},
ty::Closure(..) => {
cx.struct_span_lint(UNUSED_MUST_USE, span, |lint| {
let mut err = lint.build(&format!(
"unused {}closure{}{} that must be used",
descr_pre, plural_suffix, descr_post,
));
err.note("closures are lazy and do nothing unless called");
err.emit();
});
true
}
ty::Generator(..) => {
cx.struct_span_lint(UNUSED_MUST_USE, span, |lint| {
let mut err = lint.build(&format!(
"unused {}generator{}{} that must be used",
descr_pre, plural_suffix, descr_post,
));
err.note("generators are lazy and do nothing unless resumed");
err.emit();
});
true
}
_ => false,
}
}
// Returns whether an error has been emitted (and thus another does not need to be later).
// FIXME: Args desc_{pre,post}_path could be made lazy by taking Fn() -> &str, but this
// would make calling it a big awkward. Could also take String (so args are moved), but
// this would still require a copy into the format string, which would only be executed
// when needed.
fn check_must_use_def(
cx: &LateContext<'_>,
def_id: DefId,
span: Span,
descr_pre_path: &str,
descr_post_path: &str,
) -> bool {
for attr in cx.tcx.get_attrs(def_id).iter() {
if cx.sess().check_name(attr, sym::must_use) {
cx.struct_span_lint(UNUSED_MUST_USE, span, |lint| {
let msg = format!(
"unused {}`{}`{} that must be used",
descr_pre_path,
cx.tcx.def_path_str(def_id),
descr_post_path
);
let mut err = lint.build(&msg);
// check for #[must_use = "..."]
if let Some(note) = attr.value_str() {
err.note(&note.as_str());
}
err.emit();
});
return true;
}
}
false
}
}
}
declare_lint! {
/// The `path_statements` lint detects path statements with no effect.
///
/// ### Example
///
/// ```rust
/// let x = 42;
///
/// x;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is usually a mistake to have a statement that has no effect.
pub PATH_STATEMENTS,
Warn,
"path statements with no effect"
}
declare_lint_pass!(PathStatements => [PATH_STATEMENTS]);
impl<'tcx> LateLintPass<'tcx> for PathStatements {
fn check_stmt(&mut self, cx: &LateContext<'_>, s: &hir::Stmt<'_>) {
if let hir::StmtKind::Semi(expr) = s.kind {
if let hir::ExprKind::Path(_) = expr.kind {
cx.struct_span_lint(PATH_STATEMENTS, s.span, |lint| {
let ty = cx.typeck_results().expr_ty(expr);
if ty.needs_drop(cx.tcx, cx.param_env) {
let mut lint = lint.build("path statement drops value");
if let Ok(snippet) = cx.sess().source_map().span_to_snippet(expr.span) {
lint.span_suggestion(
s.span,
"use `drop` to clarify the intent",
format!("drop({});", snippet),
Applicability::MachineApplicable,
);
} else {
lint.span_help(s.span, "use `drop` to clarify the intent");
}
lint.emit()
} else {
lint.build("path statement with no effect").emit()
}
});
}
}
}
}
#[derive(Copy, Clone)]
pub struct UnusedAttributes {
builtin_attributes: &'static FxHashMap<Symbol, &'static BuiltinAttribute>,
}
impl UnusedAttributes {
pub fn new() -> Self {
UnusedAttributes { builtin_attributes: &*BUILTIN_ATTRIBUTE_MAP }
}
}
impl_lint_pass!(UnusedAttributes => [UNUSED_ATTRIBUTES]);
impl<'tcx> LateLintPass<'tcx> for UnusedAttributes {
fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
debug!("checking attribute: {:?}", attr);
if attr.is_doc_comment() {
return;
}
let attr_info = attr.ident().and_then(|ident| self.builtin_attributes.get(&ident.name));
if let Some(&&(name, ty, ..)) = attr_info {
if let AttributeType::AssumedUsed = ty {
debug!("{:?} is AssumedUsed", name);
return;
}
}
if !cx.sess().is_attr_used(attr) {
debug!("emitting warning for: {:?}", attr);
cx.struct_span_lint(UNUSED_ATTRIBUTES, attr.span, |lint| {
// Mark as used to avoid duplicate warnings.
cx.sess().mark_attr_used(attr);
lint.build("unused attribute").emit()
});
// Is it a builtin attribute that must be used at the crate level?
if attr_info.map_or(false, |(_, ty, ..)| ty == &AttributeType::CrateLevel) {
cx.struct_span_lint(UNUSED_ATTRIBUTES, attr.span, |lint| {
let msg = match attr.style {
ast::AttrStyle::Outer => {
"crate-level attribute should be an inner attribute: add an exclamation \
mark: `#![foo]`"
}
ast::AttrStyle::Inner => "crate-level attribute should be in the root module",
};
lint.build(msg).emit()
});
}
} else {
debug!("Attr was used: {:?}", attr);
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum UnusedDelimsCtx {
FunctionArg,
MethodArg,
AssignedValue,
IfCond,
WhileCond,
ForIterExpr,
MatchScrutineeExpr,
ReturnValue,
BlockRetValue,
LetScrutineeExpr,
ArrayLenExpr,
AnonConst,
}
impl From<UnusedDelimsCtx> for &'static str {
fn from(ctx: UnusedDelimsCtx) -> &'static str {
match ctx {
UnusedDelimsCtx::FunctionArg => "function argument",
UnusedDelimsCtx::MethodArg => "method argument",
UnusedDelimsCtx::AssignedValue => "assigned value",
UnusedDelimsCtx::IfCond => "`if` condition",
UnusedDelimsCtx::WhileCond => "`while` condition",
UnusedDelimsCtx::ForIterExpr => "`for` iterator expression",
UnusedDelimsCtx::MatchScrutineeExpr => "`match` scrutinee expression",
UnusedDelimsCtx::ReturnValue => "`return` value",
UnusedDelimsCtx::BlockRetValue => "block return value",
UnusedDelimsCtx::LetScrutineeExpr => "`let` scrutinee expression",
UnusedDelimsCtx::ArrayLenExpr | UnusedDelimsCtx::AnonConst => "const expression",
}
}
}
/// Used by both `UnusedParens` and `UnusedBraces` to prevent code duplication.
trait UnusedDelimLint {
const DELIM_STR: &'static str;
/// Due to `ref` pattern, there can be a difference between using
/// `{ expr }` and `expr` in pattern-matching contexts. This means
/// that we should only lint `unused_parens` and not `unused_braces`
/// in this case.
///
/// ```rust
/// let mut a = 7;
/// let ref b = { a }; // We actually borrow a copy of `a` here.
/// a += 1; // By mutating `a` we invalidate any borrows of `a`.
/// assert_eq!(b + 1, a); // `b` does not borrow `a`, so we can still use it here.
/// ```
const LINT_EXPR_IN_PATTERN_MATCHING_CTX: bool;
// this cannot be a constant is it refers to a static.
fn lint(&self) -> &'static Lint;
fn check_unused_delims_expr(
&self,
cx: &EarlyContext<'_>,
value: &ast::Expr,
ctx: UnusedDelimsCtx,
followed_by_block: bool,
left_pos: Option<BytePos>,
right_pos: Option<BytePos>,
);
fn is_expr_delims_necessary(inner: &ast::Expr, followed_by_block: bool) -> bool {
// Prevent false-positives in cases like `fn x() -> u8 { ({ 0 } + 1) }`
let lhs_needs_parens = {
let mut innermost = inner;
loop {
if let ExprKind::Binary(_, lhs, _rhs) = &innermost.kind {
innermost = lhs;
if !rustc_ast::util::classify::expr_requires_semi_to_be_stmt(innermost) {
break true;
}
} else {
break false;
}
}
};
lhs_needs_parens
|| (followed_by_block
&& match inner.kind {
ExprKind::Ret(_) | ExprKind::Break(..) | ExprKind::Yield(..) => true,
_ => parser::contains_exterior_struct_lit(&inner),
})
}
fn emit_unused_delims_expr(
&self,
cx: &EarlyContext<'_>,
value: &ast::Expr,
ctx: UnusedDelimsCtx,
left_pos: Option<BytePos>,
right_pos: Option<BytePos>,
) {
let expr_text = if let Ok(snippet) = cx.sess().source_map().span_to_snippet(value.span) {
snippet
} else {
pprust::expr_to_string(value)
};
let keep_space = (
left_pos.map_or(false, |s| s >= value.span.lo()),
right_pos.map_or(false, |s| s <= value.span.hi()),
);
self.emit_unused_delims(cx, value.span, &expr_text, ctx.into(), keep_space);
}
fn emit_unused_delims(
&self,
cx: &EarlyContext<'_>,
span: Span,
pattern: &str,
msg: &str,
keep_space: (bool, bool),
) {
// FIXME(flip1995): Quick and dirty fix for #70814. This should be fixed in rustdoc
// properly.
if span == DUMMY_SP {
return;
}
cx.struct_span_lint(self.lint(), span, |lint| {
let span_msg = format!("unnecessary {} around {}", Self::DELIM_STR, msg);
let mut err = lint.build(&span_msg);
let mut ate_left_paren = false;
let mut ate_right_paren = false;
let parens_removed = pattern
.trim_matches(|c| match c {
'(' | '{' => {
if ate_left_paren {
false
} else {
ate_left_paren = true;
true
}
}
')' | '}' => {
if ate_right_paren {
false
} else {
ate_right_paren = true;
true
}
}
_ => false,
})
.trim();
let replace = {
let mut replace = if keep_space.0 {
let mut s = String::from(" ");
s.push_str(parens_removed);
s
} else {
String::from(parens_removed)
};
if keep_space.1 {
replace.push(' ');
}
replace
};
let suggestion = format!("remove these {}", Self::DELIM_STR);
err.span_suggestion_short(span, &suggestion, replace, Applicability::MachineApplicable);
err.emit();
});
}
fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
use rustc_ast::ExprKind::*;
let (value, ctx, followed_by_block, left_pos, right_pos) = match e.kind {
// Do not lint `unused_braces` in `if let` expressions.
If(ref cond, ref block, _)
if !matches!(cond.kind, Let(_, _)) || Self::LINT_EXPR_IN_PATTERN_MATCHING_CTX =>
{
let left = e.span.lo() + rustc_span::BytePos(2);
let right = block.span.lo();
(cond, UnusedDelimsCtx::IfCond, true, Some(left), Some(right))
}
// Do not lint `unused_braces` in `while let` expressions.
While(ref cond, ref block, ..)
if !matches!(cond.kind, Let(_, _)) || Self::LINT_EXPR_IN_PATTERN_MATCHING_CTX =>
{
let left = e.span.lo() + rustc_span::BytePos(5);
let right = block.span.lo();
(cond, UnusedDelimsCtx::WhileCond, true, Some(left), Some(right))
}
ForLoop(_, ref cond, ref block, ..) => {
(cond, UnusedDelimsCtx::ForIterExpr, true, None, Some(block.span.lo()))
}
Match(ref head, _) if Self::LINT_EXPR_IN_PATTERN_MATCHING_CTX => {
let left = e.span.lo() + rustc_span::BytePos(5);
(head, UnusedDelimsCtx::MatchScrutineeExpr, true, Some(left), None)
}
Ret(Some(ref value)) => {
let left = e.span.lo() + rustc_span::BytePos(3);
(value, UnusedDelimsCtx::ReturnValue, false, Some(left), None)
}
Assign(_, ref value, _) | AssignOp(.., ref value) => {
(value, UnusedDelimsCtx::AssignedValue, false, None, None)
}
// either function/method call, or something this lint doesn't care about
ref call_or_other => {
let (args_to_check, ctx) = match *call_or_other {
Call(_, ref args) => (&args[..], UnusedDelimsCtx::FunctionArg),
// first "argument" is self (which sometimes needs delims)
MethodCall(_, ref args, _) => (&args[1..], UnusedDelimsCtx::MethodArg),
// actual catch-all arm
_ => {
return;
}
};
// Don't lint if this is a nested macro expansion: otherwise, the lint could
// trigger in situations that macro authors shouldn't have to care about, e.g.,
// when a parenthesized token tree matched in one macro expansion is matched as
// an expression in another and used as a fn/method argument (Issue #47775)
if e.span.ctxt().outer_expn_data().call_site.from_expansion() {
return;
}
for arg in args_to_check {
self.check_unused_delims_expr(cx, arg, ctx, false, None, None);
}
return;
}
};
self.check_unused_delims_expr(cx, &value, ctx, followed_by_block, left_pos, right_pos);
}
fn check_stmt(&mut self, cx: &EarlyContext<'_>, s: &ast::Stmt) {
match s.kind {
StmtKind::Local(ref local) if Self::LINT_EXPR_IN_PATTERN_MATCHING_CTX => {
if let Some(ref value) = local.init {
self.check_unused_delims_expr(
cx,
&value,
UnusedDelimsCtx::AssignedValue,
false,
None,
None,
);
}
}
StmtKind::Expr(ref expr) => {
self.check_unused_delims_expr(
cx,
&expr,
UnusedDelimsCtx::BlockRetValue,
false,
None,
None,
);
}
_ => {}
}
}
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
use ast::ItemKind::*;
if let Const(.., Some(expr)) | Static(.., Some(expr)) = &item.kind {
self.check_unused_delims_expr(
cx,
expr,
UnusedDelimsCtx::AssignedValue,
false,
None,
None,
);
}
}
}
declare_lint! {
/// The `unused_parens` lint detects `if`, `match`, `while` and `return`
/// with parentheses; they do not need them.
///
/// ### Examples
///
/// ```rust
/// if(true) {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The parenthesis are not needed, and should be removed. This is the
/// preferred style for writing these expressions.
pub(super) UNUSED_PARENS,
Warn,
"`if`, `match`, `while` and `return` do not need parentheses"
}
declare_lint_pass!(UnusedParens => [UNUSED_PARENS]);
impl UnusedDelimLint for UnusedParens {
const DELIM_STR: &'static str = "parentheses";
const LINT_EXPR_IN_PATTERN_MATCHING_CTX: bool = true;
fn lint(&self) -> &'static Lint {
UNUSED_PARENS
}
fn check_unused_delims_expr(
&self,
cx: &EarlyContext<'_>,
value: &ast::Expr,
ctx: UnusedDelimsCtx,
followed_by_block: bool,
left_pos: Option<BytePos>,
right_pos: Option<BytePos>,
) {
match value.kind {
ast::ExprKind::Paren(ref inner) => {
if !Self::is_expr_delims_necessary(inner, followed_by_block)
&& value.attrs.is_empty()
&& !value.span.from_expansion()
&& (ctx != UnusedDelimsCtx::LetScrutineeExpr
|| !matches!(inner.kind, ast::ExprKind::Binary(
rustc_span::source_map::Spanned { node, .. },
_,
_,
) if node.lazy()))
{
self.emit_unused_delims_expr(cx, value, ctx, left_pos, right_pos)
}
}
ast::ExprKind::Let(_, ref expr) => {
self.check_unused_delims_expr(
cx,
expr,
UnusedDelimsCtx::LetScrutineeExpr,
followed_by_block,
None,
None,
);
}
_ => {}
}
}
}
impl UnusedParens {
fn check_unused_parens_pat(
&self,
cx: &EarlyContext<'_>,
value: &ast::Pat,
avoid_or: bool,
avoid_mut: bool,
) {
use ast::{BindingMode, Mutability, PatKind};
if let PatKind::Paren(inner) = &value.kind {
match inner.kind {
// The lint visitor will visit each subpattern of `p`. We do not want to lint
// any range pattern no matter where it occurs in the pattern. For something like
// `&(a..=b)`, there is a recursive `check_pat` on `a` and `b`, but we will assume
// that if there are unnecessary parens they serve a purpose of readability.
PatKind::Range(..) => return,
// Avoid `p0 | .. | pn` if we should.
PatKind::Or(..) if avoid_or => return,
// Avoid `mut x` and `mut x @ p` if we should:
PatKind::Ident(BindingMode::ByValue(Mutability::Mut), ..) if avoid_mut => return,
// Otherwise proceed with linting.
_ => {}
}
let pattern_text =
if let Ok(snippet) = cx.sess().source_map().span_to_snippet(value.span) {
snippet
} else {
pprust::pat_to_string(value)
};
self.emit_unused_delims(cx, value.span, &pattern_text, "pattern", (false, false));
}
}
}
impl EarlyLintPass for UnusedParens {
fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
match e.kind {
ExprKind::Let(ref pat, _) | ExprKind::ForLoop(ref pat, ..) => {
self.check_unused_parens_pat(cx, pat, false, false);
}
// We ignore parens in cases like `if (((let Some(0) = Some(1))))` because we already
// handle a hard error for them during AST lowering in `lower_expr_mut`, but we still
// want to complain about things like `if let 42 = (42)`.
ExprKind::If(ref cond, ref block, ref else_)
if matches!(cond.peel_parens().kind, ExprKind::Let(..)) =>
{
self.check_unused_delims_expr(
cx,
cond.peel_parens(),
UnusedDelimsCtx::LetScrutineeExpr,
true,
None,
None,
);
for stmt in &block.stmts {
<Self as UnusedDelimLint>::check_stmt(self, cx, stmt);
}
if let Some(e) = else_ {
<Self as UnusedDelimLint>::check_expr(self, cx, e);
}
return;
}
_ => {}
}
<Self as UnusedDelimLint>::check_expr(self, cx, e)
}
fn check_pat(&mut self, cx: &EarlyContext<'_>, p: &ast::Pat) {
use ast::{Mutability, PatKind::*};
match &p.kind {
// Do not lint on `(..)` as that will result in the other arms being useless.
Paren(_)
// The other cases do not contain sub-patterns.
| Wild | Rest | Lit(..) | MacCall(..) | Range(..) | Ident(.., None) | Path(..) => {},
// These are list-like patterns; parens can always be removed.
TupleStruct(_, ps) | Tuple(ps) | Slice(ps) | Or(ps) => for p in ps {
self.check_unused_parens_pat(cx, p, false, false);
},
Struct(_, fps, _) => for f in fps {
self.check_unused_parens_pat(cx, &f.pat, false, false);
},
// Avoid linting on `i @ (p0 | .. | pn)` and `box (p0 | .. | pn)`, #64106.
Ident(.., Some(p)) | Box(p) => self.check_unused_parens_pat(cx, p, true, false),
// Avoid linting on `&(mut x)` as `&mut x` has a different meaning, #55342.
// Also avoid linting on `& mut? (p0 | .. | pn)`, #64106.
Ref(p, m) => self.check_unused_parens_pat(cx, p, true, *m == Mutability::Not),
}
}
fn check_stmt(&mut self, cx: &EarlyContext<'_>, s: &ast::Stmt) {
if let StmtKind::Local(ref local) = s.kind {
self.check_unused_parens_pat(cx, &local.pat, true, false);
}
<Self as UnusedDelimLint>::check_stmt(self, cx, s)
}
fn check_param(&mut self, cx: &EarlyContext<'_>, param: &ast::Param) {
self.check_unused_parens_pat(cx, &param.pat, true, false);
}
fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
self.check_unused_parens_pat(cx, &arm.pat, false, false);
}
fn check_ty(&mut self, cx: &EarlyContext<'_>, ty: &ast::Ty) {
if let ast::TyKind::Paren(r) = &ty.kind {
match &r.kind {
ast::TyKind::TraitObject(..) => {}
ast::TyKind::ImplTrait(_, bounds) if bounds.len() > 1 => {}
ast::TyKind::Array(_, len) => {
self.check_unused_delims_expr(
cx,
&len.value,
UnusedDelimsCtx::ArrayLenExpr,
false,
None,
None,
);
}
_ => {
let pattern_text =
if let Ok(snippet) = cx.sess().source_map().span_to_snippet(ty.span) {
snippet
} else {
pprust::ty_to_string(ty)
};
self.emit_unused_delims(cx, ty.span, &pattern_text, "type", (false, false));
}
}
}
}
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
<Self as UnusedDelimLint>::check_item(self, cx, item)
}
}
declare_lint! {
/// The `unused_braces` lint detects unnecessary braces around an
/// expression.
///
/// ### Example
///
/// ```rust
/// if { true } {
/// // ...
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The braces are not needed, and should be removed. This is the
/// preferred style for writing these expressions.
pub(super) UNUSED_BRACES,
Warn,
"unnecessary braces around an expression"
}
declare_lint_pass!(UnusedBraces => [UNUSED_BRACES]);
impl UnusedDelimLint for UnusedBraces {
const DELIM_STR: &'static str = "braces";
const LINT_EXPR_IN_PATTERN_MATCHING_CTX: bool = false;
fn lint(&self) -> &'static Lint {
UNUSED_BRACES
}
fn check_unused_delims_expr(
&self,
cx: &EarlyContext<'_>,
value: &ast::Expr,
ctx: UnusedDelimsCtx,
followed_by_block: bool,
left_pos: Option<BytePos>,
right_pos: Option<BytePos>,
) {
match value.kind {
ast::ExprKind::Block(ref inner, None)
if inner.rules == ast::BlockCheckMode::Default =>
{
// emit a warning under the following conditions:
//
// - the block does not have a label
// - the block is not `unsafe`
// - the block contains exactly one expression (do not lint `{ expr; }`)
// - `followed_by_block` is true and the internal expr may contain a `{`
// - the block is not multiline (do not lint multiline match arms)
// ```
// match expr {
// Pattern => {
// somewhat_long_expression
// }
// // ...
// }
// ```
// - the block has no attribute and was not created inside a macro
// - if the block is an `anon_const`, the inner expr must be a literal
// (do not lint `struct A<const N: usize>; let _: A<{ 2 + 3 }>;`)
//
// FIXME(const_generics): handle paths when #67075 is fixed.
if let [stmt] = inner.stmts.as_slice() {
if let ast::StmtKind::Expr(ref expr) = stmt.kind {
if !Self::is_expr_delims_necessary(expr, followed_by_block)
&& (ctx != UnusedDelimsCtx::AnonConst
|| matches!(expr.kind, ast::ExprKind::Lit(_)))
&& !cx.sess().source_map().is_multiline(value.span)
&& value.attrs.is_empty()
&& !value.span.from_expansion()
{
self.emit_unused_delims_expr(cx, value, ctx, left_pos, right_pos)
}
}
}
}
ast::ExprKind::Let(_, ref expr) => {
self.check_unused_delims_expr(
cx,
expr,
UnusedDelimsCtx::LetScrutineeExpr,
followed_by_block,
None,
None,
);
}
_ => {}
}
}
}
impl EarlyLintPass for UnusedBraces {
fn check_stmt(&mut self, cx: &EarlyContext<'_>, s: &ast::Stmt) {
<Self as UnusedDelimLint>::check_stmt(self, cx, s)
}
fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
<Self as UnusedDelimLint>::check_expr(self, cx, e);
if let ExprKind::Repeat(_, ref anon_const) = e.kind {
self.check_unused_delims_expr(
cx,
&anon_const.value,
UnusedDelimsCtx::AnonConst,
false,
None,
None,
);
}
}
fn check_generic_arg(&mut self, cx: &EarlyContext<'_>, arg: &ast::GenericArg) {
if let ast::GenericArg::Const(ct) = arg {
self.check_unused_delims_expr(
cx,
&ct.value,
UnusedDelimsCtx::AnonConst,
false,
None,
None,
);
}
}
fn check_variant(&mut self, cx: &EarlyContext<'_>, v: &ast::Variant) {
if let Some(anon_const) = &v.disr_expr {
self.check_unused_delims_expr(
cx,
&anon_const.value,
UnusedDelimsCtx::AnonConst,
false,
None,
None,
);
}
}
fn check_ty(&mut self, cx: &EarlyContext<'_>, ty: &ast::Ty) {
match ty.kind {
ast::TyKind::Array(_, ref len) => {
self.check_unused_delims_expr(
cx,
&len.value,
UnusedDelimsCtx::ArrayLenExpr,
false,
None,
None,
);
}
ast::TyKind::Typeof(ref anon_const) => {
self.check_unused_delims_expr(
cx,
&anon_const.value,
UnusedDelimsCtx::AnonConst,
false,
None,
None,
);
}
_ => {}
}
}
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
<Self as UnusedDelimLint>::check_item(self, cx, item)
}
}
declare_lint! {
/// The `unused_import_braces` lint catches unnecessary braces around an
/// imported item.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(unused_import_braces)]
/// use test::{A};
///
/// pub mod test {
/// pub struct A;
/// }
/// # fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// If there is only a single item, then remove the braces (`use test::A;`
/// for example).
///
/// This lint is "allow" by default because it is only enforcing a
/// stylistic choice.
UNUSED_IMPORT_BRACES,
Allow,
"unnecessary braces around an imported item"
}
declare_lint_pass!(UnusedImportBraces => [UNUSED_IMPORT_BRACES]);
impl UnusedImportBraces {
fn check_use_tree(&self, cx: &EarlyContext<'_>, use_tree: &ast::UseTree, item: &ast::Item) {
if let ast::UseTreeKind::Nested(ref items) = use_tree.kind {
// Recursively check nested UseTrees
for &(ref tree, _) in items {
self.check_use_tree(cx, tree, item);
}
// Trigger the lint only if there is one nested item
if items.len() != 1 {
return;
}
// Trigger the lint if the nested item is a non-self single item
let node_name = match items[0].0.kind {
ast::UseTreeKind::Simple(rename, ..) => {
let orig_ident = items[0].0.prefix.segments.last().unwrap().ident;
if orig_ident.name == kw::SelfLower {
return;
}
rename.unwrap_or(orig_ident).name
}
ast::UseTreeKind::Glob => Symbol::intern("*"),
ast::UseTreeKind::Nested(_) => return,
};
cx.struct_span_lint(UNUSED_IMPORT_BRACES, item.span, |lint| {
lint.build(&format!("braces around {} is unnecessary", node_name)).emit()
});
}
}
}
impl EarlyLintPass for UnusedImportBraces {
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
if let ast::ItemKind::Use(ref use_tree) = item.kind {
self.check_use_tree(cx, use_tree, item);
}
}
}
declare_lint! {
/// The `unused_allocation` lint detects unnecessary allocations that can
/// be eliminated.
///
/// ### Example
///
/// ```rust
/// #![feature(box_syntax)]
/// fn main() {
/// let a = (box [1, 2, 3]).len();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// When a `box` expression is immediately coerced to a reference, then
/// the allocation is unnecessary, and a reference (using `&` or `&mut`)
/// should be used instead to avoid the allocation.
pub(super) UNUSED_ALLOCATION,
Warn,
"detects unnecessary allocations that can be eliminated"
}
declare_lint_pass!(UnusedAllocation => [UNUSED_ALLOCATION]);
impl<'tcx> LateLintPass<'tcx> for UnusedAllocation {
fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
match e.kind {
hir::ExprKind::Box(_) => {}
_ => return,
}
for adj in cx.typeck_results().expr_adjustments(e) {
if let adjustment::Adjust::Borrow(adjustment::AutoBorrow::Ref(_, m)) = adj.kind {
cx.struct_span_lint(UNUSED_ALLOCATION, e.span, |lint| {
let msg = match m {
adjustment::AutoBorrowMutability::Not => {
"unnecessary allocation, use `&` instead"
}
adjustment::AutoBorrowMutability::Mut { .. } => {
"unnecessary allocation, use `&mut` instead"
}
};
lint.build(msg).emit()
});
}
}
}
}