rust/clippy_lints/src/checked_conversions.rs
2024-09-25 13:52:12 -04:00

310 lines
10 KiB
Rust

use clippy_config::Conf;
use clippy_config::msrvs::{self, Msrv};
use clippy_utils::diagnostics::span_lint_and_sugg;
use clippy_utils::source::snippet_with_applicability;
use clippy_utils::{SpanlessEq, is_in_const_context, is_integer_literal};
use rustc_errors::Applicability;
use rustc_hir::{BinOpKind, Expr, ExprKind, QPath, TyKind};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_session::impl_lint_pass;
declare_clippy_lint! {
/// ### What it does
/// Checks for explicit bounds checking when casting.
///
/// ### Why is this bad?
/// Reduces the readability of statements & is error prone.
///
/// ### Example
/// ```no_run
/// # let foo: u32 = 5;
/// foo <= i32::MAX as u32;
/// ```
///
/// Use instead:
/// ```no_run
/// # let foo = 1;
/// # #[allow(unused)]
/// i32::try_from(foo).is_ok();
/// ```
#[clippy::version = "1.37.0"]
pub CHECKED_CONVERSIONS,
pedantic,
"`try_from` could replace manual bounds checking when casting"
}
pub struct CheckedConversions {
msrv: Msrv,
}
impl CheckedConversions {
pub fn new(conf: &'static Conf) -> Self {
Self {
msrv: conf.msrv.clone(),
}
}
}
impl_lint_pass!(CheckedConversions => [CHECKED_CONVERSIONS]);
impl LateLintPass<'_> for CheckedConversions {
fn check_expr(&mut self, cx: &LateContext<'_>, item: &Expr<'_>) {
if let ExprKind::Binary(op, lhs, rhs) = item.kind
&& let (lt1, gt1, op2) = match op.node {
BinOpKind::Le => (lhs, rhs, None),
BinOpKind::Ge => (rhs, lhs, None),
BinOpKind::And
if let ExprKind::Binary(op1, lhs1, rhs1) = lhs.kind
&& let ExprKind::Binary(op2, lhs2, rhs2) = rhs.kind
&& let Some((lt1, gt1)) = read_le_ge(op1.node, lhs1, rhs1)
&& let Some((lt2, gt2)) = read_le_ge(op2.node, lhs2, rhs2) =>
{
(lt1, gt1, Some((lt2, gt2)))
},
_ => return,
}
&& !in_external_macro(cx.sess(), item.span)
&& !is_in_const_context(cx)
&& self.msrv.meets(msrvs::TRY_FROM)
&& let Some(cv) = match op2 {
// todo: check for case signed -> larger unsigned == only x >= 0
None => check_upper_bound(lt1, gt1).filter(|cv| cv.cvt == ConversionType::FromUnsigned),
Some((lt2, gt2)) => {
let upper_lower = |lt1, gt1, lt2, gt2| {
check_upper_bound(lt1, gt1)
.zip(check_lower_bound(lt2, gt2))
.and_then(|(l, r)| l.combine(r, cx))
};
upper_lower(lt1, gt1, lt2, gt2).or_else(|| upper_lower(lt2, gt2, lt1, gt1))
},
}
&& let Some(to_type) = cv.to_type
{
let mut applicability = Applicability::MachineApplicable;
let snippet = snippet_with_applicability(cx, cv.expr_to_cast.span, "_", &mut applicability);
span_lint_and_sugg(
cx,
CHECKED_CONVERSIONS,
item.span,
"checked cast can be simplified",
"try",
format!("{to_type}::try_from({snippet}).is_ok()"),
applicability,
);
}
}
extract_msrv_attr!(LateContext);
}
/// Contains the result of a tried conversion check
#[derive(Clone, Debug)]
struct Conversion<'a> {
cvt: ConversionType,
expr_to_cast: &'a Expr<'a>,
to_type: Option<&'a str>,
}
/// The kind of conversion that is checked
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ConversionType {
SignedToUnsigned,
SignedToSigned,
FromUnsigned,
}
/// Attempts to read either `<=` or `>=` with a normalized operand order.
fn read_le_ge<'tcx>(
op: BinOpKind,
lhs: &'tcx Expr<'tcx>,
rhs: &'tcx Expr<'tcx>,
) -> Option<(&'tcx Expr<'tcx>, &'tcx Expr<'tcx>)> {
match op {
BinOpKind::Le => Some((lhs, rhs)),
BinOpKind::Ge => Some((rhs, lhs)),
_ => None,
}
}
impl<'a> Conversion<'a> {
/// Combine multiple conversions if the are compatible
pub fn combine(self, other: Self, cx: &LateContext<'_>) -> Option<Conversion<'a>> {
if self.is_compatible(&other, cx) {
// Prefer a Conversion that contains a type-constraint
Some(if self.to_type.is_some() { self } else { other })
} else {
None
}
}
/// Checks if two conversions are compatible
/// same type of conversion, same 'castee' and same 'to type'
pub fn is_compatible(&self, other: &Self, cx: &LateContext<'_>) -> bool {
(self.cvt == other.cvt)
&& (SpanlessEq::new(cx).eq_expr(self.expr_to_cast, other.expr_to_cast))
&& (self.has_compatible_to_type(other))
}
/// Checks if the to-type is the same (if there is a type constraint)
fn has_compatible_to_type(&self, other: &Self) -> bool {
match (self.to_type, other.to_type) {
(Some(l), Some(r)) => l == r,
_ => true,
}
}
/// Try to construct a new conversion if the conversion type is valid
fn try_new(expr_to_cast: &'a Expr<'_>, from_type: &str, to_type: &'a str) -> Option<Conversion<'a>> {
ConversionType::try_new(from_type, to_type).map(|cvt| Conversion {
cvt,
expr_to_cast,
to_type: Some(to_type),
})
}
/// Construct a new conversion without type constraint
fn new_any(expr_to_cast: &'a Expr<'_>) -> Conversion<'a> {
Conversion {
cvt: ConversionType::SignedToUnsigned,
expr_to_cast,
to_type: None,
}
}
}
impl ConversionType {
/// Creates a conversion type if the type is allowed & conversion is valid
#[must_use]
fn try_new(from: &str, to: &str) -> Option<Self> {
if UINTS.contains(&from) {
Some(Self::FromUnsigned)
} else if SINTS.contains(&from) {
if UINTS.contains(&to) {
Some(Self::SignedToUnsigned)
} else if SINTS.contains(&to) {
Some(Self::SignedToSigned)
} else {
None
}
} else {
None
}
}
}
/// Check for `expr <= (to_type::MAX as from_type)`
fn check_upper_bound<'tcx>(lt: &'tcx Expr<'tcx>, gt: &'tcx Expr<'tcx>) -> Option<Conversion<'tcx>> {
if let Some((from, to)) = get_types_from_cast(gt, INTS, "max_value", "MAX") {
Conversion::try_new(lt, from, to)
} else {
None
}
}
/// Check for `expr >= 0|(to_type::MIN as from_type)`
fn check_lower_bound<'tcx>(lt: &'tcx Expr<'tcx>, gt: &'tcx Expr<'tcx>) -> Option<Conversion<'tcx>> {
check_lower_bound_zero(gt, lt).or_else(|| check_lower_bound_min(gt, lt))
}
/// Check for `expr >= 0`
fn check_lower_bound_zero<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option<Conversion<'a>> {
is_integer_literal(check, 0).then(|| Conversion::new_any(candidate))
}
/// Check for `expr >= (to_type::MIN as from_type)`
fn check_lower_bound_min<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option<Conversion<'a>> {
if let Some((from, to)) = get_types_from_cast(check, SINTS, "min_value", "MIN") {
Conversion::try_new(candidate, from, to)
} else {
None
}
}
/// Tries to extract the from- and to-type from a cast expression
fn get_types_from_cast<'a>(
expr: &'a Expr<'_>,
types: &'a [&str],
func: &'a str,
assoc_const: &'a str,
) -> Option<(&'a str, &'a str)> {
// `to_type::max_value() as from_type`
// or `to_type::MAX as from_type`
let call_from_cast: Option<(&Expr<'_>, &str)> = if let ExprKind::Cast(limit, from_type) = &expr.kind
// to_type::max_value(), from_type
&& let TyKind::Path(ref from_type_path) = &from_type.kind
&& let Some(from_sym) = int_ty_to_sym(from_type_path)
{
Some((limit, from_sym))
} else {
None
};
// `from_type::from(to_type::max_value())`
let limit_from: Option<(&Expr<'_>, &str)> = call_from_cast.or_else(|| {
if let ExprKind::Call(from_func, [limit]) = &expr.kind
// `from_type::from, to_type::max_value()`
// `from_type::from`
&& let ExprKind::Path(ref path) = &from_func.kind
&& let Some(from_sym) = get_implementing_type(path, INTS, "from")
{
Some((limit, from_sym))
} else {
None
}
});
if let Some((limit, from_type)) = limit_from {
match limit.kind {
// `from_type::from(_)`
ExprKind::Call(path, _) => {
if let ExprKind::Path(ref path) = path.kind {
// `to_type`
if let Some(to_type) = get_implementing_type(path, types, func) {
return Some((from_type, to_type));
}
}
},
// `to_type::MAX`
ExprKind::Path(ref path) => {
if let Some(to_type) = get_implementing_type(path, types, assoc_const) {
return Some((from_type, to_type));
}
},
_ => {},
}
};
None
}
/// Gets the type which implements the called function
fn get_implementing_type<'a>(path: &QPath<'_>, candidates: &'a [&str], function: &str) -> Option<&'a str> {
if let QPath::TypeRelative(ty, path) = &path
&& path.ident.name.as_str() == function
&& let TyKind::Path(QPath::Resolved(None, tp)) = &ty.kind
&& let [int] = tp.segments
{
let name = int.ident.name.as_str();
candidates.iter().find(|c| &name == *c).copied()
} else {
None
}
}
/// Gets the type as a string, if it is a supported integer
fn int_ty_to_sym<'tcx>(path: &QPath<'_>) -> Option<&'tcx str> {
if let QPath::Resolved(_, path) = *path
&& let [ty] = path.segments
{
let name = ty.ident.name.as_str();
INTS.iter().find(|c| &name == *c).copied()
} else {
None
}
}
// Constants
const UINTS: &[&str] = &["u8", "u16", "u32", "u64", "usize"];
const SINTS: &[&str] = &["i8", "i16", "i32", "i64", "isize"];
const INTS: &[&str] = &["u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", "isize"];