658 lines
20 KiB
Rust
658 lines
20 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
//! Task-local reference-counted boxes (the `Rc` type).
|
||
//!
|
||
//! The `Rc` type provides shared ownership of an immutable value. Destruction is
|
||
//! deterministic, and will occur as soon as the last owner is gone. It is marked
|
||
//! as non-sendable because it avoids the overhead of atomic reference counting.
|
||
//!
|
||
//! The `downgrade` method can be used to create a non-owning `Weak` pointer to the
|
||
//! box. A `Weak` pointer can be upgraded to an `Rc` pointer, but will return
|
||
//! `None` if the value has already been freed.
|
||
//!
|
||
//! For example, a tree with parent pointers can be represented by putting the
|
||
//! nodes behind strong `Rc` pointers, and then storing the parent pointers as
|
||
//! `Weak` pointers.
|
||
//!
|
||
//! # Examples
|
||
//!
|
||
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
|
||
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
|
||
//! unique ownership, because more than one gadget may belong to the same
|
||
//! `Owner`. `Rc` allows us to share an `Owner` between multiple `Gadget`s, and
|
||
//! have the `Owner` kept alive as long as any `Gadget` points at it.
|
||
//!
|
||
//! ```rust
|
||
//! use std::rc::Rc;
|
||
//!
|
||
//! struct Owner {
|
||
//! name: String
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! struct Gadget {
|
||
//! id: int,
|
||
//! owner: Rc<Owner>
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! fn main() {
|
||
//! // Create a reference counted Owner.
|
||
//! let gadget_owner : Rc<Owner> = Rc::new(
|
||
//! Owner { name: String::from_str("Gadget Man") }
|
||
//! );
|
||
//!
|
||
//! // Create Gadgets belonging to gadget_owner. To increment the reference
|
||
//! // count we clone the Rc object.
|
||
//! let gadget1 = Gadget { id: 1, owner: gadget_owner.clone() };
|
||
//! let gadget2 = Gadget { id: 2, owner: gadget_owner.clone() };
|
||
//!
|
||
//! drop(gadget_owner);
|
||
//!
|
||
//! // Despite dropping gadget_owner, we're still able to print out the name of
|
||
//! // the Owner of the Gadgets. This is because we've only dropped the
|
||
//! // reference count object, not the Owner it wraps. As long as there are
|
||
//! // other Rc objects pointing at the same Owner, it will stay alive. Notice
|
||
//! // that the Rc wrapper around Gadget.owner gets automatically dereferenced
|
||
//! // for us.
|
||
//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
|
||
//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
|
||
//!
|
||
//! // At the end of the method, gadget1 and gadget2 get destroyed, and with
|
||
//! // them the last counted references to our Owner. Gadget Man now gets
|
||
//! // destroyed as well.
|
||
//! }
|
||
//! ```
|
||
//!
|
||
//! If our requirements change, and we also need to be able to traverse from
|
||
//! Owner → Gadget, we will run into problems: an `Rc` pointer from Owner → Gadget
|
||
//! introduces a cycle between the objects. This means that their reference counts
|
||
//! can never reach 0, and the objects will stay alive: a memory leak. In order to
|
||
//! get around this, we can use `Weak` pointers. These are reference counted
|
||
//! pointers that don't keep an object alive if there are no normal `Rc` (or
|
||
//! *strong*) pointers left.
|
||
//!
|
||
//! Rust actually makes it somewhat difficult to produce this loop in the first
|
||
//! place: in order to end up with two objects that point at each other, one of
|
||
//! them needs to be mutable. This is problematic because `Rc` enforces memory
|
||
//! safety by only giving out shared references to the object it wraps, and these
|
||
//! don't allow direct mutation. We need to wrap the part of the object we wish to
|
||
//! mutate in a `RefCell`, which provides *interior mutability*: a method to
|
||
//! achieve mutability through a shared reference. `RefCell` enforces Rust's
|
||
//! borrowing rules at runtime. Read the `Cell` documentation for more details on
|
||
//! interior mutability.
|
||
//!
|
||
//! ```rust
|
||
//! use std::rc::Rc;
|
||
//! use std::rc::Weak;
|
||
//! use std::cell::RefCell;
|
||
//!
|
||
//! struct Owner {
|
||
//! name: String,
|
||
//! gadgets: RefCell<Vec<Weak<Gadget>>>
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! struct Gadget {
|
||
//! id: int,
|
||
//! owner: Rc<Owner>
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! fn main() {
|
||
//! // Create a reference counted Owner. Note the fact that we've put the
|
||
//! // Owner's vector of Gadgets inside a RefCell so that we can mutate it
|
||
//! // through a shared reference.
|
||
//! let gadget_owner : Rc<Owner> = Rc::new(
|
||
//! Owner {
|
||
//! name: "Gadget Man".to_string(),
|
||
//! gadgets: RefCell::new(Vec::new())
|
||
//! }
|
||
//! );
|
||
//!
|
||
//! // Create Gadgets belonging to gadget_owner as before.
|
||
//! let gadget1 = Rc::new(Gadget{id: 1, owner: gadget_owner.clone()});
|
||
//! let gadget2 = Rc::new(Gadget{id: 2, owner: gadget_owner.clone()});
|
||
//!
|
||
//! // Add the Gadgets to their Owner. To do this we mutably borrow from
|
||
//! // the RefCell holding the Owner's Gadgets.
|
||
//! gadget_owner.gadgets.borrow_mut().push(gadget1.clone().downgrade());
|
||
//! gadget_owner.gadgets.borrow_mut().push(gadget2.clone().downgrade());
|
||
//!
|
||
//! // Iterate over our Gadgets, printing their details out
|
||
//! for gadget_opt in gadget_owner.gadgets.borrow().iter() {
|
||
//!
|
||
//! // gadget_opt is a Weak<Gadget>. Since weak pointers can't guarantee
|
||
//! // that their object is still alive, we need to call upgrade() on them
|
||
//! // to turn them into a strong reference. This returns an Option, which
|
||
//! // contains a reference to our object if it still exists.
|
||
//! let gadget = gadget_opt.upgrade().unwrap();
|
||
//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
|
||
//! }
|
||
//!
|
||
//! // At the end of the method, gadget_owner, gadget1 and gadget2 get
|
||
//! // destroyed. There are now no strong (Rc) references to the gadgets.
|
||
//! // Once they get destroyed, the Gadgets get destroyed. This zeroes the
|
||
//! // reference count on Gadget Man, so he gets destroyed as well.
|
||
//! }
|
||
//! ```
|
||
|
||
#![stable]
|
||
|
||
use core::cell::Cell;
|
||
use core::clone::Clone;
|
||
use core::cmp::{PartialEq, PartialOrd, Eq, Ord, Ordering};
|
||
use core::default::Default;
|
||
use core::fmt;
|
||
use core::kinds::marker;
|
||
use core::mem::{transmute, min_align_of, size_of, forget};
|
||
use core::ops::{Deref, Drop};
|
||
use core::option::{Option, Some, None};
|
||
use core::ptr;
|
||
use core::ptr::RawPtr;
|
||
use core::result::{Result, Ok, Err};
|
||
|
||
use heap::deallocate;
|
||
|
||
struct RcBox<T> {
|
||
value: T,
|
||
strong: Cell<uint>,
|
||
weak: Cell<uint>
|
||
}
|
||
|
||
/// An immutable reference-counted pointer type.
|
||
#[unsafe_no_drop_flag]
|
||
#[stable]
|
||
pub struct Rc<T> {
|
||
// FIXME #12808: strange names to try to avoid interfering with
|
||
// field accesses of the contained type via Deref
|
||
_ptr: *mut RcBox<T>,
|
||
_nosend: marker::NoSend,
|
||
_noshare: marker::NoSync
|
||
}
|
||
|
||
#[stable]
|
||
impl<T> Rc<T> {
|
||
/// Constructs a new reference-counted pointer.
|
||
pub fn new(value: T) -> Rc<T> {
|
||
unsafe {
|
||
Rc {
|
||
// there is an implicit weak pointer owned by all the
|
||
// strong pointers, which ensures that the weak
|
||
// destructor never frees the allocation while the
|
||
// strong destructor is running, even if the weak
|
||
// pointer is stored inside the strong one.
|
||
_ptr: transmute(box RcBox {
|
||
value: value,
|
||
strong: Cell::new(1),
|
||
weak: Cell::new(1)
|
||
}),
|
||
_nosend: marker::NoSend,
|
||
_noshare: marker::NoSync
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Rc<T> {
|
||
/// Downgrades the reference-counted pointer to a weak reference.
|
||
#[experimental = "Weak pointers may not belong in this module"]
|
||
pub fn downgrade(&self) -> Weak<T> {
|
||
self.inc_weak();
|
||
Weak {
|
||
_ptr: self._ptr,
|
||
_nosend: marker::NoSend,
|
||
_noshare: marker::NoSync
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Returns true if the `Rc` currently has unique ownership.
|
||
///
|
||
/// Unique ownership means that there are no other `Rc` or `Weak` values
|
||
/// that share the same contents.
|
||
#[inline]
|
||
#[experimental]
|
||
pub fn is_unique<T>(rc: &Rc<T>) -> bool {
|
||
// note that we hold both a strong and a weak reference
|
||
rc.strong() == 1 && rc.weak() == 1
|
||
}
|
||
|
||
/// Unwraps the contained value if the `Rc` has unique ownership.
|
||
///
|
||
/// If the `Rc` does not have unique ownership, `Err` is returned with the
|
||
/// same `Rc`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// use std::rc::{mod, Rc};
|
||
/// let x = Rc::new(3u);
|
||
/// assert_eq!(rc::try_unwrap(x), Ok(3u));
|
||
/// let x = Rc::new(4u);
|
||
/// let _y = x.clone();
|
||
/// assert_eq!(rc::try_unwrap(x), Err(Rc::new(4u)));
|
||
/// ```
|
||
#[inline]
|
||
#[experimental]
|
||
pub fn try_unwrap<T>(rc: Rc<T>) -> Result<T, Rc<T>> {
|
||
if is_unique(&rc) {
|
||
unsafe {
|
||
let val = ptr::read(&*rc); // copy the contained object
|
||
// destruct the box and skip our Drop
|
||
// we can ignore the refcounts because we know we're unique
|
||
deallocate(rc._ptr as *mut u8, size_of::<RcBox<T>>(),
|
||
min_align_of::<RcBox<T>>());
|
||
forget(rc);
|
||
Ok(val)
|
||
}
|
||
} else {
|
||
Err(rc)
|
||
}
|
||
}
|
||
|
||
/// Returns a mutable reference to the contained value if the `Rc` has
|
||
/// unique ownership.
|
||
///
|
||
/// Returns `None` if the `Rc` does not have unique ownership.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// use std::rc::{mod, Rc};
|
||
/// let mut x = Rc::new(3u);
|
||
/// *rc::get_mut(&mut x).unwrap() = 4u;
|
||
/// assert_eq!(*x, 4u);
|
||
/// let _y = x.clone();
|
||
/// assert!(rc::get_mut(&mut x).is_none());
|
||
/// ```
|
||
#[inline]
|
||
#[experimental]
|
||
pub fn get_mut<'a, T>(rc: &'a mut Rc<T>) -> Option<&'a mut T> {
|
||
if is_unique(rc) {
|
||
let inner = unsafe { &mut *rc._ptr };
|
||
Some(&mut inner.value)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
impl<T: Clone> Rc<T> {
|
||
/// Acquires a mutable pointer to the inner contents by guaranteeing that
|
||
/// the reference count is one (no sharing is possible).
|
||
///
|
||
/// This is also referred to as a copy-on-write operation because the inner
|
||
/// data is cloned if the reference count is greater than one.
|
||
#[inline]
|
||
#[experimental]
|
||
pub fn make_unique(&mut self) -> &mut T {
|
||
if !is_unique(self) {
|
||
*self = Rc::new((**self).clone())
|
||
}
|
||
// This unsafety is ok because we're guaranteed that the pointer
|
||
// returned is the *only* pointer that will ever be returned to T. Our
|
||
// reference count is guaranteed to be 1 at this point, and we required
|
||
// the Rc itself to be `mut`, so we're returning the only possible
|
||
// reference to the inner data.
|
||
let inner = unsafe { &mut *self._ptr };
|
||
&mut inner.value
|
||
}
|
||
}
|
||
|
||
#[experimental = "Deref is experimental."]
|
||
impl<T> Deref<T> for Rc<T> {
|
||
/// Borrows the value contained in the reference-counted pointer.
|
||
#[inline(always)]
|
||
fn deref(&self) -> &T {
|
||
&self.inner().value
|
||
}
|
||
}
|
||
|
||
#[unsafe_destructor]
|
||
#[experimental = "Drop is experimental."]
|
||
impl<T> Drop for Rc<T> {
|
||
fn drop(&mut self) {
|
||
unsafe {
|
||
if !self._ptr.is_null() {
|
||
self.dec_strong();
|
||
if self.strong() == 0 {
|
||
ptr::read(&**self); // destroy the contained object
|
||
|
||
// remove the implicit "strong weak" pointer now
|
||
// that we've destroyed the contents.
|
||
self.dec_weak();
|
||
|
||
if self.weak() == 0 {
|
||
deallocate(self._ptr as *mut u8, size_of::<RcBox<T>>(),
|
||
min_align_of::<RcBox<T>>())
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[unstable = "Clone is unstable."]
|
||
impl<T> Clone for Rc<T> {
|
||
#[inline]
|
||
fn clone(&self) -> Rc<T> {
|
||
self.inc_strong();
|
||
Rc { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync }
|
||
}
|
||
}
|
||
|
||
#[stable]
|
||
impl<T: Default> Default for Rc<T> {
|
||
#[inline]
|
||
fn default() -> Rc<T> {
|
||
Rc::new(Default::default())
|
||
}
|
||
}
|
||
|
||
#[unstable = "PartialEq is unstable."]
|
||
impl<T: PartialEq> PartialEq for Rc<T> {
|
||
#[inline(always)]
|
||
fn eq(&self, other: &Rc<T>) -> bool { **self == **other }
|
||
#[inline(always)]
|
||
fn ne(&self, other: &Rc<T>) -> bool { **self != **other }
|
||
}
|
||
|
||
#[unstable = "Eq is unstable."]
|
||
impl<T: Eq> Eq for Rc<T> {}
|
||
|
||
#[unstable = "PartialOrd is unstable."]
|
||
impl<T: PartialOrd> PartialOrd for Rc<T> {
|
||
#[inline(always)]
|
||
fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
|
||
(**self).partial_cmp(&**other)
|
||
}
|
||
|
||
#[inline(always)]
|
||
fn lt(&self, other: &Rc<T>) -> bool { **self < **other }
|
||
|
||
#[inline(always)]
|
||
fn le(&self, other: &Rc<T>) -> bool { **self <= **other }
|
||
|
||
#[inline(always)]
|
||
fn gt(&self, other: &Rc<T>) -> bool { **self > **other }
|
||
|
||
#[inline(always)]
|
||
fn ge(&self, other: &Rc<T>) -> bool { **self >= **other }
|
||
}
|
||
|
||
#[unstable = "Ord is unstable."]
|
||
impl<T: Ord> Ord for Rc<T> {
|
||
#[inline]
|
||
fn cmp(&self, other: &Rc<T>) -> Ordering { (**self).cmp(&**other) }
|
||
}
|
||
|
||
#[experimental = "Show is experimental."]
|
||
impl<T: fmt::Show> fmt::Show for Rc<T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
(**self).fmt(f)
|
||
}
|
||
}
|
||
|
||
/// A weak reference to a reference-counted pointer.
|
||
#[unsafe_no_drop_flag]
|
||
#[experimental = "Weak pointers may not belong in this module."]
|
||
pub struct Weak<T> {
|
||
// FIXME #12808: strange names to try to avoid interfering with
|
||
// field accesses of the contained type via Deref
|
||
_ptr: *mut RcBox<T>,
|
||
_nosend: marker::NoSend,
|
||
_noshare: marker::NoSync
|
||
}
|
||
|
||
#[experimental = "Weak pointers may not belong in this module."]
|
||
impl<T> Weak<T> {
|
||
/// Upgrades a weak reference to a strong reference.
|
||
///
|
||
/// Returns `None` if there were no strong references and the data was
|
||
/// destroyed.
|
||
pub fn upgrade(&self) -> Option<Rc<T>> {
|
||
if self.strong() == 0 {
|
||
None
|
||
} else {
|
||
self.inc_strong();
|
||
Some(Rc { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync })
|
||
}
|
||
}
|
||
}
|
||
|
||
#[unsafe_destructor]
|
||
#[experimental = "Weak pointers may not belong in this module."]
|
||
impl<T> Drop for Weak<T> {
|
||
fn drop(&mut self) {
|
||
unsafe {
|
||
if !self._ptr.is_null() {
|
||
self.dec_weak();
|
||
// the weak count starts at 1, and will only go to
|
||
// zero if all the strong pointers have disappeared.
|
||
if self.weak() == 0 {
|
||
deallocate(self._ptr as *mut u8, size_of::<RcBox<T>>(),
|
||
min_align_of::<RcBox<T>>())
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[experimental = "Weak pointers may not belong in this module."]
|
||
impl<T> Clone for Weak<T> {
|
||
#[inline]
|
||
fn clone(&self) -> Weak<T> {
|
||
self.inc_weak();
|
||
Weak { _ptr: self._ptr, _nosend: marker::NoSend, _noshare: marker::NoSync }
|
||
}
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
trait RcBoxPtr<T> {
|
||
fn inner(&self) -> &RcBox<T>;
|
||
|
||
#[inline]
|
||
fn strong(&self) -> uint { self.inner().strong.get() }
|
||
|
||
#[inline]
|
||
fn inc_strong(&self) { self.inner().strong.set(self.strong() + 1); }
|
||
|
||
#[inline]
|
||
fn dec_strong(&self) { self.inner().strong.set(self.strong() - 1); }
|
||
|
||
#[inline]
|
||
fn weak(&self) -> uint { self.inner().weak.get() }
|
||
|
||
#[inline]
|
||
fn inc_weak(&self) { self.inner().weak.set(self.weak() + 1); }
|
||
|
||
#[inline]
|
||
fn dec_weak(&self) { self.inner().weak.set(self.weak() - 1); }
|
||
}
|
||
|
||
impl<T> RcBoxPtr<T> for Rc<T> {
|
||
#[inline(always)]
|
||
fn inner(&self) -> &RcBox<T> { unsafe { &(*self._ptr) } }
|
||
}
|
||
|
||
impl<T> RcBoxPtr<T> for Weak<T> {
|
||
#[inline(always)]
|
||
fn inner(&self) -> &RcBox<T> { unsafe { &(*self._ptr) } }
|
||
}
|
||
|
||
#[cfg(test)]
|
||
#[allow(experimental)]
|
||
mod tests {
|
||
use super::{Rc, Weak};
|
||
use std::cell::RefCell;
|
||
use std::option::{Option, Some, None};
|
||
use std::result::{Err, Ok};
|
||
use std::mem::drop;
|
||
use std::clone::Clone;
|
||
|
||
#[test]
|
||
fn test_clone() {
|
||
let x = Rc::new(RefCell::new(5i));
|
||
let y = x.clone();
|
||
*x.borrow_mut() = 20;
|
||
assert_eq!(*y.borrow(), 20);
|
||
}
|
||
|
||
#[test]
|
||
fn test_simple() {
|
||
let x = Rc::new(5i);
|
||
assert_eq!(*x, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_simple_clone() {
|
||
let x = Rc::new(5i);
|
||
let y = x.clone();
|
||
assert_eq!(*x, 5);
|
||
assert_eq!(*y, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_destructor() {
|
||
let x = Rc::new(box 5i);
|
||
assert_eq!(**x, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_live() {
|
||
let x = Rc::new(5i);
|
||
let y = x.downgrade();
|
||
assert!(y.upgrade().is_some());
|
||
}
|
||
|
||
#[test]
|
||
fn test_dead() {
|
||
let x = Rc::new(5i);
|
||
let y = x.downgrade();
|
||
drop(x);
|
||
assert!(y.upgrade().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn weak_self_cyclic() {
|
||
struct Cycle {
|
||
x: RefCell<Option<Weak<Cycle>>>
|
||
}
|
||
|
||
let a = Rc::new(Cycle { x: RefCell::new(None) });
|
||
let b = a.clone().downgrade();
|
||
*a.x.borrow_mut() = Some(b);
|
||
|
||
// hopefully we don't double-free (or leak)...
|
||
}
|
||
|
||
#[test]
|
||
fn is_unique() {
|
||
let x = Rc::new(3u);
|
||
assert!(super::is_unique(&x));
|
||
let y = x.clone();
|
||
assert!(!super::is_unique(&x));
|
||
drop(y);
|
||
assert!(super::is_unique(&x));
|
||
let w = x.downgrade();
|
||
assert!(!super::is_unique(&x));
|
||
drop(w);
|
||
assert!(super::is_unique(&x));
|
||
}
|
||
|
||
#[test]
|
||
fn try_unwrap() {
|
||
let x = Rc::new(3u);
|
||
assert_eq!(super::try_unwrap(x), Ok(3u));
|
||
let x = Rc::new(4u);
|
||
let _y = x.clone();
|
||
assert_eq!(super::try_unwrap(x), Err(Rc::new(4u)));
|
||
let x = Rc::new(5u);
|
||
let _w = x.downgrade();
|
||
assert_eq!(super::try_unwrap(x), Err(Rc::new(5u)));
|
||
}
|
||
|
||
#[test]
|
||
fn get_mut() {
|
||
let mut x = Rc::new(3u);
|
||
*super::get_mut(&mut x).unwrap() = 4u;
|
||
assert_eq!(*x, 4u);
|
||
let y = x.clone();
|
||
assert!(super::get_mut(&mut x).is_none());
|
||
drop(y);
|
||
assert!(super::get_mut(&mut x).is_some());
|
||
let _w = x.downgrade();
|
||
assert!(super::get_mut(&mut x).is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_cowrc_clone_make_unique() {
|
||
let mut cow0 = Rc::new(75u);
|
||
let mut cow1 = cow0.clone();
|
||
let mut cow2 = cow1.clone();
|
||
|
||
assert!(75 == *cow0.make_unique());
|
||
assert!(75 == *cow1.make_unique());
|
||
assert!(75 == *cow2.make_unique());
|
||
|
||
*cow0.make_unique() += 1;
|
||
*cow1.make_unique() += 2;
|
||
*cow2.make_unique() += 3;
|
||
|
||
assert!(76 == *cow0);
|
||
assert!(77 == *cow1);
|
||
assert!(78 == *cow2);
|
||
|
||
// none should point to the same backing memory
|
||
assert!(*cow0 != *cow1);
|
||
assert!(*cow0 != *cow2);
|
||
assert!(*cow1 != *cow2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_cowrc_clone_unique2() {
|
||
let mut cow0 = Rc::new(75u);
|
||
let cow1 = cow0.clone();
|
||
let cow2 = cow1.clone();
|
||
|
||
assert!(75 == *cow0);
|
||
assert!(75 == *cow1);
|
||
assert!(75 == *cow2);
|
||
|
||
*cow0.make_unique() += 1;
|
||
|
||
assert!(76 == *cow0);
|
||
assert!(75 == *cow1);
|
||
assert!(75 == *cow2);
|
||
|
||
// cow1 and cow2 should share the same contents
|
||
// cow0 should have a unique reference
|
||
assert!(*cow0 != *cow1);
|
||
assert!(*cow0 != *cow2);
|
||
assert!(*cow1 == *cow2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_cowrc_clone_weak() {
|
||
let mut cow0 = Rc::new(75u);
|
||
let cow1_weak = cow0.downgrade();
|
||
|
||
assert!(75 == *cow0);
|
||
assert!(75 == *cow1_weak.upgrade().unwrap());
|
||
|
||
*cow0.make_unique() += 1;
|
||
|
||
assert!(76 == *cow0);
|
||
assert!(cow1_weak.upgrade().is_none());
|
||
}
|
||
|
||
}
|