281 lines
10 KiB
Rust
281 lines
10 KiB
Rust
use clippy_utils::diagnostics::{span_lint, span_lint_and_then, span_lint_hir_and_then};
|
|
use clippy_utils::source::{snippet, snippet_with_context};
|
|
use clippy_utils::sugg::Sugg;
|
|
use clippy_utils::{
|
|
any_parent_is_automatically_derived, fulfill_or_allowed, get_parent_expr, is_lint_allowed, iter_input_pats,
|
|
last_path_segment, SpanlessEq,
|
|
};
|
|
use if_chain::if_chain;
|
|
use rustc_errors::Applicability;
|
|
use rustc_hir::def::Res;
|
|
use rustc_hir::intravisit::FnKind;
|
|
use rustc_hir::{
|
|
BinOpKind, BindingAnnotation, Body, ByRef, Expr, ExprKind, FnDecl, Mutability, PatKind, QPath, Stmt, StmtKind,
|
|
};
|
|
use rustc_lint::{LateContext, LateLintPass, LintContext};
|
|
use rustc_middle::lint::in_external_macro;
|
|
use rustc_session::{declare_lint_pass, declare_tool_lint};
|
|
use rustc_span::def_id::LocalDefId;
|
|
use rustc_span::source_map::Span;
|
|
|
|
use crate::ref_patterns::REF_PATTERNS;
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for function arguments and let bindings denoted as
|
|
/// `ref`.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// The `ref` declaration makes the function take an owned
|
|
/// value, but turns the argument into a reference (which means that the value
|
|
/// is destroyed when exiting the function). This adds not much value: either
|
|
/// take a reference type, or take an owned value and create references in the
|
|
/// body.
|
|
///
|
|
/// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The
|
|
/// type of `x` is more obvious with the former.
|
|
///
|
|
/// ### Known problems
|
|
/// If the argument is dereferenced within the function,
|
|
/// removing the `ref` will lead to errors. This can be fixed by removing the
|
|
/// dereferences, e.g., changing `*x` to `x` within the function.
|
|
///
|
|
/// ### Example
|
|
/// ```no_run
|
|
/// fn foo(ref _x: u8) {}
|
|
/// ```
|
|
///
|
|
/// Use instead:
|
|
/// ```no_run
|
|
/// fn foo(_x: &u8) {}
|
|
/// ```
|
|
#[clippy::version = "pre 1.29.0"]
|
|
pub TOPLEVEL_REF_ARG,
|
|
style,
|
|
"an entire binding declared as `ref`, in a function argument or a `let` statement"
|
|
}
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for the use of bindings with a single leading
|
|
/// underscore.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// A single leading underscore is usually used to indicate
|
|
/// that a binding will not be used. Using such a binding breaks this
|
|
/// expectation.
|
|
///
|
|
/// ### Known problems
|
|
/// The lint does not work properly with desugaring and
|
|
/// macro, it has been allowed in the mean time.
|
|
///
|
|
/// ### Example
|
|
/// ```no_run
|
|
/// let _x = 0;
|
|
/// let y = _x + 1; // Here we are using `_x`, even though it has a leading
|
|
/// // underscore. We should rename `_x` to `x`
|
|
/// ```
|
|
#[clippy::version = "pre 1.29.0"]
|
|
pub USED_UNDERSCORE_BINDING,
|
|
pedantic,
|
|
"using a binding which is prefixed with an underscore"
|
|
}
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for the use of short circuit boolean conditions as
|
|
/// a
|
|
/// statement.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// Using a short circuit boolean condition as a statement
|
|
/// may hide the fact that the second part is executed or not depending on the
|
|
/// outcome of the first part.
|
|
///
|
|
/// ### Example
|
|
/// ```rust,ignore
|
|
/// f() && g(); // We should write `if f() { g(); }`.
|
|
/// ```
|
|
#[clippy::version = "pre 1.29.0"]
|
|
pub SHORT_CIRCUIT_STATEMENT,
|
|
complexity,
|
|
"using a short circuit boolean condition as a statement"
|
|
}
|
|
|
|
declare_lint_pass!(LintPass => [
|
|
TOPLEVEL_REF_ARG,
|
|
USED_UNDERSCORE_BINDING,
|
|
SHORT_CIRCUIT_STATEMENT,
|
|
]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for LintPass {
|
|
fn check_fn(
|
|
&mut self,
|
|
cx: &LateContext<'tcx>,
|
|
k: FnKind<'tcx>,
|
|
decl: &'tcx FnDecl<'_>,
|
|
body: &'tcx Body<'_>,
|
|
span: Span,
|
|
_: LocalDefId,
|
|
) {
|
|
if let FnKind::Closure = k {
|
|
// Does not apply to closures
|
|
return;
|
|
}
|
|
if in_external_macro(cx.tcx.sess, span) {
|
|
return;
|
|
}
|
|
for arg in iter_input_pats(decl, body) {
|
|
// Do not emit if clippy::ref_patterns is not allowed to avoid having two lints for the same issue.
|
|
if !is_lint_allowed(cx, REF_PATTERNS, arg.pat.hir_id) {
|
|
return;
|
|
}
|
|
if let PatKind::Binding(BindingAnnotation(ByRef::Yes, _), ..) = arg.pat.kind {
|
|
span_lint(
|
|
cx,
|
|
TOPLEVEL_REF_ARG,
|
|
arg.pat.span,
|
|
"`ref` directly on a function argument is ignored. \
|
|
Consider using a reference type instead",
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) {
|
|
if_chain! {
|
|
if !in_external_macro(cx.tcx.sess, stmt.span);
|
|
if let StmtKind::Local(local) = stmt.kind;
|
|
if let PatKind::Binding(BindingAnnotation(ByRef::Yes, mutabl), .., name, None) = local.pat.kind;
|
|
if let Some(init) = local.init;
|
|
// Do not emit if clippy::ref_patterns is not allowed to avoid having two lints for the same issue.
|
|
if is_lint_allowed(cx, REF_PATTERNS, local.pat.hir_id);
|
|
then {
|
|
let ctxt = local.span.ctxt();
|
|
let mut app = Applicability::MachineApplicable;
|
|
let sugg_init = Sugg::hir_with_context(cx, init, ctxt, "..", &mut app);
|
|
let (mutopt, initref) = if mutabl == Mutability::Mut {
|
|
("mut ", sugg_init.mut_addr())
|
|
} else {
|
|
("", sugg_init.addr())
|
|
};
|
|
let tyopt = if let Some(ty) = local.ty {
|
|
let ty_snip = snippet_with_context(cx, ty.span, ctxt, "_", &mut app).0;
|
|
format!(": &{mutopt}{ty_snip}")
|
|
} else {
|
|
String::new()
|
|
};
|
|
span_lint_hir_and_then(
|
|
cx,
|
|
TOPLEVEL_REF_ARG,
|
|
init.hir_id,
|
|
local.pat.span,
|
|
"`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead",
|
|
|diag| {
|
|
diag.span_suggestion(
|
|
stmt.span,
|
|
"try",
|
|
format!(
|
|
"let {name}{tyopt} = {initref};",
|
|
name=snippet(cx, name.span, ".."),
|
|
),
|
|
app,
|
|
);
|
|
}
|
|
);
|
|
}
|
|
};
|
|
if_chain! {
|
|
if let StmtKind::Semi(expr) = stmt.kind;
|
|
if let ExprKind::Binary(ref binop, a, b) = expr.kind;
|
|
if binop.node == BinOpKind::And || binop.node == BinOpKind::Or;
|
|
if let Some(sugg) = Sugg::hir_opt(cx, a);
|
|
then {
|
|
span_lint_hir_and_then(
|
|
cx,
|
|
SHORT_CIRCUIT_STATEMENT,
|
|
expr.hir_id,
|
|
stmt.span,
|
|
"boolean short circuit operator in statement may be clearer using an explicit test",
|
|
|diag| {
|
|
let sugg = if binop.node == BinOpKind::Or { !sugg } else { sugg };
|
|
diag.span_suggestion(
|
|
stmt.span,
|
|
"replace it with",
|
|
format!(
|
|
"if {sugg} {{ {}; }}",
|
|
&snippet(cx, b.span, ".."),
|
|
),
|
|
Applicability::MachineApplicable, // snippet
|
|
);
|
|
});
|
|
}
|
|
};
|
|
}
|
|
|
|
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
|
|
if in_external_macro(cx.sess(), expr.span)
|
|
|| expr.span.desugaring_kind().is_some()
|
|
|| any_parent_is_automatically_derived(cx.tcx, expr.hir_id)
|
|
{
|
|
return;
|
|
}
|
|
let (definition_hir_id, ident) = match expr.kind {
|
|
ExprKind::Path(ref qpath) => {
|
|
if let QPath::Resolved(None, path) = qpath
|
|
&& let Res::Local(id) = path.res
|
|
&& is_used(cx, expr)
|
|
{
|
|
(id, last_path_segment(qpath).ident)
|
|
} else {
|
|
return;
|
|
}
|
|
},
|
|
ExprKind::Field(recv, ident) => {
|
|
if let Some(adt_def) = cx.typeck_results().expr_ty_adjusted(recv).ty_adt_def()
|
|
&& let Some(field) = adt_def.all_fields().find(|field| field.name == ident.name)
|
|
&& let Some(local_did) = field.did.as_local()
|
|
&& let Some(hir_id) = cx.tcx.opt_local_def_id_to_hir_id(local_did)
|
|
&& !cx.tcx.type_of(field.did).skip_binder().is_phantom_data()
|
|
{
|
|
(hir_id, ident)
|
|
} else {
|
|
return;
|
|
}
|
|
},
|
|
_ => return,
|
|
};
|
|
|
|
let name = ident.name.as_str();
|
|
if name.starts_with('_')
|
|
&& !name.starts_with("__")
|
|
&& let definition_span = cx.tcx.hir().span(definition_hir_id)
|
|
&& !definition_span.from_expansion()
|
|
&& !fulfill_or_allowed(cx, USED_UNDERSCORE_BINDING, [expr.hir_id, definition_hir_id])
|
|
{
|
|
span_lint_and_then(
|
|
cx,
|
|
USED_UNDERSCORE_BINDING,
|
|
expr.span,
|
|
&format!(
|
|
"used binding `{name}` which is prefixed with an underscore. A leading \
|
|
underscore signals that a binding will not be used"
|
|
),
|
|
|diag| {
|
|
diag.span_note(definition_span, format!("`{name}` is defined here"));
|
|
}
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Heuristic to see if an expression is used. Should be compatible with
|
|
/// `unused_variables`'s idea
|
|
/// of what it means for an expression to be "used".
|
|
fn is_used(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
|
|
get_parent_expr(cx, expr).map_or(true, |parent| match parent.kind {
|
|
ExprKind::Assign(_, rhs, _) | ExprKind::AssignOp(_, _, rhs) => SpanlessEq::new(cx).eq_expr(rhs, expr),
|
|
_ => is_used(cx, parent),
|
|
})
|
|
}
|