rust/src/libcore/macros.rs
bors 8c9c9513cf Auto merge of #29544 - Ryman:reduce_doc_warnings, r=steveklabnik
Did this alphabetically, so I didn't see [how `std` was doing things](https://dxr.mozilla.org/rust/source/src/libstd/lib.rs#215) till I was nearly finished. If you prefer to add crate-level-whitelists like std instead of test-level, I can rebase with that strategy.

A number of these commits can probably be dropped as the crates don't have much to test, and are deprecated. Let me know which if any to drop! (can also squash after review if desired)

r? @steveklabnik
2015-11-12 13:07:45 +00:00

343 lines
9.6 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// Entry point of thread panic, for details, see std::macros
#[macro_export]
#[allow_internal_unstable]
macro_rules! panic {
() => (
panic!("explicit panic")
);
($msg:expr) => ({
static _MSG_FILE_LINE: (&'static str, &'static str, u32) = ($msg, file!(), line!());
$crate::panicking::panic(&_MSG_FILE_LINE)
});
($fmt:expr, $($arg:tt)*) => ({
// The leading _'s are to avoid dead code warnings if this is
// used inside a dead function. Just `#[allow(dead_code)]` is
// insufficient, since the user may have
// `#[forbid(dead_code)]` and which cannot be overridden.
static _FILE_LINE: (&'static str, u32) = (file!(), line!());
$crate::panicking::panic_fmt(format_args!($fmt, $($arg)*), &_FILE_LINE)
});
}
/// Ensure that a boolean expression is `true` at runtime.
///
/// This will invoke the `panic!` macro if the provided expression cannot be
/// evaluated to `true` at runtime.
///
/// This macro has a second version, where a custom panic message can be provided.
///
/// # Examples
///
/// ```
/// // the panic message for these assertions is the stringified value of the
/// // expression given.
/// assert!(true);
///
/// fn some_computation() -> bool { true } // a very simple function
///
/// assert!(some_computation());
///
/// // assert with a custom message
/// let x = true;
/// assert!(x, "x wasn't true!");
///
/// let a = 3; let b = 27;
/// assert!(a + b == 30, "a = {}, b = {}", a, b);
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! assert {
($cond:expr) => (
if !$cond {
panic!(concat!("assertion failed: ", stringify!($cond)))
}
);
($cond:expr, $($arg:tt)+) => (
if !$cond {
panic!($($arg)+)
}
);
}
/// Asserts that two expressions are equal to each other.
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 1 + 2;
/// assert_eq!(a, b);
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! assert_eq {
($left:expr , $right:expr) => ({
match (&($left), &($right)) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
panic!("assertion failed: `(left == right)` \
(left: `{:?}`, right: `{:?}`)", left_val, right_val)
}
}
}
})
}
/// Ensure that a boolean expression is `true` at runtime.
///
/// This will invoke the `panic!` macro if the provided expression cannot be
/// evaluated to `true` at runtime.
///
/// Like `assert!`, this macro also has a second version, where a custom panic
/// message can be provided.
///
/// Unlike `assert!`, `debug_assert!` statements are only enabled in non
/// optimized builds by default. An optimized build will omit all
/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development.
///
/// # Examples
///
/// ```
/// // the panic message for these assertions is the stringified value of the
/// // expression given.
/// debug_assert!(true);
///
/// fn some_expensive_computation() -> bool { true } // a very simple function
/// debug_assert!(some_expensive_computation());
///
/// // assert with a custom message
/// let x = true;
/// debug_assert!(x, "x wasn't true!");
///
/// let a = 3; let b = 27;
/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! debug_assert {
($($arg:tt)*) => (if cfg!(debug_assertions) { assert!($($arg)*); })
}
/// Asserts that two expressions are equal to each other, testing equality in
/// both directions.
///
/// On panic, this macro will print the values of the expressions.
///
/// Unlike `assert_eq!`, `debug_assert_eq!` statements are only enabled in non
/// optimized builds by default. An optimized build will omit all
/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert_eq!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 1 + 2;
/// debug_assert_eq!(a, b);
/// ```
#[macro_export]
macro_rules! debug_assert_eq {
($($arg:tt)*) => (if cfg!(debug_assertions) { assert_eq!($($arg)*); })
}
/// Short circuiting evaluation on Err
///
/// `libstd` contains a more general `try!` macro that uses `From<E>`.
#[macro_export]
macro_rules! try {
($e:expr) => ({
use $crate::result::Result::{Ok, Err};
match $e {
Ok(e) => e,
Err(e) => return Err(e),
}
})
}
/// Use the `format!` syntax to write data into a buffer.
///
/// This macro is typically used with a buffer of `&mut `[`Write`][write].
///
/// See [`std::fmt`][fmt] for more information on format syntax.
///
/// [fmt]: fmt/index.html
/// [write]: io/trait.Write.html
///
/// # Examples
///
/// ```
/// use std::io::Write;
///
/// let mut w = Vec::new();
/// write!(&mut w, "test").unwrap();
/// write!(&mut w, "formatted {}", "arguments").unwrap();
///
/// assert_eq!(w, b"testformatted arguments");
/// ```
#[macro_export]
macro_rules! write {
($dst:expr, $($arg:tt)*) => ($dst.write_fmt(format_args!($($arg)*)))
}
/// Use the `format!` syntax to write data into a buffer, appending a newline.
///
/// This macro is typically used with a buffer of `&mut `[`Write`][write].
///
/// See [`std::fmt`][fmt] for more information on format syntax.
///
/// [fmt]: fmt/index.html
/// [write]: io/trait.Write.html
///
/// # Examples
///
/// ```
/// use std::io::Write;
///
/// let mut w = Vec::new();
/// writeln!(&mut w, "test").unwrap();
/// writeln!(&mut w, "formatted {}", "arguments").unwrap();
///
/// assert_eq!(&w[..], "test\nformatted arguments\n".as_bytes());
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
macro_rules! writeln {
($dst:expr, $fmt:expr) => (
write!($dst, concat!($fmt, "\n"))
);
($dst:expr, $fmt:expr, $($arg:tt)*) => (
write!($dst, concat!($fmt, "\n"), $($arg)*)
);
}
/// A utility macro for indicating unreachable code.
///
/// This is useful any time that the compiler can't determine that some code is unreachable. For
/// example:
///
/// * Match arms with guard conditions.
/// * Loops that dynamically terminate.
/// * Iterators that dynamically terminate.
///
/// # Panics
///
/// This will always panic.
///
/// # Examples
///
/// Match arms:
///
/// ```
/// # #[allow(dead_code)]
/// fn foo(x: Option<i32>) {
/// match x {
/// Some(n) if n >= 0 => println!("Some(Non-negative)"),
/// Some(n) if n < 0 => println!("Some(Negative)"),
/// Some(_) => unreachable!(), // compile error if commented out
/// None => println!("None")
/// }
/// }
/// ```
///
/// Iterators:
///
/// ```
/// # #[allow(dead_code)]
/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
/// for i in 0.. {
/// if 3*i < i { panic!("u32 overflow"); }
/// if x < 3*i { return i-1; }
/// }
/// unreachable!();
/// }
/// ```
#[macro_export]
#[unstable(feature = "core",
reason = "relationship with panic is unclear",
issue = "27701")]
macro_rules! unreachable {
() => ({
panic!("internal error: entered unreachable code")
});
($msg:expr) => ({
unreachable!("{}", $msg)
});
($fmt:expr, $($arg:tt)*) => ({
panic!(concat!("internal error: entered unreachable code: ", $fmt), $($arg)*)
});
}
/// A standardized placeholder for marking unfinished code. It panics with the
/// message `"not yet implemented"` when executed.
///
/// This can be useful if you are prototyping and are just looking to have your
/// code typecheck, or if you're implementing a trait that requires multiple
/// methods, and you're only planning on using one of them.
///
/// # Examples
///
/// Here's an example of some in-progress code. We have a trait `Foo`:
///
/// ```
/// trait Foo {
/// fn bar(&self);
/// fn baz(&self);
/// }
/// ```
///
/// We want to implement `Foo` on one of our types, but we also want to work on
/// just `bar()` first. In order for our code to compile, we need to implement
/// `baz()`, so we can use `unimplemented!`:
///
/// ```
/// # trait Foo {
/// # fn bar(&self);
/// # fn baz(&self);
/// # }
/// struct MyStruct;
///
/// impl Foo for MyStruct {
/// fn bar(&self) {
/// // implementation goes here
/// }
///
/// fn baz(&self) {
/// // let's not worry about implementing baz() for now
/// unimplemented!();
/// }
/// }
///
/// fn main() {
/// let s = MyStruct;
/// s.bar();
///
/// // we aren't even using baz() yet, so this is fine.
/// }
/// ```
#[macro_export]
#[unstable(feature = "core",
reason = "relationship with panic is unclear",
issue = "27701")]
macro_rules! unimplemented {
() => (panic!("not yet implemented"))
}