rust/src/librustc/middle/const_eval.rs
2014-03-17 09:53:07 +02:00

552 lines
19 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[allow(non_camel_case_types)];
use metadata::csearch;
use middle::astencode;
use middle::ty;
use middle::typeck::astconv;
use util::nodemap::{DefIdMap, FnvHashMap, NodeMap};
use syntax::ast::*;
use syntax::parse::token::InternedString;
use syntax::visit::Visitor;
use syntax::visit;
use syntax::{ast, ast_map, ast_util};
use std::cell::RefCell;
use collections::HashMap;
use std::rc::Rc;
use std::vec_ng::Vec;
//
// This pass classifies expressions by their constant-ness.
//
// Constant-ness comes in 3 flavours:
//
// - Integer-constants: can be evaluated by the frontend all the way down
// to their actual value. They are used in a few places (enum
// discriminants, switch arms) and are a subset of
// general-constants. They cover all the integer and integer-ish
// literals (nil, bool, int, uint, char, iNN, uNN) and all integer
// operators and copies applied to them.
//
// - General-constants: can be evaluated by LLVM but not necessarily by
// the frontend; usually due to reliance on target-specific stuff such
// as "where in memory the value goes" or "what floating point mode the
// target uses". This _includes_ integer-constants, plus the following
// constructors:
//
// fixed-size vectors and strings: [] and ""/_
// vector and string slices: &[] and &""
// tuples: (,)
// records: {...}
// enums: foo(...)
// floating point literals and operators
// & and * pointers
// copies of general constants
//
// (in theory, probably not at first: if/match on integer-const
// conditions / descriminants)
//
// - Non-constants: everything else.
//
pub enum constness {
integral_const,
general_const,
non_const
}
type constness_cache = DefIdMap<constness>;
pub fn join(a: constness, b: constness) -> constness {
match (a, b) {
(integral_const, integral_const) => integral_const,
(integral_const, general_const)
| (general_const, integral_const)
| (general_const, general_const) => general_const,
_ => non_const
}
}
pub fn join_all<It: Iterator<constness>>(mut cs: It) -> constness {
cs.fold(integral_const, |a, b| join(a, b))
}
pub fn lookup_const(tcx: &ty::ctxt, e: &Expr) -> Option<@Expr> {
let opt_def = {
let def_map = tcx.def_map.borrow();
def_map.get().find_copy(&e.id)
};
match opt_def {
Some(ast::DefStatic(def_id, false)) => {
lookup_const_by_id(tcx, def_id)
}
Some(ast::DefVariant(enum_def, variant_def, _)) => {
lookup_variant_by_id(tcx, enum_def, variant_def)
}
_ => None
}
}
pub fn lookup_variant_by_id(tcx: &ty::ctxt,
enum_def: ast::DefId,
variant_def: ast::DefId)
-> Option<@Expr> {
fn variant_expr(variants: &[ast::P<ast::Variant>], id: ast::NodeId) -> Option<@Expr> {
for variant in variants.iter() {
if variant.node.id == id {
return variant.node.disr_expr;
}
}
None
}
if ast_util::is_local(enum_def) {
{
match tcx.map.find(enum_def.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ItemEnum(ast::EnumDef { variants: ref variants }, _) => {
variant_expr(variants.as_slice(), variant_def.node)
}
_ => None
},
Some(_) => None
}
}
} else {
{
let extern_const_variants = tcx.extern_const_variants.borrow();
match extern_const_variants.get().find(&variant_def) {
Some(&e) => return e,
None => {}
}
}
let maps = astencode::Maps {
root_map: @RefCell::new(HashMap::new()),
method_map: @RefCell::new(FnvHashMap::new()),
vtable_map: @RefCell::new(NodeMap::new()),
capture_map: @RefCell::new(NodeMap::new())
};
let e = match csearch::maybe_get_item_ast(tcx, enum_def,
|a, b, c, d| astencode::decode_inlined_item(a, b,
maps,
c, d)) {
csearch::found(ast::IIItem(item)) => match item.node {
ItemEnum(ast::EnumDef { variants: ref variants }, _) => {
variant_expr(variants.as_slice(), variant_def.node)
}
_ => None
},
_ => None
};
{
let mut extern_const_variants = tcx.extern_const_variants
.borrow_mut();
extern_const_variants.get().insert(variant_def, e);
return e;
}
}
}
pub fn lookup_const_by_id(tcx: &ty::ctxt, def_id: ast::DefId)
-> Option<@Expr> {
if ast_util::is_local(def_id) {
{
match tcx.map.find(def_id.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ItemStatic(_, ast::MutImmutable, const_expr) => {
Some(const_expr)
}
_ => None
},
Some(_) => None
}
}
} else {
{
let extern_const_statics = tcx.extern_const_statics.borrow();
match extern_const_statics.get().find(&def_id) {
Some(&e) => return e,
None => {}
}
}
let maps = astencode::Maps {
root_map: @RefCell::new(HashMap::new()),
method_map: @RefCell::new(FnvHashMap::new()),
vtable_map: @RefCell::new(NodeMap::new()),
capture_map: @RefCell::new(NodeMap::new())
};
let e = match csearch::maybe_get_item_ast(tcx, def_id,
|a, b, c, d| astencode::decode_inlined_item(a, b, maps, c, d)) {
csearch::found(ast::IIItem(item)) => match item.node {
ItemStatic(_, ast::MutImmutable, const_expr) => Some(const_expr),
_ => None
},
_ => None
};
{
let mut extern_const_statics = tcx.extern_const_statics
.borrow_mut();
extern_const_statics.get().insert(def_id, e);
return e;
}
}
}
struct ConstEvalVisitor<'a> {
tcx: &'a ty::ctxt,
ccache: constness_cache,
}
impl<'a> ConstEvalVisitor<'a> {
fn classify(&mut self, e: &Expr) -> constness {
let did = ast_util::local_def(e.id);
match self.ccache.find(&did) {
Some(&x) => return x,
None => {}
}
let cn = match e.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(..) | ast::LitFloat(..) => general_const,
_ => integral_const
}
}
ast::ExprUnary(_, inner) | ast::ExprParen(inner) =>
self.classify(inner),
ast::ExprBinary(_, a, b) =>
join(self.classify(a), self.classify(b)),
ast::ExprTup(ref es) |
ast::ExprVec(ref es, ast::MutImmutable) =>
join_all(es.iter().map(|e| self.classify(*e))),
ast::ExprVstore(e, vstore) => {
match vstore {
ast::ExprVstoreSlice => self.classify(e),
ast::ExprVstoreUniq |
ast::ExprVstoreMutSlice => non_const
}
}
ast::ExprStruct(_, ref fs, None) => {
let cs = fs.iter().map(|f| self.classify(f.expr));
join_all(cs)
}
ast::ExprCast(base, _) => {
let ty = ty::expr_ty(self.tcx, e);
let base = self.classify(base);
if ty::type_is_integral(ty) {
join(integral_const, base)
} else if ty::type_is_fp(ty) {
join(general_const, base)
} else {
non_const
}
}
ast::ExprField(base, _, _) => self.classify(base),
ast::ExprIndex(base, idx) =>
join(self.classify(base), self.classify(idx)),
ast::ExprAddrOf(ast::MutImmutable, base) => self.classify(base),
// FIXME: (#3728) we can probably do something CCI-ish
// surrounding nonlocal constants. But we don't yet.
ast::ExprPath(_) => self.lookup_constness(e),
ast::ExprRepeat(..) => general_const,
_ => non_const
};
self.ccache.insert(did, cn);
cn
}
fn lookup_constness(&self, e: &Expr) -> constness {
match lookup_const(self.tcx, e) {
Some(rhs) => {
let ty = ty::expr_ty(self.tcx, rhs);
if ty::type_is_integral(ty) {
integral_const
} else {
general_const
}
}
None => non_const
}
}
}
impl<'a> Visitor<()> for ConstEvalVisitor<'a> {
fn visit_expr_post(&mut self, e: &Expr, _: ()) {
self.classify(e);
}
}
pub fn process_crate(krate: &ast::Crate,
tcx: &ty::ctxt) {
let mut v = ConstEvalVisitor {
tcx: tcx,
ccache: DefIdMap::new(),
};
visit::walk_crate(&mut v, krate, ());
tcx.sess.abort_if_errors();
}
// FIXME (#33): this doesn't handle big integer/float literals correctly
// (nor does the rest of our literal handling).
#[deriving(Clone, Eq)]
pub enum const_val {
const_float(f64),
const_int(i64),
const_uint(u64),
const_str(InternedString),
const_binary(Rc<Vec<u8> >),
const_bool(bool)
}
pub fn eval_const_expr(tcx: &ty::ctxt, e: &Expr) -> const_val {
match eval_const_expr_partial(tcx, e) {
Ok(r) => r,
Err(s) => tcx.sess.span_fatal(e.span, s)
}
}
pub fn eval_const_expr_partial<T: ty::ExprTyProvider>(tcx: &T, e: &Expr)
-> Result<const_val, ~str> {
fn fromb(b: bool) -> Result<const_val, ~str> { Ok(const_int(b as i64)) }
match e.node {
ExprUnary(UnNeg, inner) => {
match eval_const_expr_partial(tcx, inner) {
Ok(const_float(f)) => Ok(const_float(-f)),
Ok(const_int(i)) => Ok(const_int(-i)),
Ok(const_uint(i)) => Ok(const_uint(-i)),
Ok(const_str(_)) => Err(~"negate on string"),
Ok(const_bool(_)) => Err(~"negate on boolean"),
ref err => ((*err).clone())
}
}
ExprUnary(UnNot, inner) => {
match eval_const_expr_partial(tcx, inner) {
Ok(const_int(i)) => Ok(const_int(!i)),
Ok(const_uint(i)) => Ok(const_uint(!i)),
Ok(const_bool(b)) => Ok(const_bool(!b)),
_ => Err(~"not on float or string")
}
}
ExprBinary(op, a, b) => {
match (eval_const_expr_partial(tcx, a),
eval_const_expr_partial(tcx, b)) {
(Ok(const_float(a)), Ok(const_float(b))) => {
match op {
BiAdd => Ok(const_float(a + b)),
BiSub => Ok(const_float(a - b)),
BiMul => Ok(const_float(a * b)),
BiDiv => Ok(const_float(a / b)),
BiRem => Ok(const_float(a % b)),
BiEq => fromb(a == b),
BiLt => fromb(a < b),
BiLe => fromb(a <= b),
BiNe => fromb(a != b),
BiGe => fromb(a >= b),
BiGt => fromb(a > b),
_ => Err(~"can't do this op on floats")
}
}
(Ok(const_int(a)), Ok(const_int(b))) => {
match op {
BiAdd => Ok(const_int(a + b)),
BiSub => Ok(const_int(a - b)),
BiMul => Ok(const_int(a * b)),
BiDiv if b == 0 => Err(~"attempted to divide by zero"),
BiDiv => Ok(const_int(a / b)),
BiRem if b == 0 => Err(~"attempted remainder with a divisor of zero"),
BiRem => Ok(const_int(a % b)),
BiAnd | BiBitAnd => Ok(const_int(a & b)),
BiOr | BiBitOr => Ok(const_int(a | b)),
BiBitXor => Ok(const_int(a ^ b)),
BiShl => Ok(const_int(a << b)),
BiShr => Ok(const_int(a >> b)),
BiEq => fromb(a == b),
BiLt => fromb(a < b),
BiLe => fromb(a <= b),
BiNe => fromb(a != b),
BiGe => fromb(a >= b),
BiGt => fromb(a > b)
}
}
(Ok(const_uint(a)), Ok(const_uint(b))) => {
match op {
BiAdd => Ok(const_uint(a + b)),
BiSub => Ok(const_uint(a - b)),
BiMul => Ok(const_uint(a * b)),
BiDiv if b == 0 => Err(~"attempted to divide by zero"),
BiDiv => Ok(const_uint(a / b)),
BiRem if b == 0 => Err(~"attempted remainder with a divisor of zero"),
BiRem => Ok(const_uint(a % b)),
BiAnd | BiBitAnd => Ok(const_uint(a & b)),
BiOr | BiBitOr => Ok(const_uint(a | b)),
BiBitXor => Ok(const_uint(a ^ b)),
BiShl => Ok(const_uint(a << b)),
BiShr => Ok(const_uint(a >> b)),
BiEq => fromb(a == b),
BiLt => fromb(a < b),
BiLe => fromb(a <= b),
BiNe => fromb(a != b),
BiGe => fromb(a >= b),
BiGt => fromb(a > b),
}
}
// shifts can have any integral type as their rhs
(Ok(const_int(a)), Ok(const_uint(b))) => {
match op {
BiShl => Ok(const_int(a << b)),
BiShr => Ok(const_int(a >> b)),
_ => Err(~"can't do this op on an int and uint")
}
}
(Ok(const_uint(a)), Ok(const_int(b))) => {
match op {
BiShl => Ok(const_uint(a << b)),
BiShr => Ok(const_uint(a >> b)),
_ => Err(~"can't do this op on a uint and int")
}
}
(Ok(const_bool(a)), Ok(const_bool(b))) => {
Ok(const_bool(match op {
BiAnd => a && b,
BiOr => a || b,
BiBitXor => a ^ b,
BiBitAnd => a & b,
BiBitOr => a | b,
BiEq => a == b,
BiNe => a != b,
_ => return Err(~"can't do this op on bools")
}))
}
_ => Err(~"bad operands for binary")
}
}
ExprCast(base, target_ty) => {
// This tends to get called w/o the type actually having been
// populated in the ctxt, which was causing things to blow up
// (#5900). Fall back to doing a limited lookup to get past it.
let ety = ty::expr_ty_opt(tcx.ty_ctxt(), e)
.or_else(|| astconv::ast_ty_to_prim_ty(tcx.ty_ctxt(), target_ty))
.unwrap_or_else(|| tcx.ty_ctxt().sess.span_fatal(
target_ty.span,
format!("target type not found for const cast")
));
let base = eval_const_expr_partial(tcx, base);
match base {
Err(_) => base,
Ok(val) => {
match ty::get(ety).sty {
ty::ty_float(_) => {
match val {
const_uint(u) => Ok(const_float(u as f64)),
const_int(i) => Ok(const_float(i as f64)),
const_float(f) => Ok(const_float(f)),
_ => Err(~"can't cast float to str"),
}
}
ty::ty_uint(_) => {
match val {
const_uint(u) => Ok(const_uint(u)),
const_int(i) => Ok(const_uint(i as u64)),
const_float(f) => Ok(const_uint(f as u64)),
_ => Err(~"can't cast str to uint"),
}
}
ty::ty_int(_) | ty::ty_bool => {
match val {
const_uint(u) => Ok(const_int(u as i64)),
const_int(i) => Ok(const_int(i)),
const_float(f) => Ok(const_int(f as i64)),
_ => Err(~"can't cast str to int"),
}
}
_ => Err(~"can't cast this type")
}
}
}
}
ExprPath(_) => {
match lookup_const(tcx.ty_ctxt(), e) {
Some(actual_e) => eval_const_expr_partial(tcx.ty_ctxt(), actual_e),
None => Err(~"non-constant path in constant expr")
}
}
ExprLit(lit) => Ok(lit_to_const(lit)),
// If we have a vstore, just keep going; it has to be a string
ExprVstore(e, _) => eval_const_expr_partial(tcx, e),
ExprParen(e) => eval_const_expr_partial(tcx, e),
_ => Err(~"unsupported constant expr")
}
}
pub fn lit_to_const(lit: &Lit) -> const_val {
match lit.node {
LitStr(ref s, _) => const_str((*s).clone()),
LitBinary(ref data) => {
const_binary(Rc::new(data.deref().iter().map(|x| *x).collect()))
}
LitChar(n) => const_uint(n as u64),
LitInt(n, _) => const_int(n),
LitUint(n, _) => const_uint(n),
LitIntUnsuffixed(n) => const_int(n),
LitFloat(ref n, _) | LitFloatUnsuffixed(ref n) => {
const_float(from_str::<f64>(n.get()).unwrap() as f64)
}
LitNil => const_int(0i64),
LitBool(b) => const_bool(b)
}
}
fn compare_vals<T: Ord>(a: T, b: T) -> Option<int> {
Some(if a == b { 0 } else if a < b { -1 } else { 1 })
}
pub fn compare_const_vals(a: &const_val, b: &const_val) -> Option<int> {
match (a, b) {
(&const_int(a), &const_int(b)) => compare_vals(a, b),
(&const_uint(a), &const_uint(b)) => compare_vals(a, b),
(&const_float(a), &const_float(b)) => compare_vals(a, b),
(&const_str(ref a), &const_str(ref b)) => compare_vals(a, b),
(&const_bool(a), &const_bool(b)) => compare_vals(a, b),
_ => None
}
}
pub fn compare_lit_exprs(tcx: &ty::ctxt, a: &Expr, b: &Expr) -> Option<int> {
compare_const_vals(&eval_const_expr(tcx, a), &eval_const_expr(tcx, b))
}
pub fn lit_expr_eq(tcx: &ty::ctxt, a: &Expr, b: &Expr) -> Option<bool> {
compare_lit_exprs(tcx, a, b).map(|val| val == 0)
}
pub fn lit_eq(a: &Lit, b: &Lit) -> Option<bool> {
compare_const_vals(&lit_to_const(a), &lit_to_const(b)).map(|val| val == 0)
}