297 lines
8.0 KiB
Rust

//! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes.
use std::cmp;
use std::hash::Hasher;
use std::slice;
use std::ptr;
use std::mem;
#[cfg(test)]
mod tests;
#[derive(Debug, Clone)]
pub struct SipHasher128 {
k0: u64,
k1: u64,
length: usize, // how many bytes we've processed
state: State, // hash State
tail: u64, // unprocessed bytes le
ntail: usize, // how many bytes in tail are valid
}
#[derive(Debug, Clone, Copy)]
#[repr(C)]
struct State {
// v0, v2 and v1, v3 show up in pairs in the algorithm,
// and simd implementations of SipHash will use vectors
// of v02 and v13. By placing them in this order in the struct,
// the compiler can pick up on just a few simd optimizations by itself.
v0: u64,
v2: u64,
v1: u64,
v3: u64,
}
macro_rules! compress {
($state:expr) => ({
compress!($state.v0, $state.v1, $state.v2, $state.v3)
});
($v0:expr, $v1:expr, $v2:expr, $v3:expr) =>
({
$v0 = $v0.wrapping_add($v1); $v1 = $v1.rotate_left(13); $v1 ^= $v0;
$v0 = $v0.rotate_left(32);
$v2 = $v2.wrapping_add($v3); $v3 = $v3.rotate_left(16); $v3 ^= $v2;
$v0 = $v0.wrapping_add($v3); $v3 = $v3.rotate_left(21); $v3 ^= $v0;
$v2 = $v2.wrapping_add($v1); $v1 = $v1.rotate_left(17); $v1 ^= $v2;
$v2 = $v2.rotate_left(32);
});
}
/// Loads an integer of the desired type from a byte stream, in LE order. Uses
/// `copy_nonoverlapping` to let the compiler generate the most efficient way
/// to load it from a possibly unaligned address.
///
/// Unsafe because: unchecked indexing at i..i+size_of(int_ty)
macro_rules! load_int_le {
($buf:expr, $i:expr, $int_ty:ident) =>
({
debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len());
let mut data = 0 as $int_ty;
ptr::copy_nonoverlapping($buf.get_unchecked($i),
&mut data as *mut _ as *mut u8,
mem::size_of::<$int_ty>());
data.to_le()
});
}
/// Loads an u64 using up to 7 bytes of a byte slice.
///
/// Unsafe because: unchecked indexing at start..start+len
#[inline]
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
debug_assert!(len < 8);
let mut i = 0; // current byte index (from LSB) in the output u64
let mut out = 0;
if i + 3 < len {
out = u64::from(load_int_le!(buf, start + i, u32));
i += 4;
}
if i + 1 < len {
out |= u64::from(load_int_le!(buf, start + i, u16)) << (i * 8);
i += 2
}
if i < len {
out |= u64::from(*buf.get_unchecked(start + i)) << (i * 8);
i += 1;
}
debug_assert_eq!(i, len);
out
}
impl SipHasher128 {
#[inline]
pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 {
let mut state = SipHasher128 {
k0: key0,
k1: key1,
length: 0,
state: State {
v0: 0,
v1: 0,
v2: 0,
v3: 0,
},
tail: 0,
ntail: 0,
};
state.reset();
state
}
#[inline]
fn reset(&mut self) {
self.length = 0;
self.state.v0 = self.k0 ^ 0x736f6d6570736575;
self.state.v1 = self.k1 ^ 0x646f72616e646f6d;
self.state.v2 = self.k0 ^ 0x6c7967656e657261;
self.state.v3 = self.k1 ^ 0x7465646279746573;
self.ntail = 0;
// This is only done in the 128 bit version:
self.state.v1 ^= 0xee;
}
// Specialized write function that is only valid for buffers with len <= 8.
// It's used to force inlining of write_u8 and write_usize, those would normally be inlined
// except for composite types (that includes slices and str hashing because of delimiter).
// Without this extra push the compiler is very reluctant to inline delimiter writes,
// degrading performance substantially for the most common use cases.
#[inline]
fn short_write(&mut self, msg: &[u8]) {
debug_assert!(msg.len() <= 8);
let length = msg.len();
self.length += length;
let needed = 8 - self.ntail;
let fill = cmp::min(length, needed);
if fill == 8 {
self.tail = unsafe { load_int_le!(msg, 0, u64) };
} else {
self.tail |= unsafe { u8to64_le(msg, 0, fill) } << (8 * self.ntail);
if length < needed {
self.ntail += length;
return;
}
}
self.state.v3 ^= self.tail;
Sip24Rounds::c_rounds(&mut self.state);
self.state.v0 ^= self.tail;
// Buffered tail is now flushed, process new input.
self.ntail = length - needed;
self.tail = unsafe { u8to64_le(msg, needed, self.ntail) };
}
#[inline(always)]
fn short_write_gen<T>(&mut self, x: T) {
let bytes = unsafe {
slice::from_raw_parts(&x as *const T as *const u8, mem::size_of::<T>())
};
self.short_write(bytes);
}
#[inline]
pub fn finish128(mut self) -> (u64, u64) {
let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail;
self.state.v3 ^= b;
Sip24Rounds::c_rounds(&mut self.state);
self.state.v0 ^= b;
self.state.v2 ^= 0xee;
Sip24Rounds::d_rounds(&mut self.state);
let _0 = self.state.v0 ^ self.state.v1 ^ self.state.v2 ^ self.state.v3;
self.state.v1 ^= 0xdd;
Sip24Rounds::d_rounds(&mut self.state);
let _1 = self.state.v0 ^ self.state.v1 ^ self.state.v2 ^ self.state.v3;
(_0, _1)
}
}
impl Hasher for SipHasher128 {
#[inline]
fn write_u8(&mut self, i: u8) {
self.short_write_gen(i);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.short_write_gen(i);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.short_write_gen(i);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.short_write_gen(i);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.short_write_gen(i);
}
#[inline]
fn write_i8(&mut self, i: i8) {
self.short_write_gen(i);
}
#[inline]
fn write_i16(&mut self, i: i16) {
self.short_write_gen(i);
}
#[inline]
fn write_i32(&mut self, i: i32) {
self.short_write_gen(i);
}
#[inline]
fn write_i64(&mut self, i: i64) {
self.short_write_gen(i);
}
#[inline]
fn write_isize(&mut self, i: isize) {
self.short_write_gen(i);
}
#[inline]
fn write(&mut self, msg: &[u8]) {
let length = msg.len();
self.length += length;
let mut needed = 0;
if self.ntail != 0 {
needed = 8 - self.ntail;
self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
if length < needed {
self.ntail += length;
return
} else {
self.state.v3 ^= self.tail;
Sip24Rounds::c_rounds(&mut self.state);
self.state.v0 ^= self.tail;
self.ntail = 0;
}
}
// Buffered tail is now flushed, process new input.
let len = length - needed;
let left = len & 0x7;
let mut i = needed;
while i < len - left {
let mi = unsafe { load_int_le!(msg, i, u64) };
self.state.v3 ^= mi;
Sip24Rounds::c_rounds(&mut self.state);
self.state.v0 ^= mi;
i += 8;
}
self.tail = unsafe { u8to64_le(msg, i, left) };
self.ntail = left;
}
fn finish(&self) -> u64 {
panic!("SipHasher128 cannot provide valid 64 bit hashes")
}
}
#[derive(Debug, Clone, Default)]
struct Sip24Rounds;
impl Sip24Rounds {
#[inline]
fn c_rounds(state: &mut State) {
compress!(state);
compress!(state);
}
#[inline]
fn d_rounds(state: &mut State) {
compress!(state);
compress!(state);
compress!(state);
compress!(state);
}
}