rust/src/libstd/task/mod.rs
2013-11-26 08:25:27 -08:00

845 lines
22 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Task management.
*
* An executing Rust program consists of a tree of tasks, each with their own
* stack, and sole ownership of their allocated heap data. Tasks communicate
* with each other using ports and channels (see std::rt::comm for more info
* about how communication works).
*
* Tasks can be spawned in 3 different modes.
*
* * Bidirectionally linked: This is the default mode and it's what ```spawn``` does.
* Failures will be propagated from parent to child and vice versa.
*
* * Unidirectionally linked (parent->child): This type of task can be created with
* ```spawn_supervised```. In this case, failures are propagated from parent to child
* but not the other way around.
*
* * Unlinked: Tasks can be completely unlinked. These tasks can be created by using
* ```spawn_unlinked```. In this case failures are not propagated at all.
*
* Tasks' failure modes can be further configured. For instance, parent tasks can (un)watch
* children failures. Please, refer to TaskBuilder's documentation bellow for more information.
*
* When a (bi|uni)directionally linked task fails, its failure will be propagated to all tasks
* linked to it, this will cause such tasks to fail by a `linked failure`.
*
* Task Scheduling:
*
* By default, every task is created in the same scheduler as its parent, where it
* is scheduled cooperatively with all other tasks in that scheduler. Some specialized
* applications may want more control over their scheduling, in which case they can be
* spawned into a new scheduler with the specific properties required. See TaskBuilder's
* documentation bellow for more information.
*
* # Example
*
* ```
* do spawn {
* log(error, "Hello, World!");
* }
* ```
*/
#[allow(missing_doc)];
use prelude::*;
use cell::Cell;
use comm::{stream, Chan, GenericChan, GenericPort, Port, Peekable};
use result::{Result, Ok, Err};
use rt::in_green_task_context;
use rt::local::Local;
use rt::task::{UnwindResult, Success, Failure};
use send_str::{SendStr, IntoSendStr};
use util;
#[cfg(test)] use any::Any;
#[cfg(test)] use comm::SharedChan;
#[cfg(test)] use ptr;
#[cfg(test)] use result;
pub mod spawn;
/// Indicates the manner in which a task exited.
///
/// A task that completes without failing is considered to exit successfully.
/// Supervised ancestors and linked siblings may yet fail after this task
/// succeeds. Also note that in such a case, it may be nondeterministic whether
/// linked failure or successful exit happen first.
///
/// If you wish for this result's delivery to block until all linked and/or
/// children tasks complete, recommend using a result future.
pub type TaskResult = Result<(), ~Any>;
pub struct TaskResultPort {
priv port: Port<UnwindResult>
}
fn to_task_result(res: UnwindResult) -> TaskResult {
match res {
Success => Ok(()), Failure(a) => Err(a),
}
}
impl GenericPort<TaskResult> for TaskResultPort {
#[inline]
fn recv(&self) -> TaskResult {
to_task_result(self.port.recv())
}
#[inline]
fn try_recv(&self) -> Option<TaskResult> {
self.port.try_recv().map(to_task_result)
}
}
impl Peekable<TaskResult> for TaskResultPort {
#[inline]
fn peek(&self) -> bool { self.port.peek() }
}
/// Scheduler modes
#[deriving(Eq)]
pub enum SchedMode {
/// Run task on the default scheduler
DefaultScheduler,
/// All tasks run in the same OS thread
SingleThreaded,
}
/**
* Scheduler configuration options
*
* # Fields
*
* * sched_mode - The operating mode of the scheduler
*
*/
pub struct SchedOpts {
priv mode: SchedMode,
}
/**
* Task configuration options
*
* # Fields
*
* * watched - Make parent task collect exit status notifications from child
* before reporting its own exit status. (This delays the parent
* task's death and cleanup until after all transitively watched
* children also exit.) True by default.
*
* * notify_chan - Enable lifecycle notifications on the given channel
*
* * name - A name for the task-to-be, for identification in failure messages.
*
* * sched - Specify the configuration of a new scheduler to create the task
* in. This is of particular importance for libraries which want to call
* into foreign code that blocks. Without doing so in a different
* scheduler other tasks will be impeded or even blocked indefinitely.
*/
pub struct TaskOpts {
priv watched: bool,
priv notify_chan: Option<Chan<UnwindResult>>,
name: Option<SendStr>,
sched: SchedOpts,
stack_size: Option<uint>
}
/**
* The task builder type.
*
* Provides detailed control over the properties and behavior of new tasks.
*/
// NB: Builders are designed to be single-use because they do stateful
// things that get weird when reusing - e.g. if you create a result future
// it only applies to a single task, so then you have to maintain Some
// potentially tricky state to ensure that everything behaves correctly
// when you try to reuse the builder to spawn a new task. We'll just
// sidestep that whole issue by making builders uncopyable and making
// the run function move them in.
pub struct TaskBuilder {
opts: TaskOpts,
priv gen_body: Option<proc(v: proc()) -> proc()>,
priv can_not_copy: Option<util::NonCopyable>,
}
/**
* Generate the base configuration for spawning a task, off of which more
* configuration methods can be chained.
* For example, task().unlinked().spawn is equivalent to spawn_unlinked.
*/
pub fn task() -> TaskBuilder {
TaskBuilder {
opts: default_task_opts(),
gen_body: None,
can_not_copy: None,
}
}
impl TaskBuilder {
fn consume(mut self) -> TaskBuilder {
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
let name = self.opts.name.take();
TaskBuilder {
opts: TaskOpts {
watched: self.opts.watched,
notify_chan: notify_chan,
name: name,
sched: self.opts.sched,
stack_size: self.opts.stack_size
},
gen_body: gen_body,
can_not_copy: None,
}
}
/// Cause the parent task to collect the child's exit status (and that of
/// all transitively-watched grandchildren) before reporting its own.
pub fn watched(&mut self) {
self.opts.watched = true;
}
/// Allow the child task to outlive the parent task, at the possible cost
/// of the parent reporting success even if the child task fails later.
pub fn unwatched(&mut self) {
self.opts.watched = false;
}
/// Get a future representing the exit status of the task.
///
/// Taking the value of the future will block until the child task
/// terminates. The future result return value will be created *before* the task is
/// spawned; as such, do not invoke .get() on it directly;
/// rather, store it in an outer variable/list for later use.
///
/// Note that the future returned by this function is only useful for
/// obtaining the value of the next task to be spawning with the
/// builder. If additional tasks are spawned with the same builder
/// then a new result future must be obtained prior to spawning each
/// task.
///
/// # Failure
/// Fails if a future_result was already set for this task.
pub fn future_result(&mut self) -> TaskResultPort {
// FIXME (#3725): Once linked failure and notification are
// handled in the library, I can imagine implementing this by just
// registering an arbitrary number of task::on_exit handlers and
// sending out messages.
if self.opts.notify_chan.is_some() {
fail!("Can't set multiple future_results for one task!");
}
// Construct the future and give it to the caller.
let (notify_pipe_po, notify_pipe_ch) = stream::<UnwindResult>();
// Reconfigure self to use a notify channel.
self.opts.notify_chan = Some(notify_pipe_ch);
TaskResultPort { port: notify_pipe_po }
}
/// Name the task-to-be. Currently the name is used for identification
/// only in failure messages.
pub fn name<S: IntoSendStr>(&mut self, name: S) {
self.opts.name = Some(name.into_send_str());
}
/// Configure a custom scheduler mode for the task.
pub fn sched_mode(&mut self, mode: SchedMode) {
self.opts.sched.mode = mode;
}
/**
* Add a wrapper to the body of the spawned task.
*
* Before the task is spawned it is passed through a 'body generator'
* function that may perform local setup operations as well as wrap
* the task body in remote setup operations. With this the behavior
* of tasks can be extended in simple ways.
*
* This function augments the current body generator with a new body
* generator by applying the task body which results from the
* existing body generator to the new body generator.
*/
pub fn add_wrapper(&mut self, wrapper: proc(v: proc()) -> proc()) {
let prev_gen_body = self.gen_body.take();
let prev_gen_body = match prev_gen_body {
Some(gen) => gen,
None => {
let f: proc(proc()) -> proc() = proc(body) body;
f
}
};
let prev_gen_body = Cell::new(prev_gen_body);
let next_gen_body = {
let f: proc(proc()) -> proc() = proc(body) {
let prev_gen_body = prev_gen_body.take();
wrapper(prev_gen_body(body))
};
f
};
self.gen_body = Some(next_gen_body);
}
/**
* Creates and executes a new child task
*
* Sets up a new task with its own call stack and schedules it to run
* the provided unique closure. The task has the properties and behavior
* specified by the task_builder.
*
* # Failure
*
* When spawning into a new scheduler, the number of threads requested
* must be greater than zero.
*/
pub fn spawn(mut self, f: proc()) {
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
let name = self.opts.name.take();
let x = self.consume();
let opts = TaskOpts {
watched: x.opts.watched,
notify_chan: notify_chan,
name: name,
sched: x.opts.sched,
stack_size: x.opts.stack_size
};
let f = match gen_body {
Some(gen) => {
gen(f)
}
None => {
f
}
};
spawn::spawn_raw(opts, f);
}
/**
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* # Return value
*
* If the function executed successfully then try returns result::ok
* containing the value returned by the function. If the function fails
* then try returns result::err containing nil.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
pub fn try<T:Send>(mut self, f: proc() -> T) -> Result<T, ~Any> {
let (po, ch) = stream::<T>();
let result = self.future_result();
do self.spawn {
ch.send(f());
}
match result.recv() {
Ok(()) => Ok(po.recv()),
Err(cause) => Err(cause)
}
}
}
/* Task construction */
pub fn default_task_opts() -> TaskOpts {
/*!
* The default task options
*
* By default all tasks are supervised by their parent, are spawned
* into the same scheduler, and do not post lifecycle notifications.
*/
TaskOpts {
watched: true,
notify_chan: None,
name: None,
sched: SchedOpts {
mode: DefaultScheduler,
},
stack_size: None
}
}
/* Spawn convenience functions */
/// Creates and executes a new child task
///
/// Sets up a new task with its own call stack and schedules it to run
/// the provided unique closure.
///
/// This function is equivalent to `task().spawn(f)`.
pub fn spawn(f: proc()) {
let task = task();
task.spawn(f)
}
pub fn spawn_sched(mode: SchedMode, f: proc()) {
/*!
* Creates a new task on a new or existing scheduler.
*
* When there are no more tasks to execute the
* scheduler terminates.
*
* # Failure
*
* In manual threads mode the number of threads requested must be
* greater than zero.
*/
let mut task = task();
task.sched_mode(mode);
task.spawn(f)
}
pub fn try<T:Send>(f: proc() -> T) -> Result<T, ~Any> {
/*!
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* This is equivalent to task().supervised().try.
*/
let task = task();
task.try(f)
}
/* Lifecycle functions */
/// Read the name of the current task.
pub fn with_task_name<U>(blk: |Option<&str>| -> U) -> U {
use rt::task::Task;
if in_green_task_context() {
Local::borrow(|task: &mut Task| {
match task.name {
Some(ref name) => blk(Some(name.as_slice())),
None => blk(None)
}
})
} else {
fail!("no task name exists in non-green task context")
}
}
pub fn deschedule() {
//! Yield control to the task scheduler
use rt::local::Local;
use rt::sched::Scheduler;
// FIXME(#7544): Optimize this, since we know we won't block.
let sched: ~Scheduler = Local::take();
sched.yield_now();
}
pub fn failing() -> bool {
//! True if the running task has failed
use rt::task::Task;
Local::borrow(|local: &mut Task| local.unwinder.unwinding)
}
// The following 8 tests test the following 2^3 combinations:
// {un,}linked {un,}supervised failure propagation {up,down}wards.
// !!! These tests are dangerous. If Something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots. !!!
#[cfg(test)]
fn block_forever() { let (po, _ch) = stream::<()>(); po.recv(); }
#[test]
fn test_unnamed_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
do spawn {
with_task_name(|name| {
assert!(name.is_none());
})
}
}
}
#[test]
fn test_owned_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name(~"ada lovelace");
do t.spawn {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
}
}
}
#[test]
fn test_static_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name("ada lovelace");
do t.spawn {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
}
}
}
#[test]
fn test_send_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name("ada lovelace".into_send_str());
do t.spawn {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
}
}
}
#[test]
fn test_run_basic() {
let (po, ch) = stream::<()>();
let builder = task();
do builder.spawn {
ch.send(());
}
po.recv();
}
#[cfg(test)]
struct Wrapper {
f: Option<Chan<()>>
}
#[test]
fn test_add_wrapper() {
let (po, ch) = stream::<()>();
let mut b0 = task();
let ch = Cell::new(ch);
do b0.add_wrapper |body| {
let ch = Cell::new(ch.take());
let result: proc() = proc() {
let ch = ch.take();
body();
ch.send(());
};
result
};
do b0.spawn { }
po.recv();
}
#[test]
fn test_future_result() {
let mut builder = task();
let result = builder.future_result();
do builder.spawn {}
assert!(result.recv().is_ok());
let mut builder = task();
let result = builder.future_result();
do builder.spawn {
fail!();
}
assert!(result.recv().is_err());
}
#[test] #[should_fail]
fn test_back_to_the_future_result() {
let mut builder = task();
builder.future_result();
builder.future_result();
}
#[test]
fn test_try_success() {
match do try {
~"Success!"
} {
result::Ok(~"Success!") => (),
_ => fail!()
}
}
#[test]
fn test_try_fail() {
match do try {
fail!()
} {
result::Err(_) => (),
result::Ok(()) => fail!()
}
}
#[cfg(test)]
fn get_sched_id() -> int {
Local::borrow(|sched: &mut ::rt::sched::Scheduler| {
sched.sched_id() as int
})
}
#[test]
fn test_spawn_sched() {
let (po, ch) = stream::<()>();
let ch = SharedChan::new(ch);
fn f(i: int, ch: SharedChan<()>) {
let parent_sched_id = get_sched_id();
do spawn_sched(SingleThreaded) {
let child_sched_id = get_sched_id();
assert!(parent_sched_id != child_sched_id);
if (i == 0) {
ch.send(());
} else {
f(i - 1, ch.clone());
}
};
}
f(10, ch);
po.recv();
}
#[test]
fn test_spawn_sched_childs_on_default_sched() {
let (po, ch) = stream();
// Assuming tests run on the default scheduler
let default_id = get_sched_id();
let ch = Cell::new(ch);
do spawn_sched(SingleThreaded) {
let parent_sched_id = get_sched_id();
let ch = Cell::new(ch.take());
do spawn {
let ch = ch.take();
let child_sched_id = get_sched_id();
assert!(parent_sched_id != child_sched_id);
assert_eq!(child_sched_id, default_id);
ch.send(());
};
};
po.recv();
}
#[test]
fn test_spawn_sched_blocking() {
use unstable::mutex::Mutex;
unsafe {
// Testing that a task in one scheduler can block in foreign code
// without affecting other schedulers
20u.times(|| {
let (start_po, start_ch) = stream();
let (fin_po, fin_ch) = stream();
let mut lock = Mutex::new();
let lock2 = Cell::new(lock.clone());
do spawn_sched(SingleThreaded) {
let mut lock = lock2.take();
lock.lock();
start_ch.send(());
// Block the scheduler thread
lock.wait();
lock.unlock();
fin_ch.send(());
};
// Wait until the other task has its lock
start_po.recv();
fn pingpong(po: &Port<int>, ch: &Chan<int>) {
let mut val = 20;
while val > 0 {
val = po.recv();
ch.send(val - 1);
}
}
let (setup_po, setup_ch) = stream();
let (parent_po, parent_ch) = stream();
do spawn {
let (child_po, child_ch) = stream();
setup_ch.send(child_ch);
pingpong(&child_po, &parent_ch);
};
let child_ch = setup_po.recv();
child_ch.send(20);
pingpong(&parent_po, &child_ch);
lock.lock();
lock.signal();
lock.unlock();
fin_po.recv();
lock.destroy();
})
}
}
#[cfg(test)]
fn avoid_copying_the_body(spawnfn: |v: proc()|) {
let (p, ch) = stream::<uint>();
let x = ~1;
let x_in_parent = ptr::to_unsafe_ptr(&*x) as uint;
do spawnfn || {
let x_in_child = ptr::to_unsafe_ptr(&*x) as uint;
ch.send(x_in_child);
}
let x_in_child = p.recv();
assert_eq!(x_in_parent, x_in_child);
}
#[test]
fn test_avoid_copying_the_body_spawn() {
avoid_copying_the_body(spawn);
}
#[test]
fn test_avoid_copying_the_body_task_spawn() {
avoid_copying_the_body(|f| {
let builder = task();
do builder.spawn || {
f();
}
})
}
#[test]
fn test_avoid_copying_the_body_try() {
avoid_copying_the_body(|f| {
do try || {
f()
};
})
}
#[test]
fn test_child_doesnt_ref_parent() {
// If the child refcounts the parent task, this will stack overflow when
// climbing the task tree to dereference each ancestor. (See #1789)
// (well, it would if the constant were 8000+ - I lowered it to be more
// valgrind-friendly. try this at home, instead..!)
static generations: uint = 16;
fn child_no(x: uint) -> proc() {
return proc() {
if x < generations {
let mut t = task();
t.unwatched();
t.spawn(child_no(x+1));
}
}
}
let mut t = task();
t.unwatched();
t.spawn(child_no(0));
}
#[test]
fn test_simple_newsched_spawn() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
spawn(proc()())
}
}
#[test]
fn test_try_fail_message_static_str() {
match do try {
fail!("static string");
} {
Err(e) => {
type T = &'static str;
assert!(e.is::<T>());
assert_eq!(*e.move::<T>().unwrap(), "static string");
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_owned_str() {
match do try {
fail!(~"owned string");
} {
Err(e) => {
type T = ~str;
assert!(e.is::<T>());
assert_eq!(*e.move::<T>().unwrap(), ~"owned string");
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_any() {
match do try {
fail!(~413u16 as ~Any);
} {
Err(e) => {
type T = ~Any;
assert!(e.is::<T>());
let any = e.move::<T>().unwrap();
assert!(any.is::<u16>());
assert_eq!(*any.move::<u16>().unwrap(), 413u16);
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_unit_struct() {
struct Juju;
match do try {
fail!(Juju)
} {
Err(ref e) if e.is::<Juju>() => {}
Err(_) | Ok(()) => fail!()
}
}