1749 lines
60 KiB
Rust
1749 lines
60 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Numeric traits and functions for generic mathematics
|
|
//!
|
|
//! These are implemented for the primitive numeric types in `std::{u8, u16,
|
|
//! u32, u64, uint, i8, i16, i32, i64, int, f32, f64, float}`.
|
|
|
|
#[allow(missing_doc)];
|
|
|
|
use clone::{Clone, DeepClone};
|
|
use cmp::{Eq, Ord};
|
|
use mem::size_of;
|
|
use ops::{Add, Sub, Mul, Div, Rem, Neg};
|
|
use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
|
|
use option::{Option, Some, None};
|
|
|
|
pub mod strconv;
|
|
|
|
/// The base trait for numeric types
|
|
pub trait Num: Eq + Zero + One
|
|
+ Neg<Self>
|
|
+ Add<Self,Self>
|
|
+ Sub<Self,Self>
|
|
+ Mul<Self,Self>
|
|
+ Div<Self,Self>
|
|
+ Rem<Self,Self> {}
|
|
|
|
/// Defines an additive identity element for `Self`.
|
|
///
|
|
/// # Deriving
|
|
///
|
|
/// This trait can be automatically be derived using `#[deriving(Zero)]`
|
|
/// attribute. If you choose to use this, make sure that the laws outlined in
|
|
/// the documentation for `Zero::zero` still hold.
|
|
pub trait Zero: Add<Self, Self> {
|
|
/// Returns the additive identity element of `Self`, `0`.
|
|
///
|
|
/// # Laws
|
|
///
|
|
/// ~~~ignore
|
|
/// a + 0 = a ∀ a ∈ Self
|
|
/// 0 + a = a ∀ a ∈ Self
|
|
/// ~~~
|
|
///
|
|
/// # Purity
|
|
///
|
|
/// This function should return the same result at all times regardless of
|
|
/// external mutable state, for example values stored in TLS or in
|
|
/// `static mut`s.
|
|
// FIXME (#5527): This should be an associated constant
|
|
fn zero() -> Self;
|
|
|
|
/// Returns `true` if `self` is equal to the additive identity.
|
|
fn is_zero(&self) -> bool;
|
|
}
|
|
|
|
/// Returns the additive identity, `0`.
|
|
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
|
|
|
|
/// Defines a multiplicative identity element for `Self`.
|
|
pub trait One: Mul<Self, Self> {
|
|
/// Returns the multiplicative identity element of `Self`, `1`.
|
|
///
|
|
/// # Laws
|
|
///
|
|
/// ~~~ignore
|
|
/// a * 1 = a ∀ a ∈ Self
|
|
/// 1 * a = a ∀ a ∈ Self
|
|
/// ~~~
|
|
///
|
|
/// # Purity
|
|
///
|
|
/// This function should return the same result at all times regardless of
|
|
/// external mutable state, for example values stored in TLS or in
|
|
/// `static mut`s.
|
|
// FIXME (#5527): This should be an associated constant
|
|
fn one() -> Self;
|
|
}
|
|
|
|
/// Returns the multiplicative identity, `1`.
|
|
#[inline(always)] pub fn one<T: One>() -> T { One::one() }
|
|
|
|
pub trait Signed: Num
|
|
+ Neg<Self> {
|
|
fn abs(&self) -> Self;
|
|
fn abs_sub(&self, other: &Self) -> Self;
|
|
fn signum(&self) -> Self;
|
|
|
|
fn is_positive(&self) -> bool;
|
|
fn is_negative(&self) -> bool;
|
|
}
|
|
|
|
/// Computes the absolute value.
|
|
///
|
|
/// For float, f32, and f64, `NaN` will be returned if the number is `NaN`
|
|
#[inline(always)] pub fn abs<T: Signed>(value: T) -> T { value.abs() }
|
|
/// The positive difference of two numbers.
|
|
///
|
|
/// Returns `zero` if the number is less than or equal to `other`,
|
|
/// otherwise the difference between `self` and `other` is returned.
|
|
#[inline(always)] pub fn abs_sub<T: Signed>(x: T, y: T) -> T { x.abs_sub(&y) }
|
|
/// Returns the sign of the number.
|
|
///
|
|
/// For float, f32, f64:
|
|
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
|
|
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
|
/// - `NAN` if the number is `NAN`
|
|
///
|
|
/// For int:
|
|
/// - `0` if the number is zero
|
|
/// - `1` if the number is positive
|
|
/// - `-1` if the number is negative
|
|
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
|
|
|
|
pub trait Unsigned: Num {}
|
|
|
|
pub trait Integer: Num
|
|
+ Ord
|
|
+ Div<Self,Self>
|
|
+ Rem<Self,Self> {
|
|
fn div_rem(&self, other: &Self) -> (Self,Self);
|
|
|
|
fn div_floor(&self, other: &Self) -> Self;
|
|
fn mod_floor(&self, other: &Self) -> Self;
|
|
fn div_mod_floor(&self, other: &Self) -> (Self,Self);
|
|
|
|
fn gcd(&self, other: &Self) -> Self;
|
|
fn lcm(&self, other: &Self) -> Self;
|
|
|
|
fn is_multiple_of(&self, other: &Self) -> bool;
|
|
fn is_even(&self) -> bool;
|
|
fn is_odd(&self) -> bool;
|
|
}
|
|
|
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
|
|
///
|
|
/// The result is always positive.
|
|
#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
|
#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
|
|
|
|
/// A collection of rounding operations.
|
|
pub trait Round {
|
|
/// Return the largest integer less than or equal to a number.
|
|
fn floor(&self) -> Self;
|
|
|
|
/// Return the smallest integer greater than or equal to a number.
|
|
fn ceil(&self) -> Self;
|
|
|
|
/// Return the nearest integer to a number. Round half-way cases away from
|
|
/// `0.0`.
|
|
fn round(&self) -> Self;
|
|
|
|
/// Return the integer part of a number.
|
|
fn trunc(&self) -> Self;
|
|
|
|
/// Return the fractional part of a number.
|
|
fn fract(&self) -> Self;
|
|
}
|
|
|
|
/// Raises a value to the power of exp, using exponentiation by squaring.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::num;
|
|
///
|
|
/// assert_eq!(num::pow(2, 4), 16);
|
|
/// ```
|
|
#[inline]
|
|
pub fn pow<T: One + Mul<T, T>>(mut base: T, mut exp: uint) -> T {
|
|
if exp == 1 { base }
|
|
else {
|
|
let mut acc = one::<T>();
|
|
while exp > 0 {
|
|
if (exp & 1) == 1 {
|
|
acc = acc * base;
|
|
}
|
|
base = base * base;
|
|
exp = exp >> 1;
|
|
}
|
|
acc
|
|
}
|
|
}
|
|
|
|
pub trait Bounded {
|
|
// FIXME (#5527): These should be associated constants
|
|
fn min_value() -> Self;
|
|
fn max_value() -> Self;
|
|
}
|
|
|
|
/// Numbers with a fixed binary representation.
|
|
pub trait Bitwise: Bounded
|
|
+ Not<Self>
|
|
+ BitAnd<Self,Self>
|
|
+ BitOr<Self,Self>
|
|
+ BitXor<Self,Self>
|
|
+ Shl<Self,Self>
|
|
+ Shr<Self,Self> {
|
|
/// Returns the number of ones in the binary representation of the number.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::num::Bitwise;
|
|
///
|
|
/// let n = 0b01001100u8;
|
|
/// assert_eq!(n.count_ones(), 3);
|
|
/// ```
|
|
fn count_ones(&self) -> Self;
|
|
|
|
/// Returns the number of zeros in the binary representation of the number.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::num::Bitwise;
|
|
///
|
|
/// let n = 0b01001100u8;
|
|
/// assert_eq!(n.count_zeros(), 5);
|
|
/// ```
|
|
#[inline]
|
|
fn count_zeros(&self) -> Self {
|
|
(!*self).count_ones()
|
|
}
|
|
|
|
/// Returns the number of leading zeros in the in the binary representation
|
|
/// of the number.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::num::Bitwise;
|
|
///
|
|
/// let n = 0b0101000u16;
|
|
/// assert_eq!(n.leading_zeros(), 10);
|
|
/// ```
|
|
fn leading_zeros(&self) -> Self;
|
|
|
|
/// Returns the number of trailing zeros in the in the binary representation
|
|
/// of the number.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::num::Bitwise;
|
|
///
|
|
/// let n = 0b0101000u16;
|
|
/// assert_eq!(n.trailing_zeros(), 3);
|
|
/// ```
|
|
fn trailing_zeros(&self) -> Self;
|
|
}
|
|
|
|
/// Specifies the available operations common to all of Rust's core numeric primitives.
|
|
/// These may not always make sense from a purely mathematical point of view, but
|
|
/// may be useful for systems programming.
|
|
pub trait Primitive: Clone
|
|
+ DeepClone
|
|
+ Num
|
|
+ NumCast
|
|
+ Ord
|
|
+ Bounded {}
|
|
|
|
/// A collection of traits relevant to primitive signed and unsigned integers
|
|
pub trait Int: Integer
|
|
+ Primitive
|
|
+ Bitwise
|
|
+ CheckedAdd
|
|
+ CheckedSub
|
|
+ CheckedMul
|
|
+ CheckedDiv {}
|
|
|
|
/// Returns the smallest power of 2 greater than or equal to `n`.
|
|
#[inline]
|
|
pub fn next_power_of_two<T: Unsigned + Int>(n: T) -> T {
|
|
let halfbits: T = cast(size_of::<T>() * 4).unwrap();
|
|
let mut tmp: T = n - one();
|
|
let mut shift: T = one();
|
|
while shift <= halfbits {
|
|
tmp = tmp | (tmp >> shift);
|
|
shift = shift << one();
|
|
}
|
|
tmp + one()
|
|
}
|
|
|
|
/// Returns the smallest power of 2 greater than or equal to `n`. If the next
|
|
/// power of two is greater than the type's maximum value, `None` is returned,
|
|
/// otherwise the power of 2 is wrapped in `Some`.
|
|
#[inline]
|
|
pub fn checked_next_power_of_two<T: Unsigned + Int>(n: T) -> Option<T> {
|
|
let halfbits: T = cast(size_of::<T>() * 4).unwrap();
|
|
let mut tmp: T = n - one();
|
|
let mut shift: T = one();
|
|
while shift <= halfbits {
|
|
tmp = tmp | (tmp >> shift);
|
|
shift = shift << one();
|
|
}
|
|
tmp.checked_add(&one())
|
|
}
|
|
|
|
/// Used for representing the classification of floating point numbers
|
|
#[deriving(Eq)]
|
|
pub enum FPCategory {
|
|
/// "Not a Number", often obtained by dividing by zero
|
|
FPNaN,
|
|
/// Positive or negative infinity
|
|
FPInfinite ,
|
|
/// Positive or negative zero
|
|
FPZero,
|
|
/// De-normalized floating point representation (less precise than `FPNormal`)
|
|
FPSubnormal,
|
|
/// A regular floating point number
|
|
FPNormal,
|
|
}
|
|
|
|
/// Primitive floating point numbers
|
|
pub trait Float: Signed
|
|
+ Round
|
|
+ Primitive {
|
|
// FIXME (#5527): These should be associated constants
|
|
fn nan() -> Self;
|
|
fn infinity() -> Self;
|
|
fn neg_infinity() -> Self;
|
|
fn neg_zero() -> Self;
|
|
|
|
fn is_nan(&self) -> bool;
|
|
fn is_infinite(&self) -> bool;
|
|
fn is_finite(&self) -> bool;
|
|
fn is_normal(&self) -> bool;
|
|
fn classify(&self) -> FPCategory;
|
|
|
|
// FIXME (#8888): Removing `unused_self` requires #8888 to be fixed.
|
|
fn mantissa_digits(unused_self: Option<Self>) -> uint;
|
|
fn digits(unused_self: Option<Self>) -> uint;
|
|
fn epsilon() -> Self;
|
|
fn min_exp(unused_self: Option<Self>) -> int;
|
|
fn max_exp(unused_self: Option<Self>) -> int;
|
|
fn min_10_exp(unused_self: Option<Self>) -> int;
|
|
fn max_10_exp(unused_self: Option<Self>) -> int;
|
|
|
|
fn ldexp(x: Self, exp: int) -> Self;
|
|
fn frexp(&self) -> (Self, int);
|
|
|
|
fn exp_m1(&self) -> Self;
|
|
fn ln_1p(&self) -> Self;
|
|
fn mul_add(&self, a: Self, b: Self) -> Self;
|
|
fn next_after(&self, other: Self) -> Self;
|
|
|
|
fn integer_decode(&self) -> (u64, i16, i8);
|
|
|
|
// Common Mathematical Constants
|
|
// FIXME (#5527): These should be associated constants
|
|
fn pi() -> Self;
|
|
fn two_pi() -> Self;
|
|
fn frac_pi_2() -> Self;
|
|
fn frac_pi_3() -> Self;
|
|
fn frac_pi_4() -> Self;
|
|
fn frac_pi_6() -> Self;
|
|
fn frac_pi_8() -> Self;
|
|
fn frac_1_pi() -> Self;
|
|
fn frac_2_pi() -> Self;
|
|
fn frac_2_sqrtpi() -> Self;
|
|
fn sqrt2() -> Self;
|
|
fn frac_1_sqrt2() -> Self;
|
|
fn e() -> Self;
|
|
fn log2_e() -> Self;
|
|
fn log10_e() -> Self;
|
|
fn ln_2() -> Self;
|
|
fn ln_10() -> Self;
|
|
|
|
// Fractional functions
|
|
|
|
/// Take the reciprocal (inverse) of a number, `1/x`.
|
|
fn recip(&self) -> Self;
|
|
|
|
// Algebraic functions
|
|
/// Raise a number to a power.
|
|
fn powf(&self, n: &Self) -> Self;
|
|
|
|
/// Take the square root of a number.
|
|
fn sqrt(&self) -> Self;
|
|
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
|
fn rsqrt(&self) -> Self;
|
|
/// Take the cubic root of a number.
|
|
fn cbrt(&self) -> Self;
|
|
/// Calculate the length of the hypotenuse of a right-angle triangle given
|
|
/// legs of length `x` and `y`.
|
|
fn hypot(&self, other: &Self) -> Self;
|
|
|
|
// Trigonometric functions
|
|
|
|
/// Computes the sine of a number (in radians).
|
|
fn sin(&self) -> Self;
|
|
/// Computes the cosine of a number (in radians).
|
|
fn cos(&self) -> Self;
|
|
/// Computes the tangent of a number (in radians).
|
|
fn tan(&self) -> Self;
|
|
|
|
/// Computes the arcsine of a number. Return value is in radians in
|
|
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
fn asin(&self) -> Self;
|
|
/// Computes the arccosine of a number. Return value is in radians in
|
|
/// the range [0, pi] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
fn acos(&self) -> Self;
|
|
/// Computes the arctangent of a number. Return value is in radians in the
|
|
/// range [-pi/2, pi/2];
|
|
fn atan(&self) -> Self;
|
|
/// Computes the four quadrant arctangent of a number, `y`, and another
|
|
/// number `x`. Return value is in radians in the range [-pi, pi].
|
|
fn atan2(&self, other: &Self) -> Self;
|
|
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
|
|
/// `(sin(x), cos(x))`.
|
|
fn sin_cos(&self) -> (Self, Self);
|
|
|
|
// Exponential functions
|
|
|
|
/// Returns `e^(self)`, (the exponential function).
|
|
fn exp(&self) -> Self;
|
|
/// Returns 2 raised to the power of the number, `2^(self)`.
|
|
fn exp2(&self) -> Self;
|
|
/// Returns the natural logarithm of the number.
|
|
fn ln(&self) -> Self;
|
|
/// Returns the logarithm of the number with respect to an arbitrary base.
|
|
fn log(&self, base: &Self) -> Self;
|
|
/// Returns the base 2 logarithm of the number.
|
|
fn log2(&self) -> Self;
|
|
/// Returns the base 10 logarithm of the number.
|
|
fn log10(&self) -> Self;
|
|
|
|
// Hyperbolic functions
|
|
|
|
/// Hyperbolic sine function.
|
|
fn sinh(&self) -> Self;
|
|
/// Hyperbolic cosine function.
|
|
fn cosh(&self) -> Self;
|
|
/// Hyperbolic tangent function.
|
|
fn tanh(&self) -> Self;
|
|
/// Inverse hyperbolic sine function.
|
|
fn asinh(&self) -> Self;
|
|
/// Inverse hyperbolic cosine function.
|
|
fn acosh(&self) -> Self;
|
|
/// Inverse hyperbolic tangent function.
|
|
fn atanh(&self) -> Self;
|
|
|
|
// Angular conversions
|
|
|
|
/// Convert radians to degrees.
|
|
fn to_degrees(&self) -> Self;
|
|
/// Convert degrees to radians.
|
|
fn to_radians(&self) -> Self;
|
|
}
|
|
|
|
/// Returns the exponential of the number, minus `1`, `exp(n) - 1`, in a way
|
|
/// that is accurate even if the number is close to zero.
|
|
#[inline(always)] pub fn exp_m1<T: Float>(value: T) -> T { value.exp_m1() }
|
|
/// Returns the natural logarithm of the number plus `1`, `ln(n + 1)`, more
|
|
/// accurately than if the operations were performed separately.
|
|
#[inline(always)] pub fn ln_1p<T: Float>(value: T) -> T { value.ln_1p() }
|
|
/// Fused multiply-add. Computes `(a * b) + c` with only one rounding error.
|
|
///
|
|
/// This produces a more accurate result with better performance (on some
|
|
/// architectures) than a separate multiplication operation followed by an add.
|
|
#[inline(always)] pub fn mul_add<T: Float>(a: T, b: T, c: T) -> T { a.mul_add(b, c) }
|
|
|
|
/// Raise a number to a power.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::num;
|
|
///
|
|
/// let sixteen: f64 = num::powf(2.0, 4.0);
|
|
/// assert_eq!(sixteen, 16.0);
|
|
/// ```
|
|
#[inline(always)] pub fn powf<T: Float>(value: T, n: T) -> T { value.powf(&n) }
|
|
/// Take the square root of a number.
|
|
#[inline(always)] pub fn sqrt<T: Float>(value: T) -> T { value.sqrt() }
|
|
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
|
#[inline(always)] pub fn rsqrt<T: Float>(value: T) -> T { value.rsqrt() }
|
|
/// Take the cubic root of a number.
|
|
#[inline(always)] pub fn cbrt<T: Float>(value: T) -> T { value.cbrt() }
|
|
/// Calculate the length of the hypotenuse of a right-angle triangle given legs
|
|
/// of length `x` and `y`.
|
|
#[inline(always)] pub fn hypot<T: Float>(x: T, y: T) -> T { x.hypot(&y) }
|
|
/// Sine function.
|
|
#[inline(always)] pub fn sin<T: Float>(value: T) -> T { value.sin() }
|
|
/// Cosine function.
|
|
#[inline(always)] pub fn cos<T: Float>(value: T) -> T { value.cos() }
|
|
/// Tangent function.
|
|
#[inline(always)] pub fn tan<T: Float>(value: T) -> T { value.tan() }
|
|
/// Compute the arcsine of the number.
|
|
#[inline(always)] pub fn asin<T: Float>(value: T) -> T { value.asin() }
|
|
/// Compute the arccosine of the number.
|
|
#[inline(always)] pub fn acos<T: Float>(value: T) -> T { value.acos() }
|
|
/// Compute the arctangent of the number.
|
|
#[inline(always)] pub fn atan<T: Float>(value: T) -> T { value.atan() }
|
|
/// Compute the arctangent with 2 arguments.
|
|
#[inline(always)] pub fn atan2<T: Float>(x: T, y: T) -> T { x.atan2(&y) }
|
|
/// Simultaneously computes the sine and cosine of the number.
|
|
#[inline(always)] pub fn sin_cos<T: Float>(value: T) -> (T, T) { value.sin_cos() }
|
|
/// Returns `e^(value)`, (the exponential function).
|
|
#[inline(always)] pub fn exp<T: Float>(value: T) -> T { value.exp() }
|
|
/// Returns 2 raised to the power of the number, `2^(value)`.
|
|
#[inline(always)] pub fn exp2<T: Float>(value: T) -> T { value.exp2() }
|
|
/// Returns the natural logarithm of the number.
|
|
#[inline(always)] pub fn ln<T: Float>(value: T) -> T { value.ln() }
|
|
/// Returns the logarithm of the number with respect to an arbitrary base.
|
|
#[inline(always)] pub fn log<T: Float>(value: T, base: T) -> T { value.log(&base) }
|
|
/// Returns the base 2 logarithm of the number.
|
|
#[inline(always)] pub fn log2<T: Float>(value: T) -> T { value.log2() }
|
|
/// Returns the base 10 logarithm of the number.
|
|
#[inline(always)] pub fn log10<T: Float>(value: T) -> T { value.log10() }
|
|
/// Hyperbolic sine function.
|
|
#[inline(always)] pub fn sinh<T: Float>(value: T) -> T { value.sinh() }
|
|
/// Hyperbolic cosine function.
|
|
#[inline(always)] pub fn cosh<T: Float>(value: T) -> T { value.cosh() }
|
|
/// Hyperbolic tangent function.
|
|
#[inline(always)] pub fn tanh<T: Float>(value: T) -> T { value.tanh() }
|
|
/// Inverse hyperbolic sine function.
|
|
#[inline(always)] pub fn asinh<T: Float>(value: T) -> T { value.asinh() }
|
|
/// Inverse hyperbolic cosine function.
|
|
#[inline(always)] pub fn acosh<T: Float>(value: T) -> T { value.acosh() }
|
|
/// Inverse hyperbolic tangent function.
|
|
#[inline(always)] pub fn atanh<T: Float>(value: T) -> T { value.atanh() }
|
|
|
|
/// A generic trait for converting a value to a number.
|
|
pub trait ToPrimitive {
|
|
/// Converts the value of `self` to an `int`.
|
|
#[inline]
|
|
fn to_int(&self) -> Option<int> {
|
|
self.to_i64().and_then(|x| x.to_int())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `i8`.
|
|
#[inline]
|
|
fn to_i8(&self) -> Option<i8> {
|
|
self.to_i64().and_then(|x| x.to_i8())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `i16`.
|
|
#[inline]
|
|
fn to_i16(&self) -> Option<i16> {
|
|
self.to_i64().and_then(|x| x.to_i16())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `i32`.
|
|
#[inline]
|
|
fn to_i32(&self) -> Option<i32> {
|
|
self.to_i64().and_then(|x| x.to_i32())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `i64`.
|
|
fn to_i64(&self) -> Option<i64>;
|
|
|
|
/// Converts the value of `self` to an `uint`.
|
|
#[inline]
|
|
fn to_uint(&self) -> Option<uint> {
|
|
self.to_u64().and_then(|x| x.to_uint())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `u8`.
|
|
#[inline]
|
|
fn to_u8(&self) -> Option<u8> {
|
|
self.to_u64().and_then(|x| x.to_u8())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `u16`.
|
|
#[inline]
|
|
fn to_u16(&self) -> Option<u16> {
|
|
self.to_u64().and_then(|x| x.to_u16())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `u32`.
|
|
#[inline]
|
|
fn to_u32(&self) -> Option<u32> {
|
|
self.to_u64().and_then(|x| x.to_u32())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `u64`.
|
|
#[inline]
|
|
fn to_u64(&self) -> Option<u64>;
|
|
|
|
/// Converts the value of `self` to an `f32`.
|
|
#[inline]
|
|
fn to_f32(&self) -> Option<f32> {
|
|
self.to_f64().and_then(|x| x.to_f32())
|
|
}
|
|
|
|
/// Converts the value of `self` to an `f64`.
|
|
#[inline]
|
|
fn to_f64(&self) -> Option<f64> {
|
|
self.to_i64().and_then(|x| x.to_f64())
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_to_primitive_int_to_int(
|
|
($SrcT:ty, $DstT:ty) => (
|
|
{
|
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
let n = *self as i64;
|
|
let min_value: $DstT = Bounded::min_value();
|
|
let max_value: $DstT = Bounded::max_value();
|
|
if min_value as i64 <= n && n <= max_value as i64 {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! impl_to_primitive_int_to_uint(
|
|
($SrcT:ty, $DstT:ty) => (
|
|
{
|
|
let zero: $SrcT = Zero::zero();
|
|
let max_value: $DstT = Bounded::max_value();
|
|
if zero <= *self && *self as u64 <= max_value as u64 {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! impl_to_primitive_int(
|
|
($T:ty) => (
|
|
impl ToPrimitive for $T {
|
|
#[inline]
|
|
fn to_int(&self) -> Option<int> { impl_to_primitive_int_to_int!($T, int) }
|
|
#[inline]
|
|
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8) }
|
|
#[inline]
|
|
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16) }
|
|
#[inline]
|
|
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32) }
|
|
#[inline]
|
|
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64) }
|
|
|
|
#[inline]
|
|
fn to_uint(&self) -> Option<uint> { impl_to_primitive_int_to_uint!($T, uint) }
|
|
#[inline]
|
|
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8) }
|
|
#[inline]
|
|
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16) }
|
|
#[inline]
|
|
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32) }
|
|
#[inline]
|
|
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64) }
|
|
|
|
#[inline]
|
|
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
|
#[inline]
|
|
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
|
}
|
|
)
|
|
)
|
|
|
|
impl_to_primitive_int!(int)
|
|
impl_to_primitive_int!(i8)
|
|
impl_to_primitive_int!(i16)
|
|
impl_to_primitive_int!(i32)
|
|
impl_to_primitive_int!(i64)
|
|
|
|
macro_rules! impl_to_primitive_uint_to_int(
|
|
($DstT:ty) => (
|
|
{
|
|
let max_value: $DstT = Bounded::max_value();
|
|
if *self as u64 <= max_value as u64 {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! impl_to_primitive_uint_to_uint(
|
|
($SrcT:ty, $DstT:ty) => (
|
|
{
|
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
let zero: $SrcT = Zero::zero();
|
|
let max_value: $DstT = Bounded::max_value();
|
|
if zero <= *self && *self as u64 <= max_value as u64 {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! impl_to_primitive_uint(
|
|
($T:ty) => (
|
|
impl ToPrimitive for $T {
|
|
#[inline]
|
|
fn to_int(&self) -> Option<int> { impl_to_primitive_uint_to_int!(int) }
|
|
#[inline]
|
|
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8) }
|
|
#[inline]
|
|
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16) }
|
|
#[inline]
|
|
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32) }
|
|
#[inline]
|
|
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64) }
|
|
|
|
#[inline]
|
|
fn to_uint(&self) -> Option<uint> { impl_to_primitive_uint_to_uint!($T, uint) }
|
|
#[inline]
|
|
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8) }
|
|
#[inline]
|
|
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16) }
|
|
#[inline]
|
|
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32) }
|
|
#[inline]
|
|
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64) }
|
|
|
|
#[inline]
|
|
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
|
#[inline]
|
|
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
|
}
|
|
)
|
|
)
|
|
|
|
impl_to_primitive_uint!(uint)
|
|
impl_to_primitive_uint!(u8)
|
|
impl_to_primitive_uint!(u16)
|
|
impl_to_primitive_uint!(u32)
|
|
impl_to_primitive_uint!(u64)
|
|
|
|
macro_rules! impl_to_primitive_float_to_float(
|
|
($SrcT:ty, $DstT:ty) => (
|
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
let n = *self as f64;
|
|
let max_value: $SrcT = Bounded::max_value();
|
|
if -max_value as f64 <= n && n <= max_value as f64 {
|
|
Some(*self as $DstT)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! impl_to_primitive_float(
|
|
($T:ty) => (
|
|
impl ToPrimitive for $T {
|
|
#[inline]
|
|
fn to_int(&self) -> Option<int> { Some(*self as int) }
|
|
#[inline]
|
|
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
|
|
#[inline]
|
|
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
|
|
#[inline]
|
|
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
|
|
#[inline]
|
|
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
|
|
|
|
#[inline]
|
|
fn to_uint(&self) -> Option<uint> { Some(*self as uint) }
|
|
#[inline]
|
|
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
|
|
#[inline]
|
|
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
|
|
#[inline]
|
|
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
|
|
#[inline]
|
|
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
|
|
|
|
#[inline]
|
|
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32) }
|
|
#[inline]
|
|
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64) }
|
|
}
|
|
)
|
|
)
|
|
|
|
impl_to_primitive_float!(f32)
|
|
impl_to_primitive_float!(f64)
|
|
|
|
/// A generic trait for converting a number to a value.
|
|
pub trait FromPrimitive {
|
|
/// Convert an `int` to return an optional value of this type. If the
|
|
/// value cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_int(n: int) -> Option<Self> {
|
|
FromPrimitive::from_i64(n as i64)
|
|
}
|
|
|
|
/// Convert an `i8` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_i8(n: i8) -> Option<Self> {
|
|
FromPrimitive::from_i64(n as i64)
|
|
}
|
|
|
|
/// Convert an `i16` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_i16(n: i16) -> Option<Self> {
|
|
FromPrimitive::from_i64(n as i64)
|
|
}
|
|
|
|
/// Convert an `i32` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_i32(n: i32) -> Option<Self> {
|
|
FromPrimitive::from_i64(n as i64)
|
|
}
|
|
|
|
/// Convert an `i64` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
fn from_i64(n: i64) -> Option<Self>;
|
|
|
|
/// Convert an `uint` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_uint(n: uint) -> Option<Self> {
|
|
FromPrimitive::from_u64(n as u64)
|
|
}
|
|
|
|
/// Convert an `u8` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_u8(n: u8) -> Option<Self> {
|
|
FromPrimitive::from_u64(n as u64)
|
|
}
|
|
|
|
/// Convert an `u16` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_u16(n: u16) -> Option<Self> {
|
|
FromPrimitive::from_u64(n as u64)
|
|
}
|
|
|
|
/// Convert an `u32` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_u32(n: u32) -> Option<Self> {
|
|
FromPrimitive::from_u64(n as u64)
|
|
}
|
|
|
|
/// Convert an `u64` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
fn from_u64(n: u64) -> Option<Self>;
|
|
|
|
/// Convert a `f32` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_f32(n: f32) -> Option<Self> {
|
|
FromPrimitive::from_f64(n as f64)
|
|
}
|
|
|
|
/// Convert a `f64` to return an optional value of this type. If the
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
#[inline]
|
|
fn from_f64(n: f64) -> Option<Self> {
|
|
FromPrimitive::from_i64(n as i64)
|
|
}
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_int`.
|
|
pub fn from_int<A: FromPrimitive>(n: int) -> Option<A> {
|
|
FromPrimitive::from_int(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i8`.
|
|
pub fn from_i8<A: FromPrimitive>(n: i8) -> Option<A> {
|
|
FromPrimitive::from_i8(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i16`.
|
|
pub fn from_i16<A: FromPrimitive>(n: i16) -> Option<A> {
|
|
FromPrimitive::from_i16(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i32`.
|
|
pub fn from_i32<A: FromPrimitive>(n: i32) -> Option<A> {
|
|
FromPrimitive::from_i32(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i64`.
|
|
pub fn from_i64<A: FromPrimitive>(n: i64) -> Option<A> {
|
|
FromPrimitive::from_i64(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_uint`.
|
|
pub fn from_uint<A: FromPrimitive>(n: uint) -> Option<A> {
|
|
FromPrimitive::from_uint(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u8`.
|
|
pub fn from_u8<A: FromPrimitive>(n: u8) -> Option<A> {
|
|
FromPrimitive::from_u8(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u16`.
|
|
pub fn from_u16<A: FromPrimitive>(n: u16) -> Option<A> {
|
|
FromPrimitive::from_u16(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u32`.
|
|
pub fn from_u32<A: FromPrimitive>(n: u32) -> Option<A> {
|
|
FromPrimitive::from_u32(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u64`.
|
|
pub fn from_u64<A: FromPrimitive>(n: u64) -> Option<A> {
|
|
FromPrimitive::from_u64(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_f32`.
|
|
pub fn from_f32<A: FromPrimitive>(n: f32) -> Option<A> {
|
|
FromPrimitive::from_f32(n)
|
|
}
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_f64`.
|
|
pub fn from_f64<A: FromPrimitive>(n: f64) -> Option<A> {
|
|
FromPrimitive::from_f64(n)
|
|
}
|
|
|
|
macro_rules! impl_from_primitive(
|
|
($T:ty, $to_ty:expr) => (
|
|
impl FromPrimitive for $T {
|
|
#[inline] fn from_int(n: int) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_i8(n: i8) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_i16(n: i16) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_i32(n: i32) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_i64(n: i64) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_uint(n: uint) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_u8(n: u8) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_u16(n: u16) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_u32(n: u32) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_u64(n: u64) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_f32(n: f32) -> Option<$T> { $to_ty }
|
|
#[inline] fn from_f64(n: f64) -> Option<$T> { $to_ty }
|
|
}
|
|
)
|
|
)
|
|
|
|
impl_from_primitive!(int, n.to_int())
|
|
impl_from_primitive!(i8, n.to_i8())
|
|
impl_from_primitive!(i16, n.to_i16())
|
|
impl_from_primitive!(i32, n.to_i32())
|
|
impl_from_primitive!(i64, n.to_i64())
|
|
impl_from_primitive!(uint, n.to_uint())
|
|
impl_from_primitive!(u8, n.to_u8())
|
|
impl_from_primitive!(u16, n.to_u16())
|
|
impl_from_primitive!(u32, n.to_u32())
|
|
impl_from_primitive!(u64, n.to_u64())
|
|
impl_from_primitive!(f32, n.to_f32())
|
|
impl_from_primitive!(f64, n.to_f64())
|
|
|
|
/// Cast from one machine scalar to another.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// use std::num;
|
|
///
|
|
/// let twenty: f32 = num::cast(0x14).unwrap();
|
|
/// assert_eq!(twenty, 20f32);
|
|
/// ```
|
|
///
|
|
#[inline]
|
|
pub fn cast<T: NumCast,U: NumCast>(n: T) -> Option<U> {
|
|
NumCast::from(n)
|
|
}
|
|
|
|
/// An interface for casting between machine scalars
|
|
pub trait NumCast: ToPrimitive {
|
|
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
|
|
}
|
|
|
|
macro_rules! impl_num_cast(
|
|
($T:ty, $conv:ident) => (
|
|
impl NumCast for $T {
|
|
#[inline]
|
|
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
|
|
// `$conv` could be generated using `concat_idents!`, but that
|
|
// macro seems to be broken at the moment
|
|
n.$conv()
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
impl_num_cast!(u8, to_u8)
|
|
impl_num_cast!(u16, to_u16)
|
|
impl_num_cast!(u32, to_u32)
|
|
impl_num_cast!(u64, to_u64)
|
|
impl_num_cast!(uint, to_uint)
|
|
impl_num_cast!(i8, to_i8)
|
|
impl_num_cast!(i16, to_i16)
|
|
impl_num_cast!(i32, to_i32)
|
|
impl_num_cast!(i64, to_i64)
|
|
impl_num_cast!(int, to_int)
|
|
impl_num_cast!(f32, to_f32)
|
|
impl_num_cast!(f64, to_f64)
|
|
|
|
pub trait ToStrRadix {
|
|
fn to_str_radix(&self, radix: uint) -> ~str;
|
|
}
|
|
|
|
pub trait FromStrRadix {
|
|
fn from_str_radix(str: &str, radix: uint) -> Option<Self>;
|
|
}
|
|
|
|
/// A utility function that just calls FromStrRadix::from_str_radix.
|
|
pub fn from_str_radix<T: FromStrRadix>(str: &str, radix: uint) -> Option<T> {
|
|
FromStrRadix::from_str_radix(str, radix)
|
|
}
|
|
|
|
/// Saturating math operations
|
|
pub trait Saturating {
|
|
/// Saturating addition operator.
|
|
/// Returns a+b, saturating at the numeric bounds instead of overflowing.
|
|
fn saturating_add(self, v: Self) -> Self;
|
|
|
|
/// Saturating subtraction operator.
|
|
/// Returns a-b, saturating at the numeric bounds instead of overflowing.
|
|
fn saturating_sub(self, v: Self) -> Self;
|
|
}
|
|
|
|
impl<T: CheckedAdd + CheckedSub + Zero + Ord + Bounded> Saturating for T {
|
|
#[inline]
|
|
fn saturating_add(self, v: T) -> T {
|
|
match self.checked_add(&v) {
|
|
Some(x) => x,
|
|
None => if v >= Zero::zero() {
|
|
Bounded::max_value()
|
|
} else {
|
|
Bounded::min_value()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn saturating_sub(self, v: T) -> T {
|
|
match self.checked_sub(&v) {
|
|
Some(x) => x,
|
|
None => if v >= Zero::zero() {
|
|
Bounded::min_value()
|
|
} else {
|
|
Bounded::max_value()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait CheckedAdd: Add<Self, Self> {
|
|
fn checked_add(&self, v: &Self) -> Option<Self>;
|
|
}
|
|
|
|
pub trait CheckedSub: Sub<Self, Self> {
|
|
fn checked_sub(&self, v: &Self) -> Option<Self>;
|
|
}
|
|
|
|
pub trait CheckedMul: Mul<Self, Self> {
|
|
fn checked_mul(&self, v: &Self) -> Option<Self>;
|
|
}
|
|
|
|
pub trait CheckedDiv: Div<Self, Self> {
|
|
fn checked_div(&self, v: &Self) -> Option<Self>;
|
|
}
|
|
|
|
/// Helper function for testing numeric operations
|
|
#[cfg(test)]
|
|
pub fn test_num<T:Num + NumCast>(ten: T, two: T) {
|
|
assert_eq!(ten.add(&two), cast(12).unwrap());
|
|
assert_eq!(ten.sub(&two), cast(8).unwrap());
|
|
assert_eq!(ten.mul(&two), cast(20).unwrap());
|
|
assert_eq!(ten.div(&two), cast(5).unwrap());
|
|
assert_eq!(ten.rem(&two), cast(0).unwrap());
|
|
|
|
assert_eq!(ten.add(&two), ten + two);
|
|
assert_eq!(ten.sub(&two), ten - two);
|
|
assert_eq!(ten.mul(&two), ten * two);
|
|
assert_eq!(ten.div(&two), ten / two);
|
|
assert_eq!(ten.rem(&two), ten % two);
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use prelude::*;
|
|
use super::*;
|
|
use i8;
|
|
use i16;
|
|
use i32;
|
|
use i64;
|
|
use int;
|
|
use u8;
|
|
use u16;
|
|
use u32;
|
|
use u64;
|
|
use uint;
|
|
|
|
macro_rules! test_cast_20(
|
|
($_20:expr) => ({
|
|
let _20 = $_20;
|
|
|
|
assert_eq!(20u, _20.to_uint().unwrap());
|
|
assert_eq!(20u8, _20.to_u8().unwrap());
|
|
assert_eq!(20u16, _20.to_u16().unwrap());
|
|
assert_eq!(20u32, _20.to_u32().unwrap());
|
|
assert_eq!(20u64, _20.to_u64().unwrap());
|
|
assert_eq!(20i, _20.to_int().unwrap());
|
|
assert_eq!(20i8, _20.to_i8().unwrap());
|
|
assert_eq!(20i16, _20.to_i16().unwrap());
|
|
assert_eq!(20i32, _20.to_i32().unwrap());
|
|
assert_eq!(20i64, _20.to_i64().unwrap());
|
|
assert_eq!(20f32, _20.to_f32().unwrap());
|
|
assert_eq!(20f64, _20.to_f64().unwrap());
|
|
|
|
assert_eq!(_20, NumCast::from(20u).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u8).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u16).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u32).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u64).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i8).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i16).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i32).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i64).unwrap());
|
|
assert_eq!(_20, NumCast::from(20f32).unwrap());
|
|
assert_eq!(_20, NumCast::from(20f64).unwrap());
|
|
|
|
assert_eq!(_20, cast(20u).unwrap());
|
|
assert_eq!(_20, cast(20u8).unwrap());
|
|
assert_eq!(_20, cast(20u16).unwrap());
|
|
assert_eq!(_20, cast(20u32).unwrap());
|
|
assert_eq!(_20, cast(20u64).unwrap());
|
|
assert_eq!(_20, cast(20i).unwrap());
|
|
assert_eq!(_20, cast(20i8).unwrap());
|
|
assert_eq!(_20, cast(20i16).unwrap());
|
|
assert_eq!(_20, cast(20i32).unwrap());
|
|
assert_eq!(_20, cast(20i64).unwrap());
|
|
assert_eq!(_20, cast(20f32).unwrap());
|
|
assert_eq!(_20, cast(20f64).unwrap());
|
|
})
|
|
)
|
|
|
|
#[test] fn test_u8_cast() { test_cast_20!(20u8) }
|
|
#[test] fn test_u16_cast() { test_cast_20!(20u16) }
|
|
#[test] fn test_u32_cast() { test_cast_20!(20u32) }
|
|
#[test] fn test_u64_cast() { test_cast_20!(20u64) }
|
|
#[test] fn test_uint_cast() { test_cast_20!(20u) }
|
|
#[test] fn test_i8_cast() { test_cast_20!(20i8) }
|
|
#[test] fn test_i16_cast() { test_cast_20!(20i16) }
|
|
#[test] fn test_i32_cast() { test_cast_20!(20i32) }
|
|
#[test] fn test_i64_cast() { test_cast_20!(20i64) }
|
|
#[test] fn test_int_cast() { test_cast_20!(20i) }
|
|
#[test] fn test_f32_cast() { test_cast_20!(20f32) }
|
|
#[test] fn test_f64_cast() { test_cast_20!(20f64) }
|
|
|
|
#[test]
|
|
fn test_cast_range_int_min() {
|
|
assert_eq!(int::MIN.to_int(), Some(int::MIN as int));
|
|
assert_eq!(int::MIN.to_i8(), None);
|
|
assert_eq!(int::MIN.to_i16(), None);
|
|
// int::MIN.to_i32() is word-size specific
|
|
assert_eq!(int::MIN.to_i64(), Some(int::MIN as i64));
|
|
assert_eq!(int::MIN.to_uint(), None);
|
|
assert_eq!(int::MIN.to_u8(), None);
|
|
assert_eq!(int::MIN.to_u16(), None);
|
|
assert_eq!(int::MIN.to_u32(), None);
|
|
assert_eq!(int::MIN.to_u64(), None);
|
|
|
|
#[cfg(target_word_size = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(int::MIN.to_i32(), Some(int::MIN as i32));
|
|
}
|
|
|
|
#[cfg(target_word_size = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(int::MIN.to_i32(), None);
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i8_min() {
|
|
assert_eq!(i8::MIN.to_int(), Some(i8::MIN as int));
|
|
assert_eq!(i8::MIN.to_i8(), Some(i8::MIN as i8));
|
|
assert_eq!(i8::MIN.to_i16(), Some(i8::MIN as i16));
|
|
assert_eq!(i8::MIN.to_i32(), Some(i8::MIN as i32));
|
|
assert_eq!(i8::MIN.to_i64(), Some(i8::MIN as i64));
|
|
assert_eq!(i8::MIN.to_uint(), None);
|
|
assert_eq!(i8::MIN.to_u8(), None);
|
|
assert_eq!(i8::MIN.to_u16(), None);
|
|
assert_eq!(i8::MIN.to_u32(), None);
|
|
assert_eq!(i8::MIN.to_u64(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i16_min() {
|
|
assert_eq!(i16::MIN.to_int(), Some(i16::MIN as int));
|
|
assert_eq!(i16::MIN.to_i8(), None);
|
|
assert_eq!(i16::MIN.to_i16(), Some(i16::MIN as i16));
|
|
assert_eq!(i16::MIN.to_i32(), Some(i16::MIN as i32));
|
|
assert_eq!(i16::MIN.to_i64(), Some(i16::MIN as i64));
|
|
assert_eq!(i16::MIN.to_uint(), None);
|
|
assert_eq!(i16::MIN.to_u8(), None);
|
|
assert_eq!(i16::MIN.to_u16(), None);
|
|
assert_eq!(i16::MIN.to_u32(), None);
|
|
assert_eq!(i16::MIN.to_u64(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i32_min() {
|
|
assert_eq!(i32::MIN.to_int(), Some(i32::MIN as int));
|
|
assert_eq!(i32::MIN.to_i8(), None);
|
|
assert_eq!(i32::MIN.to_i16(), None);
|
|
assert_eq!(i32::MIN.to_i32(), Some(i32::MIN as i32));
|
|
assert_eq!(i32::MIN.to_i64(), Some(i32::MIN as i64));
|
|
assert_eq!(i32::MIN.to_uint(), None);
|
|
assert_eq!(i32::MIN.to_u8(), None);
|
|
assert_eq!(i32::MIN.to_u16(), None);
|
|
assert_eq!(i32::MIN.to_u32(), None);
|
|
assert_eq!(i32::MIN.to_u64(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i64_min() {
|
|
// i64::MIN.to_int() is word-size specific
|
|
assert_eq!(i64::MIN.to_i8(), None);
|
|
assert_eq!(i64::MIN.to_i16(), None);
|
|
assert_eq!(i64::MIN.to_i32(), None);
|
|
assert_eq!(i64::MIN.to_i64(), Some(i64::MIN as i64));
|
|
assert_eq!(i64::MIN.to_uint(), None);
|
|
assert_eq!(i64::MIN.to_u8(), None);
|
|
assert_eq!(i64::MIN.to_u16(), None);
|
|
assert_eq!(i64::MIN.to_u32(), None);
|
|
assert_eq!(i64::MIN.to_u64(), None);
|
|
|
|
#[cfg(target_word_size = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MIN.to_int(), None);
|
|
}
|
|
|
|
#[cfg(target_word_size = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MIN.to_int(), Some(i64::MIN as int));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_int_max() {
|
|
assert_eq!(int::MAX.to_int(), Some(int::MAX as int));
|
|
assert_eq!(int::MAX.to_i8(), None);
|
|
assert_eq!(int::MAX.to_i16(), None);
|
|
// int::MAX.to_i32() is word-size specific
|
|
assert_eq!(int::MAX.to_i64(), Some(int::MAX as i64));
|
|
assert_eq!(int::MAX.to_u8(), None);
|
|
assert_eq!(int::MAX.to_u16(), None);
|
|
// int::MAX.to_u32() is word-size specific
|
|
assert_eq!(int::MAX.to_u64(), Some(int::MAX as u64));
|
|
|
|
#[cfg(target_word_size = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(int::MAX.to_i32(), Some(int::MAX as i32));
|
|
assert_eq!(int::MAX.to_u32(), Some(int::MAX as u32));
|
|
}
|
|
|
|
#[cfg(target_word_size = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(int::MAX.to_i32(), None);
|
|
assert_eq!(int::MAX.to_u32(), None);
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i8_max() {
|
|
assert_eq!(i8::MAX.to_int(), Some(i8::MAX as int));
|
|
assert_eq!(i8::MAX.to_i8(), Some(i8::MAX as i8));
|
|
assert_eq!(i8::MAX.to_i16(), Some(i8::MAX as i16));
|
|
assert_eq!(i8::MAX.to_i32(), Some(i8::MAX as i32));
|
|
assert_eq!(i8::MAX.to_i64(), Some(i8::MAX as i64));
|
|
assert_eq!(i8::MAX.to_uint(), Some(i8::MAX as uint));
|
|
assert_eq!(i8::MAX.to_u8(), Some(i8::MAX as u8));
|
|
assert_eq!(i8::MAX.to_u16(), Some(i8::MAX as u16));
|
|
assert_eq!(i8::MAX.to_u32(), Some(i8::MAX as u32));
|
|
assert_eq!(i8::MAX.to_u64(), Some(i8::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i16_max() {
|
|
assert_eq!(i16::MAX.to_int(), Some(i16::MAX as int));
|
|
assert_eq!(i16::MAX.to_i8(), None);
|
|
assert_eq!(i16::MAX.to_i16(), Some(i16::MAX as i16));
|
|
assert_eq!(i16::MAX.to_i32(), Some(i16::MAX as i32));
|
|
assert_eq!(i16::MAX.to_i64(), Some(i16::MAX as i64));
|
|
assert_eq!(i16::MAX.to_uint(), Some(i16::MAX as uint));
|
|
assert_eq!(i16::MAX.to_u8(), None);
|
|
assert_eq!(i16::MAX.to_u16(), Some(i16::MAX as u16));
|
|
assert_eq!(i16::MAX.to_u32(), Some(i16::MAX as u32));
|
|
assert_eq!(i16::MAX.to_u64(), Some(i16::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i32_max() {
|
|
assert_eq!(i32::MAX.to_int(), Some(i32::MAX as int));
|
|
assert_eq!(i32::MAX.to_i8(), None);
|
|
assert_eq!(i32::MAX.to_i16(), None);
|
|
assert_eq!(i32::MAX.to_i32(), Some(i32::MAX as i32));
|
|
assert_eq!(i32::MAX.to_i64(), Some(i32::MAX as i64));
|
|
assert_eq!(i32::MAX.to_uint(), Some(i32::MAX as uint));
|
|
assert_eq!(i32::MAX.to_u8(), None);
|
|
assert_eq!(i32::MAX.to_u16(), None);
|
|
assert_eq!(i32::MAX.to_u32(), Some(i32::MAX as u32));
|
|
assert_eq!(i32::MAX.to_u64(), Some(i32::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i64_max() {
|
|
// i64::MAX.to_int() is word-size specific
|
|
assert_eq!(i64::MAX.to_i8(), None);
|
|
assert_eq!(i64::MAX.to_i16(), None);
|
|
assert_eq!(i64::MAX.to_i32(), None);
|
|
assert_eq!(i64::MAX.to_i64(), Some(i64::MAX as i64));
|
|
// i64::MAX.to_uint() is word-size specific
|
|
assert_eq!(i64::MAX.to_u8(), None);
|
|
assert_eq!(i64::MAX.to_u16(), None);
|
|
assert_eq!(i64::MAX.to_u32(), None);
|
|
assert_eq!(i64::MAX.to_u64(), Some(i64::MAX as u64));
|
|
|
|
#[cfg(target_word_size = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MAX.to_int(), None);
|
|
assert_eq!(i64::MAX.to_uint(), None);
|
|
}
|
|
|
|
#[cfg(target_word_size = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MAX.to_int(), Some(i64::MAX as int));
|
|
assert_eq!(i64::MAX.to_uint(), Some(i64::MAX as uint));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_uint_min() {
|
|
assert_eq!(uint::MIN.to_int(), Some(uint::MIN as int));
|
|
assert_eq!(uint::MIN.to_i8(), Some(uint::MIN as i8));
|
|
assert_eq!(uint::MIN.to_i16(), Some(uint::MIN as i16));
|
|
assert_eq!(uint::MIN.to_i32(), Some(uint::MIN as i32));
|
|
assert_eq!(uint::MIN.to_i64(), Some(uint::MIN as i64));
|
|
assert_eq!(uint::MIN.to_uint(), Some(uint::MIN as uint));
|
|
assert_eq!(uint::MIN.to_u8(), Some(uint::MIN as u8));
|
|
assert_eq!(uint::MIN.to_u16(), Some(uint::MIN as u16));
|
|
assert_eq!(uint::MIN.to_u32(), Some(uint::MIN as u32));
|
|
assert_eq!(uint::MIN.to_u64(), Some(uint::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u8_min() {
|
|
assert_eq!(u8::MIN.to_int(), Some(u8::MIN as int));
|
|
assert_eq!(u8::MIN.to_i8(), Some(u8::MIN as i8));
|
|
assert_eq!(u8::MIN.to_i16(), Some(u8::MIN as i16));
|
|
assert_eq!(u8::MIN.to_i32(), Some(u8::MIN as i32));
|
|
assert_eq!(u8::MIN.to_i64(), Some(u8::MIN as i64));
|
|
assert_eq!(u8::MIN.to_uint(), Some(u8::MIN as uint));
|
|
assert_eq!(u8::MIN.to_u8(), Some(u8::MIN as u8));
|
|
assert_eq!(u8::MIN.to_u16(), Some(u8::MIN as u16));
|
|
assert_eq!(u8::MIN.to_u32(), Some(u8::MIN as u32));
|
|
assert_eq!(u8::MIN.to_u64(), Some(u8::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u16_min() {
|
|
assert_eq!(u16::MIN.to_int(), Some(u16::MIN as int));
|
|
assert_eq!(u16::MIN.to_i8(), Some(u16::MIN as i8));
|
|
assert_eq!(u16::MIN.to_i16(), Some(u16::MIN as i16));
|
|
assert_eq!(u16::MIN.to_i32(), Some(u16::MIN as i32));
|
|
assert_eq!(u16::MIN.to_i64(), Some(u16::MIN as i64));
|
|
assert_eq!(u16::MIN.to_uint(), Some(u16::MIN as uint));
|
|
assert_eq!(u16::MIN.to_u8(), Some(u16::MIN as u8));
|
|
assert_eq!(u16::MIN.to_u16(), Some(u16::MIN as u16));
|
|
assert_eq!(u16::MIN.to_u32(), Some(u16::MIN as u32));
|
|
assert_eq!(u16::MIN.to_u64(), Some(u16::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u32_min() {
|
|
assert_eq!(u32::MIN.to_int(), Some(u32::MIN as int));
|
|
assert_eq!(u32::MIN.to_i8(), Some(u32::MIN as i8));
|
|
assert_eq!(u32::MIN.to_i16(), Some(u32::MIN as i16));
|
|
assert_eq!(u32::MIN.to_i32(), Some(u32::MIN as i32));
|
|
assert_eq!(u32::MIN.to_i64(), Some(u32::MIN as i64));
|
|
assert_eq!(u32::MIN.to_uint(), Some(u32::MIN as uint));
|
|
assert_eq!(u32::MIN.to_u8(), Some(u32::MIN as u8));
|
|
assert_eq!(u32::MIN.to_u16(), Some(u32::MIN as u16));
|
|
assert_eq!(u32::MIN.to_u32(), Some(u32::MIN as u32));
|
|
assert_eq!(u32::MIN.to_u64(), Some(u32::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u64_min() {
|
|
assert_eq!(u64::MIN.to_int(), Some(u64::MIN as int));
|
|
assert_eq!(u64::MIN.to_i8(), Some(u64::MIN as i8));
|
|
assert_eq!(u64::MIN.to_i16(), Some(u64::MIN as i16));
|
|
assert_eq!(u64::MIN.to_i32(), Some(u64::MIN as i32));
|
|
assert_eq!(u64::MIN.to_i64(), Some(u64::MIN as i64));
|
|
assert_eq!(u64::MIN.to_uint(), Some(u64::MIN as uint));
|
|
assert_eq!(u64::MIN.to_u8(), Some(u64::MIN as u8));
|
|
assert_eq!(u64::MIN.to_u16(), Some(u64::MIN as u16));
|
|
assert_eq!(u64::MIN.to_u32(), Some(u64::MIN as u32));
|
|
assert_eq!(u64::MIN.to_u64(), Some(u64::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_uint_max() {
|
|
assert_eq!(uint::MAX.to_int(), None);
|
|
assert_eq!(uint::MAX.to_i8(), None);
|
|
assert_eq!(uint::MAX.to_i16(), None);
|
|
assert_eq!(uint::MAX.to_i32(), None);
|
|
// uint::MAX.to_i64() is word-size specific
|
|
assert_eq!(uint::MAX.to_u8(), None);
|
|
assert_eq!(uint::MAX.to_u16(), None);
|
|
// uint::MAX.to_u32() is word-size specific
|
|
assert_eq!(uint::MAX.to_u64(), Some(uint::MAX as u64));
|
|
|
|
#[cfg(target_word_size = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(uint::MAX.to_u32(), Some(uint::MAX as u32));
|
|
assert_eq!(uint::MAX.to_i64(), Some(uint::MAX as i64));
|
|
}
|
|
|
|
#[cfg(target_word_size = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(uint::MAX.to_u32(), None);
|
|
assert_eq!(uint::MAX.to_i64(), None);
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u8_max() {
|
|
assert_eq!(u8::MAX.to_int(), Some(u8::MAX as int));
|
|
assert_eq!(u8::MAX.to_i8(), None);
|
|
assert_eq!(u8::MAX.to_i16(), Some(u8::MAX as i16));
|
|
assert_eq!(u8::MAX.to_i32(), Some(u8::MAX as i32));
|
|
assert_eq!(u8::MAX.to_i64(), Some(u8::MAX as i64));
|
|
assert_eq!(u8::MAX.to_uint(), Some(u8::MAX as uint));
|
|
assert_eq!(u8::MAX.to_u8(), Some(u8::MAX as u8));
|
|
assert_eq!(u8::MAX.to_u16(), Some(u8::MAX as u16));
|
|
assert_eq!(u8::MAX.to_u32(), Some(u8::MAX as u32));
|
|
assert_eq!(u8::MAX.to_u64(), Some(u8::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u16_max() {
|
|
assert_eq!(u16::MAX.to_int(), Some(u16::MAX as int));
|
|
assert_eq!(u16::MAX.to_i8(), None);
|
|
assert_eq!(u16::MAX.to_i16(), None);
|
|
assert_eq!(u16::MAX.to_i32(), Some(u16::MAX as i32));
|
|
assert_eq!(u16::MAX.to_i64(), Some(u16::MAX as i64));
|
|
assert_eq!(u16::MAX.to_uint(), Some(u16::MAX as uint));
|
|
assert_eq!(u16::MAX.to_u8(), None);
|
|
assert_eq!(u16::MAX.to_u16(), Some(u16::MAX as u16));
|
|
assert_eq!(u16::MAX.to_u32(), Some(u16::MAX as u32));
|
|
assert_eq!(u16::MAX.to_u64(), Some(u16::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u32_max() {
|
|
// u32::MAX.to_int() is word-size specific
|
|
assert_eq!(u32::MAX.to_i8(), None);
|
|
assert_eq!(u32::MAX.to_i16(), None);
|
|
assert_eq!(u32::MAX.to_i32(), None);
|
|
assert_eq!(u32::MAX.to_i64(), Some(u32::MAX as i64));
|
|
assert_eq!(u32::MAX.to_uint(), Some(u32::MAX as uint));
|
|
assert_eq!(u32::MAX.to_u8(), None);
|
|
assert_eq!(u32::MAX.to_u16(), None);
|
|
assert_eq!(u32::MAX.to_u32(), Some(u32::MAX as u32));
|
|
assert_eq!(u32::MAX.to_u64(), Some(u32::MAX as u64));
|
|
|
|
#[cfg(target_word_size = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(u32::MAX.to_int(), None);
|
|
}
|
|
|
|
#[cfg(target_word_size = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(u32::MAX.to_int(), Some(u32::MAX as int));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u64_max() {
|
|
assert_eq!(u64::MAX.to_int(), None);
|
|
assert_eq!(u64::MAX.to_i8(), None);
|
|
assert_eq!(u64::MAX.to_i16(), None);
|
|
assert_eq!(u64::MAX.to_i32(), None);
|
|
assert_eq!(u64::MAX.to_i64(), None);
|
|
// u64::MAX.to_uint() is word-size specific
|
|
assert_eq!(u64::MAX.to_u8(), None);
|
|
assert_eq!(u64::MAX.to_u16(), None);
|
|
assert_eq!(u64::MAX.to_u32(), None);
|
|
assert_eq!(u64::MAX.to_u64(), Some(u64::MAX as u64));
|
|
|
|
#[cfg(target_word_size = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(u64::MAX.to_uint(), None);
|
|
}
|
|
|
|
#[cfg(target_word_size = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(u64::MAX.to_uint(), Some(u64::MAX as uint));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_add_uint() {
|
|
use uint::MAX;
|
|
assert_eq!(3u.saturating_add(5u), 8u);
|
|
assert_eq!(3u.saturating_add(MAX-1), MAX);
|
|
assert_eq!(MAX.saturating_add(MAX), MAX);
|
|
assert_eq!((MAX-2).saturating_add(1), MAX-1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_sub_uint() {
|
|
use uint::MAX;
|
|
assert_eq!(5u.saturating_sub(3u), 2u);
|
|
assert_eq!(3u.saturating_sub(5u), 0u);
|
|
assert_eq!(0u.saturating_sub(1u), 0u);
|
|
assert_eq!((MAX-1).saturating_sub(MAX), 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_add_int() {
|
|
use int::{MIN,MAX};
|
|
assert_eq!(3i.saturating_add(5i), 8i);
|
|
assert_eq!(3i.saturating_add(MAX-1), MAX);
|
|
assert_eq!(MAX.saturating_add(MAX), MAX);
|
|
assert_eq!((MAX-2).saturating_add(1), MAX-1);
|
|
assert_eq!(3i.saturating_add(-5i), -2i);
|
|
assert_eq!(MIN.saturating_add(-1i), MIN);
|
|
assert_eq!((-2i).saturating_add(-MAX), MIN);
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_sub_int() {
|
|
use int::{MIN,MAX};
|
|
assert_eq!(3i.saturating_sub(5i), -2i);
|
|
assert_eq!(MIN.saturating_sub(1i), MIN);
|
|
assert_eq!((-2i).saturating_sub(MAX), MIN);
|
|
assert_eq!(3i.saturating_sub(-5i), 8i);
|
|
assert_eq!(3i.saturating_sub(-(MAX-1)), MAX);
|
|
assert_eq!(MAX.saturating_sub(-MAX), MAX);
|
|
assert_eq!((MAX-2).saturating_sub(-1), MAX-1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_checked_add() {
|
|
let five_less = uint::MAX - 5;
|
|
assert_eq!(five_less.checked_add(&0), Some(uint::MAX - 5));
|
|
assert_eq!(five_less.checked_add(&1), Some(uint::MAX - 4));
|
|
assert_eq!(five_less.checked_add(&2), Some(uint::MAX - 3));
|
|
assert_eq!(five_less.checked_add(&3), Some(uint::MAX - 2));
|
|
assert_eq!(five_less.checked_add(&4), Some(uint::MAX - 1));
|
|
assert_eq!(five_less.checked_add(&5), Some(uint::MAX));
|
|
assert_eq!(five_less.checked_add(&6), None);
|
|
assert_eq!(five_less.checked_add(&7), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_checked_sub() {
|
|
assert_eq!(5u.checked_sub(&0), Some(5));
|
|
assert_eq!(5u.checked_sub(&1), Some(4));
|
|
assert_eq!(5u.checked_sub(&2), Some(3));
|
|
assert_eq!(5u.checked_sub(&3), Some(2));
|
|
assert_eq!(5u.checked_sub(&4), Some(1));
|
|
assert_eq!(5u.checked_sub(&5), Some(0));
|
|
assert_eq!(5u.checked_sub(&6), None);
|
|
assert_eq!(5u.checked_sub(&7), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_checked_mul() {
|
|
let third = uint::MAX / 3;
|
|
assert_eq!(third.checked_mul(&0), Some(0));
|
|
assert_eq!(third.checked_mul(&1), Some(third));
|
|
assert_eq!(third.checked_mul(&2), Some(third * 2));
|
|
assert_eq!(third.checked_mul(&3), Some(third * 3));
|
|
assert_eq!(third.checked_mul(&4), None);
|
|
}
|
|
|
|
macro_rules! test_next_power_of_two(
|
|
($test_name:ident, $T:ident) => (
|
|
fn $test_name() {
|
|
#[test];
|
|
assert_eq!(next_power_of_two::<$T>(0), 0);
|
|
let mut next_power = 1;
|
|
for i in range::<$T>(1, 40) {
|
|
assert_eq!(next_power_of_two(i), next_power);
|
|
if i == next_power { next_power *= 2 }
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
test_next_power_of_two!(test_next_power_of_two_u8, u8)
|
|
test_next_power_of_two!(test_next_power_of_two_u16, u16)
|
|
test_next_power_of_two!(test_next_power_of_two_u32, u32)
|
|
test_next_power_of_two!(test_next_power_of_two_u64, u64)
|
|
test_next_power_of_two!(test_next_power_of_two_uint, uint)
|
|
|
|
macro_rules! test_checked_next_power_of_two(
|
|
($test_name:ident, $T:ident) => (
|
|
fn $test_name() {
|
|
#[test];
|
|
assert_eq!(checked_next_power_of_two::<$T>(0), None);
|
|
let mut next_power = 1;
|
|
for i in range::<$T>(1, 40) {
|
|
assert_eq!(checked_next_power_of_two(i), Some(next_power));
|
|
if i == next_power { next_power *= 2 }
|
|
}
|
|
assert!(checked_next_power_of_two::<$T>($T::MAX / 2).is_some());
|
|
assert_eq!(checked_next_power_of_two::<$T>($T::MAX - 1), None);
|
|
assert_eq!(checked_next_power_of_two::<$T>($T::MAX), None);
|
|
}
|
|
)
|
|
)
|
|
|
|
test_checked_next_power_of_two!(test_checked_next_power_of_two_u8, u8)
|
|
test_checked_next_power_of_two!(test_checked_next_power_of_two_u16, u16)
|
|
test_checked_next_power_of_two!(test_checked_next_power_of_two_u32, u32)
|
|
test_checked_next_power_of_two!(test_checked_next_power_of_two_u64, u64)
|
|
test_checked_next_power_of_two!(test_checked_next_power_of_two_uint, uint)
|
|
|
|
#[deriving(Eq)]
|
|
struct Value { x: int }
|
|
|
|
impl ToPrimitive for Value {
|
|
fn to_i64(&self) -> Option<i64> { self.x.to_i64() }
|
|
fn to_u64(&self) -> Option<u64> { self.x.to_u64() }
|
|
}
|
|
|
|
impl FromPrimitive for Value {
|
|
fn from_i64(n: i64) -> Option<Value> { Some(Value { x: n as int }) }
|
|
fn from_u64(n: u64) -> Option<Value> { Some(Value { x: n as int }) }
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_primitive() {
|
|
let value = Value { x: 5 };
|
|
assert_eq!(value.to_int(), Some(5));
|
|
assert_eq!(value.to_i8(), Some(5));
|
|
assert_eq!(value.to_i16(), Some(5));
|
|
assert_eq!(value.to_i32(), Some(5));
|
|
assert_eq!(value.to_i64(), Some(5));
|
|
assert_eq!(value.to_uint(), Some(5));
|
|
assert_eq!(value.to_u8(), Some(5));
|
|
assert_eq!(value.to_u16(), Some(5));
|
|
assert_eq!(value.to_u32(), Some(5));
|
|
assert_eq!(value.to_u64(), Some(5));
|
|
assert_eq!(value.to_f32(), Some(5f32));
|
|
assert_eq!(value.to_f64(), Some(5f64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_primitive() {
|
|
assert_eq!(from_int(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i8(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i16(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i32(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i64(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_uint(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u8(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u16(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u32(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u64(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_f32(5f32), Some(Value { x: 5 }));
|
|
assert_eq!(from_f64(5f64), Some(Value { x: 5 }));
|
|
}
|
|
|
|
#[test]
|
|
fn test_pow() {
|
|
fn naive_pow<T: One + Mul<T, T>>(base: T, exp: uint) -> T {
|
|
range(0, exp).fold(one::<T>(), |acc, _| acc * base)
|
|
}
|
|
macro_rules! assert_pow(
|
|
(($num:expr, $exp:expr) => $expected:expr) => {{
|
|
let result = pow($num, $exp);
|
|
assert_eq!(result, $expected);
|
|
assert_eq!(result, naive_pow($num, $exp));
|
|
}}
|
|
)
|
|
assert_pow!((3, 0 ) => 1);
|
|
assert_pow!((5, 1 ) => 5);
|
|
assert_pow!((-4, 2 ) => 16);
|
|
assert_pow!((0.5, 5 ) => 0.03125);
|
|
assert_pow!((8, 3 ) => 512);
|
|
assert_pow!((8.0, 5 ) => 32768.0);
|
|
assert_pow!((8.5, 5 ) => 44370.53125);
|
|
assert_pow!((2u64, 50) => 1125899906842624);
|
|
}
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
mod bench {
|
|
extern crate test;
|
|
use self::test::BenchHarness;
|
|
use num;
|
|
use vec;
|
|
use prelude::*;
|
|
|
|
#[bench]
|
|
fn bench_pow_function(b: &mut BenchHarness) {
|
|
let v = vec::from_fn(1024, |n| n);
|
|
b.iter(|| {v.iter().fold(0, |old, new| num::pow(old, *new));});
|
|
}
|
|
}
|