1049 lines
31 KiB
Rust
1049 lines
31 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#[allow(missing_doc)];
|
|
|
|
use std::cmp;
|
|
use std::hashmap;
|
|
use std::io;
|
|
use std::mem;
|
|
use std::num;
|
|
|
|
// NB: this can probably be rewritten in terms of num::Num
|
|
// to be less f64-specific.
|
|
|
|
fn f64_cmp(x: f64, y: f64) -> Ordering {
|
|
// arbitrarily decide that NaNs are larger than everything.
|
|
if y.is_nan() {
|
|
Less
|
|
} else if x.is_nan() {
|
|
Greater
|
|
} else if x < y {
|
|
Less
|
|
} else if x == y {
|
|
Equal
|
|
} else {
|
|
Greater
|
|
}
|
|
}
|
|
|
|
fn f64_sort(v: &mut [f64]) {
|
|
v.sort_by(|x: &f64, y: &f64| f64_cmp(*x, *y));
|
|
}
|
|
|
|
/// Trait that provides simple descriptive statistics on a univariate set of numeric samples.
|
|
pub trait Stats {
|
|
|
|
/// Sum of the samples.
|
|
///
|
|
/// Note: this method sacrifices performance at the altar of accuracy
|
|
/// Depends on IEEE-754 arithmetic guarantees. See proof of correctness at:
|
|
/// ["Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates"]
|
|
/// (http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps)
|
|
/// *Discrete & Computational Geometry 18*, 3 (Oct 1997), 305-363, Shewchuk J.R.
|
|
fn sum(self) -> f64;
|
|
|
|
/// Minimum value of the samples.
|
|
fn min(self) -> f64;
|
|
|
|
/// Maximum value of the samples.
|
|
fn max(self) -> f64;
|
|
|
|
/// Arithmetic mean (average) of the samples: sum divided by sample-count.
|
|
///
|
|
/// See: https://en.wikipedia.org/wiki/Arithmetic_mean
|
|
fn mean(self) -> f64;
|
|
|
|
/// Median of the samples: value separating the lower half of the samples from the higher half.
|
|
/// Equal to `self.percentile(50.0)`.
|
|
///
|
|
/// See: https://en.wikipedia.org/wiki/Median
|
|
fn median(self) -> f64;
|
|
|
|
/// Variance of the samples: bias-corrected mean of the squares of the differences of each
|
|
/// sample from the sample mean. Note that this calculates the _sample variance_ rather than the
|
|
/// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n`
|
|
/// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather
|
|
/// than `n`.
|
|
///
|
|
/// See: https://en.wikipedia.org/wiki/Variance
|
|
fn var(self) -> f64;
|
|
|
|
/// Standard deviation: the square root of the sample variance.
|
|
///
|
|
/// Note: this is not a robust statistic for non-normal distributions. Prefer the
|
|
/// `median_abs_dev` for unknown distributions.
|
|
///
|
|
/// See: https://en.wikipedia.org/wiki/Standard_deviation
|
|
fn std_dev(self) -> f64;
|
|
|
|
/// Standard deviation as a percent of the mean value. See `std_dev` and `mean`.
|
|
///
|
|
/// Note: this is not a robust statistic for non-normal distributions. Prefer the
|
|
/// `median_abs_dev_pct` for unknown distributions.
|
|
fn std_dev_pct(self) -> f64;
|
|
|
|
/// Scaled median of the absolute deviations of each sample from the sample median. This is a
|
|
/// robust (distribution-agnostic) estimator of sample variability. Use this in preference to
|
|
/// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled
|
|
/// by the constant `1.4826` to allow its use as a consistent estimator for the standard
|
|
/// deviation.
|
|
///
|
|
/// See: http://en.wikipedia.org/wiki/Median_absolute_deviation
|
|
fn median_abs_dev(self) -> f64;
|
|
|
|
/// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`.
|
|
fn median_abs_dev_pct(self) -> f64;
|
|
|
|
/// Percentile: the value below which `pct` percent of the values in `self` fall. For example,
|
|
/// percentile(95.0) will return the value `v` such that that 95% of the samples `s` in `self`
|
|
/// satisfy `s <= v`.
|
|
///
|
|
/// Calculated by linear interpolation between closest ranks.
|
|
///
|
|
/// See: http://en.wikipedia.org/wiki/Percentile
|
|
fn percentile(self, pct: f64) -> f64;
|
|
|
|
/// Quartiles of the sample: three values that divide the sample into four equal groups, each
|
|
/// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This
|
|
/// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but
|
|
/// is otherwise equivalent.
|
|
///
|
|
/// See also: https://en.wikipedia.org/wiki/Quartile
|
|
fn quartiles(self) -> (f64,f64,f64);
|
|
|
|
/// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th
|
|
/// percentile (3rd quartile). See `quartiles`.
|
|
///
|
|
/// See also: https://en.wikipedia.org/wiki/Interquartile_range
|
|
fn iqr(self) -> f64;
|
|
}
|
|
|
|
/// Extracted collection of all the summary statistics of a sample set.
|
|
#[deriving(Clone, Eq)]
|
|
#[allow(missing_doc)]
|
|
pub struct Summary {
|
|
sum: f64,
|
|
min: f64,
|
|
max: f64,
|
|
mean: f64,
|
|
median: f64,
|
|
var: f64,
|
|
std_dev: f64,
|
|
std_dev_pct: f64,
|
|
median_abs_dev: f64,
|
|
median_abs_dev_pct: f64,
|
|
quartiles: (f64,f64,f64),
|
|
iqr: f64,
|
|
}
|
|
|
|
impl Summary {
|
|
|
|
/// Construct a new summary of a sample set.
|
|
pub fn new(samples: &[f64]) -> Summary {
|
|
Summary {
|
|
sum: samples.sum(),
|
|
min: samples.min(),
|
|
max: samples.max(),
|
|
mean: samples.mean(),
|
|
median: samples.median(),
|
|
var: samples.var(),
|
|
std_dev: samples.std_dev(),
|
|
std_dev_pct: samples.std_dev_pct(),
|
|
median_abs_dev: samples.median_abs_dev(),
|
|
median_abs_dev_pct: samples.median_abs_dev_pct(),
|
|
quartiles: samples.quartiles(),
|
|
iqr: samples.iqr()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Stats for &'a [f64] {
|
|
|
|
// FIXME #11059 handle NaN, inf and overflow
|
|
fn sum(self) -> f64 {
|
|
let mut partials : ~[f64] = ~[];
|
|
|
|
for &mut x in self.iter() {
|
|
let mut j = 0;
|
|
// This inner loop applies `hi`/`lo` summation to each
|
|
// partial so that the list of partial sums remains exact.
|
|
for i in range(0, partials.len()) {
|
|
let mut y = partials[i];
|
|
if num::abs(x) < num::abs(y) {
|
|
mem::swap(&mut x, &mut y);
|
|
}
|
|
// Rounded `x+y` is stored in `hi` with round-off stored in
|
|
// `lo`. Together `hi+lo` are exactly equal to `x+y`.
|
|
let hi = x + y;
|
|
let lo = y - (hi - x);
|
|
if lo != 0f64 {
|
|
partials[j] = lo;
|
|
j += 1;
|
|
}
|
|
x = hi;
|
|
}
|
|
if j >= partials.len() {
|
|
partials.push(x);
|
|
} else {
|
|
partials[j] = x;
|
|
partials.truncate(j+1);
|
|
}
|
|
}
|
|
partials.iter().fold(0.0, |p, q| p + *q)
|
|
}
|
|
|
|
fn min(self) -> f64 {
|
|
assert!(self.len() != 0);
|
|
self.iter().fold(self[0], |p,q| cmp::min(p, *q))
|
|
}
|
|
|
|
fn max(self) -> f64 {
|
|
assert!(self.len() != 0);
|
|
self.iter().fold(self[0], |p,q| cmp::max(p, *q))
|
|
}
|
|
|
|
fn mean(self) -> f64 {
|
|
assert!(self.len() != 0);
|
|
self.sum() / (self.len() as f64)
|
|
}
|
|
|
|
fn median(self) -> f64 {
|
|
self.percentile(50.0)
|
|
}
|
|
|
|
fn var(self) -> f64 {
|
|
if self.len() < 2 {
|
|
0.0
|
|
} else {
|
|
let mean = self.mean();
|
|
let mut v = 0.0;
|
|
for s in self.iter() {
|
|
let x = *s - mean;
|
|
v += x*x;
|
|
}
|
|
// NB: this is _supposed to be_ len-1, not len. If you
|
|
// change it back to len, you will be calculating a
|
|
// population variance, not a sample variance.
|
|
v/((self.len()-1) as f64)
|
|
}
|
|
}
|
|
|
|
fn std_dev(self) -> f64 {
|
|
self.var().sqrt()
|
|
}
|
|
|
|
fn std_dev_pct(self) -> f64 {
|
|
(self.std_dev() / self.mean()) * 100.0
|
|
}
|
|
|
|
fn median_abs_dev(self) -> f64 {
|
|
let med = self.median();
|
|
let abs_devs = self.map(|&v| num::abs(med - v));
|
|
// This constant is derived by smarter statistics brains than me, but it is
|
|
// consistent with how R and other packages treat the MAD.
|
|
abs_devs.median() * 1.4826
|
|
}
|
|
|
|
fn median_abs_dev_pct(self) -> f64 {
|
|
(self.median_abs_dev() / self.median()) * 100.0
|
|
}
|
|
|
|
fn percentile(self, pct: f64) -> f64 {
|
|
let mut tmp = self.to_owned();
|
|
f64_sort(tmp);
|
|
percentile_of_sorted(tmp, pct)
|
|
}
|
|
|
|
fn quartiles(self) -> (f64,f64,f64) {
|
|
let mut tmp = self.to_owned();
|
|
f64_sort(tmp);
|
|
let a = percentile_of_sorted(tmp, 25.0);
|
|
let b = percentile_of_sorted(tmp, 50.0);
|
|
let c = percentile_of_sorted(tmp, 75.0);
|
|
(a,b,c)
|
|
}
|
|
|
|
fn iqr(self) -> f64 {
|
|
let (a,_,c) = self.quartiles();
|
|
c - a
|
|
}
|
|
}
|
|
|
|
|
|
// Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using
|
|
// linear interpolation. If samples are not sorted, return nonsensical value.
|
|
fn percentile_of_sorted(sorted_samples: &[f64],
|
|
pct: f64) -> f64 {
|
|
assert!(sorted_samples.len() != 0);
|
|
if sorted_samples.len() == 1 {
|
|
return sorted_samples[0];
|
|
}
|
|
assert!(0.0 <= pct);
|
|
assert!(pct <= 100.0);
|
|
if pct == 100.0 {
|
|
return sorted_samples[sorted_samples.len() - 1];
|
|
}
|
|
let rank = (pct / 100.0) * ((sorted_samples.len() - 1) as f64);
|
|
let lrank = rank.floor();
|
|
let d = rank - lrank;
|
|
let n = lrank as uint;
|
|
let lo = sorted_samples[n];
|
|
let hi = sorted_samples[n+1];
|
|
lo + (hi - lo) * d
|
|
}
|
|
|
|
|
|
/// Winsorize a set of samples, replacing values above the `100-pct` percentile and below the `pct`
|
|
/// percentile with those percentiles themselves. This is a way of minimizing the effect of
|
|
/// outliers, at the cost of biasing the sample. It differs from trimming in that it does not
|
|
/// change the number of samples, just changes the values of those that are outliers.
|
|
///
|
|
/// See: http://en.wikipedia.org/wiki/Winsorising
|
|
pub fn winsorize(samples: &mut [f64], pct: f64) {
|
|
let mut tmp = samples.to_owned();
|
|
f64_sort(tmp);
|
|
let lo = percentile_of_sorted(tmp, pct);
|
|
let hi = percentile_of_sorted(tmp, 100.0-pct);
|
|
for samp in samples.mut_iter() {
|
|
if *samp > hi {
|
|
*samp = hi
|
|
} else if *samp < lo {
|
|
*samp = lo
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Render writes the min, max and quartiles of the provided `Summary` to the provided `Writer`.
|
|
pub fn write_5_number_summary(w: &mut io::Writer,
|
|
s: &Summary) -> io::IoResult<()> {
|
|
let (q1,q2,q3) = s.quartiles;
|
|
write!(w, "(min={}, q1={}, med={}, q3={}, max={})",
|
|
s.min,
|
|
q1,
|
|
q2,
|
|
q3,
|
|
s.max)
|
|
}
|
|
|
|
/// Render a boxplot to the provided writer. The boxplot shows the min, max and quartiles of the
|
|
/// provided `Summary` (thus includes the mean) and is scaled to display within the range of the
|
|
/// nearest multiple-of-a-power-of-ten above and below the min and max of possible values, and
|
|
/// target `width_hint` characters of display (though it will be wider if necessary).
|
|
///
|
|
/// As an example, the summary with 5-number-summary `(min=15, q1=17, med=20, q3=24, max=31)` might
|
|
/// display as:
|
|
///
|
|
/// ~~~~ignore
|
|
/// 10 | [--****#******----------] | 40
|
|
/// ~~~~
|
|
|
|
pub fn write_boxplot(w: &mut io::Writer, s: &Summary,
|
|
width_hint: uint) -> io::IoResult<()> {
|
|
|
|
let (q1,q2,q3) = s.quartiles;
|
|
|
|
// the .abs() handles the case where numbers are negative
|
|
let lomag = (10.0_f64).powf(&(s.min.abs().log10().floor()));
|
|
let himag = (10.0_f64).powf(&(s.max.abs().log10().floor()));
|
|
|
|
// need to consider when the limit is zero
|
|
let lo = if lomag == 0.0 {
|
|
0.0
|
|
} else {
|
|
(s.min / lomag).floor() * lomag
|
|
};
|
|
|
|
let hi = if himag == 0.0 {
|
|
0.0
|
|
} else {
|
|
(s.max / himag).ceil() * himag
|
|
};
|
|
|
|
let range = hi - lo;
|
|
|
|
let lostr = lo.to_str();
|
|
let histr = hi.to_str();
|
|
|
|
let overhead_width = lostr.len() + histr.len() + 4;
|
|
let range_width = width_hint - overhead_width;;
|
|
let char_step = range / (range_width as f64);
|
|
|
|
if_ok!(write!(w, "{} |", lostr));
|
|
|
|
let mut c = 0;
|
|
let mut v = lo;
|
|
|
|
while c < range_width && v < s.min {
|
|
if_ok!(write!(w, " "));
|
|
v += char_step;
|
|
c += 1;
|
|
}
|
|
if_ok!(write!(w, "["));
|
|
c += 1;
|
|
while c < range_width && v < q1 {
|
|
if_ok!(write!(w, "-"));
|
|
v += char_step;
|
|
c += 1;
|
|
}
|
|
while c < range_width && v < q2 {
|
|
if_ok!(write!(w, "*"));
|
|
v += char_step;
|
|
c += 1;
|
|
}
|
|
if_ok!(write!(w, r"\#"));
|
|
c += 1;
|
|
while c < range_width && v < q3 {
|
|
if_ok!(write!(w, "*"));
|
|
v += char_step;
|
|
c += 1;
|
|
}
|
|
while c < range_width && v < s.max {
|
|
if_ok!(write!(w, "-"));
|
|
v += char_step;
|
|
c += 1;
|
|
}
|
|
if_ok!(write!(w, "]"));
|
|
while c < range_width {
|
|
if_ok!(write!(w, " "));
|
|
v += char_step;
|
|
c += 1;
|
|
}
|
|
|
|
if_ok!(write!(w, "| {}", histr));
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns a HashMap with the number of occurrences of every element in the
|
|
/// sequence that the iterator exposes.
|
|
pub fn freq_count<T: Iterator<U>, U: Eq+Hash>(mut iter: T) -> hashmap::HashMap<U, uint> {
|
|
let mut map: hashmap::HashMap<U,uint> = hashmap::HashMap::new();
|
|
for elem in iter {
|
|
map.insert_or_update_with(elem, 1, |_, count| *count += 1);
|
|
}
|
|
map
|
|
}
|
|
|
|
// Test vectors generated from R, using the script src/etc/stat-test-vectors.r.
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use stats::Stats;
|
|
use stats::Summary;
|
|
use stats::write_5_number_summary;
|
|
use stats::write_boxplot;
|
|
use std::io;
|
|
use std::str;
|
|
|
|
macro_rules! assert_approx_eq(
|
|
($a:expr, $b:expr) => ({
|
|
let (a, b) = (&$a, &$b);
|
|
assert!((*a - *b).abs() < 1.0e-6,
|
|
"{} is not approximately equal to {}", *a, *b);
|
|
})
|
|
)
|
|
|
|
fn check(samples: &[f64], summ: &Summary) {
|
|
|
|
let summ2 = Summary::new(samples);
|
|
|
|
let mut w = io::stdout();
|
|
let w = &mut w as &mut io::Writer;
|
|
(write!(w, "\n")).unwrap();
|
|
write_5_number_summary(w, &summ2).unwrap();
|
|
(write!(w, "\n")).unwrap();
|
|
write_boxplot(w, &summ2, 50).unwrap();
|
|
(write!(w, "\n")).unwrap();
|
|
|
|
assert_eq!(summ.sum, summ2.sum);
|
|
assert_eq!(summ.min, summ2.min);
|
|
assert_eq!(summ.max, summ2.max);
|
|
assert_eq!(summ.mean, summ2.mean);
|
|
assert_eq!(summ.median, summ2.median);
|
|
|
|
// We needed a few more digits to get exact equality on these
|
|
// but they're within float epsilon, which is 1.0e-6.
|
|
assert_approx_eq!(summ.var, summ2.var);
|
|
assert_approx_eq!(summ.std_dev, summ2.std_dev);
|
|
assert_approx_eq!(summ.std_dev_pct, summ2.std_dev_pct);
|
|
assert_approx_eq!(summ.median_abs_dev, summ2.median_abs_dev);
|
|
assert_approx_eq!(summ.median_abs_dev_pct, summ2.median_abs_dev_pct);
|
|
|
|
assert_eq!(summ.quartiles, summ2.quartiles);
|
|
assert_eq!(summ.iqr, summ2.iqr);
|
|
}
|
|
|
|
#[test]
|
|
fn test_norm2() {
|
|
let val = &[
|
|
958.0000000000,
|
|
924.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 1882.0000000000,
|
|
min: 924.0000000000,
|
|
max: 958.0000000000,
|
|
mean: 941.0000000000,
|
|
median: 941.0000000000,
|
|
var: 578.0000000000,
|
|
std_dev: 24.0416305603,
|
|
std_dev_pct: 2.5549022912,
|
|
median_abs_dev: 25.2042000000,
|
|
median_abs_dev_pct: 2.6784484591,
|
|
quartiles: (932.5000000000,941.0000000000,949.5000000000),
|
|
iqr: 17.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_norm10narrow() {
|
|
let val = &[
|
|
966.0000000000,
|
|
985.0000000000,
|
|
1110.0000000000,
|
|
848.0000000000,
|
|
821.0000000000,
|
|
975.0000000000,
|
|
962.0000000000,
|
|
1157.0000000000,
|
|
1217.0000000000,
|
|
955.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 9996.0000000000,
|
|
min: 821.0000000000,
|
|
max: 1217.0000000000,
|
|
mean: 999.6000000000,
|
|
median: 970.5000000000,
|
|
var: 16050.7111111111,
|
|
std_dev: 126.6914010938,
|
|
std_dev_pct: 12.6742097933,
|
|
median_abs_dev: 102.2994000000,
|
|
median_abs_dev_pct: 10.5408964451,
|
|
quartiles: (956.7500000000,970.5000000000,1078.7500000000),
|
|
iqr: 122.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_norm10medium() {
|
|
let val = &[
|
|
954.0000000000,
|
|
1064.0000000000,
|
|
855.0000000000,
|
|
1000.0000000000,
|
|
743.0000000000,
|
|
1084.0000000000,
|
|
704.0000000000,
|
|
1023.0000000000,
|
|
357.0000000000,
|
|
869.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 8653.0000000000,
|
|
min: 357.0000000000,
|
|
max: 1084.0000000000,
|
|
mean: 865.3000000000,
|
|
median: 911.5000000000,
|
|
var: 48628.4555555556,
|
|
std_dev: 220.5186059170,
|
|
std_dev_pct: 25.4846418487,
|
|
median_abs_dev: 195.7032000000,
|
|
median_abs_dev_pct: 21.4704552935,
|
|
quartiles: (771.0000000000,911.5000000000,1017.2500000000),
|
|
iqr: 246.2500000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_norm10wide() {
|
|
let val = &[
|
|
505.0000000000,
|
|
497.0000000000,
|
|
1591.0000000000,
|
|
887.0000000000,
|
|
1026.0000000000,
|
|
136.0000000000,
|
|
1580.0000000000,
|
|
940.0000000000,
|
|
754.0000000000,
|
|
1433.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 9349.0000000000,
|
|
min: 136.0000000000,
|
|
max: 1591.0000000000,
|
|
mean: 934.9000000000,
|
|
median: 913.5000000000,
|
|
var: 239208.9888888889,
|
|
std_dev: 489.0899599142,
|
|
std_dev_pct: 52.3146817750,
|
|
median_abs_dev: 611.5725000000,
|
|
median_abs_dev_pct: 66.9482758621,
|
|
quartiles: (567.2500000000,913.5000000000,1331.2500000000),
|
|
iqr: 764.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_norm25verynarrow() {
|
|
let val = &[
|
|
991.0000000000,
|
|
1018.0000000000,
|
|
998.0000000000,
|
|
1013.0000000000,
|
|
974.0000000000,
|
|
1007.0000000000,
|
|
1014.0000000000,
|
|
999.0000000000,
|
|
1011.0000000000,
|
|
978.0000000000,
|
|
985.0000000000,
|
|
999.0000000000,
|
|
983.0000000000,
|
|
982.0000000000,
|
|
1015.0000000000,
|
|
1002.0000000000,
|
|
977.0000000000,
|
|
948.0000000000,
|
|
1040.0000000000,
|
|
974.0000000000,
|
|
996.0000000000,
|
|
989.0000000000,
|
|
1015.0000000000,
|
|
994.0000000000,
|
|
1024.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 24926.0000000000,
|
|
min: 948.0000000000,
|
|
max: 1040.0000000000,
|
|
mean: 997.0400000000,
|
|
median: 998.0000000000,
|
|
var: 393.2066666667,
|
|
std_dev: 19.8294393937,
|
|
std_dev_pct: 1.9888308788,
|
|
median_abs_dev: 22.2390000000,
|
|
median_abs_dev_pct: 2.2283567134,
|
|
quartiles: (983.0000000000,998.0000000000,1013.0000000000),
|
|
iqr: 30.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_exp10a() {
|
|
let val = &[
|
|
23.0000000000,
|
|
11.0000000000,
|
|
2.0000000000,
|
|
57.0000000000,
|
|
4.0000000000,
|
|
12.0000000000,
|
|
5.0000000000,
|
|
29.0000000000,
|
|
3.0000000000,
|
|
21.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 167.0000000000,
|
|
min: 2.0000000000,
|
|
max: 57.0000000000,
|
|
mean: 16.7000000000,
|
|
median: 11.5000000000,
|
|
var: 287.7888888889,
|
|
std_dev: 16.9643416875,
|
|
std_dev_pct: 101.5828843560,
|
|
median_abs_dev: 13.3434000000,
|
|
median_abs_dev_pct: 116.0295652174,
|
|
quartiles: (4.2500000000,11.5000000000,22.5000000000),
|
|
iqr: 18.2500000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_exp10b() {
|
|
let val = &[
|
|
24.0000000000,
|
|
17.0000000000,
|
|
6.0000000000,
|
|
38.0000000000,
|
|
25.0000000000,
|
|
7.0000000000,
|
|
51.0000000000,
|
|
2.0000000000,
|
|
61.0000000000,
|
|
32.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 263.0000000000,
|
|
min: 2.0000000000,
|
|
max: 61.0000000000,
|
|
mean: 26.3000000000,
|
|
median: 24.5000000000,
|
|
var: 383.5666666667,
|
|
std_dev: 19.5848580967,
|
|
std_dev_pct: 74.4671410520,
|
|
median_abs_dev: 22.9803000000,
|
|
median_abs_dev_pct: 93.7971428571,
|
|
quartiles: (9.5000000000,24.5000000000,36.5000000000),
|
|
iqr: 27.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_exp10c() {
|
|
let val = &[
|
|
71.0000000000,
|
|
2.0000000000,
|
|
32.0000000000,
|
|
1.0000000000,
|
|
6.0000000000,
|
|
28.0000000000,
|
|
13.0000000000,
|
|
37.0000000000,
|
|
16.0000000000,
|
|
36.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 242.0000000000,
|
|
min: 1.0000000000,
|
|
max: 71.0000000000,
|
|
mean: 24.2000000000,
|
|
median: 22.0000000000,
|
|
var: 458.1777777778,
|
|
std_dev: 21.4050876611,
|
|
std_dev_pct: 88.4507754589,
|
|
median_abs_dev: 21.4977000000,
|
|
median_abs_dev_pct: 97.7168181818,
|
|
quartiles: (7.7500000000,22.0000000000,35.0000000000),
|
|
iqr: 27.2500000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_exp25() {
|
|
let val = &[
|
|
3.0000000000,
|
|
24.0000000000,
|
|
1.0000000000,
|
|
19.0000000000,
|
|
7.0000000000,
|
|
5.0000000000,
|
|
30.0000000000,
|
|
39.0000000000,
|
|
31.0000000000,
|
|
13.0000000000,
|
|
25.0000000000,
|
|
48.0000000000,
|
|
1.0000000000,
|
|
6.0000000000,
|
|
42.0000000000,
|
|
63.0000000000,
|
|
2.0000000000,
|
|
12.0000000000,
|
|
108.0000000000,
|
|
26.0000000000,
|
|
1.0000000000,
|
|
7.0000000000,
|
|
44.0000000000,
|
|
25.0000000000,
|
|
11.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 593.0000000000,
|
|
min: 1.0000000000,
|
|
max: 108.0000000000,
|
|
mean: 23.7200000000,
|
|
median: 19.0000000000,
|
|
var: 601.0433333333,
|
|
std_dev: 24.5161851301,
|
|
std_dev_pct: 103.3565983562,
|
|
median_abs_dev: 19.2738000000,
|
|
median_abs_dev_pct: 101.4410526316,
|
|
quartiles: (6.0000000000,19.0000000000,31.0000000000),
|
|
iqr: 25.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_binom25() {
|
|
let val = &[
|
|
18.0000000000,
|
|
17.0000000000,
|
|
27.0000000000,
|
|
15.0000000000,
|
|
21.0000000000,
|
|
25.0000000000,
|
|
17.0000000000,
|
|
24.0000000000,
|
|
25.0000000000,
|
|
24.0000000000,
|
|
26.0000000000,
|
|
26.0000000000,
|
|
23.0000000000,
|
|
15.0000000000,
|
|
23.0000000000,
|
|
17.0000000000,
|
|
18.0000000000,
|
|
18.0000000000,
|
|
21.0000000000,
|
|
16.0000000000,
|
|
15.0000000000,
|
|
31.0000000000,
|
|
20.0000000000,
|
|
17.0000000000,
|
|
15.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 514.0000000000,
|
|
min: 15.0000000000,
|
|
max: 31.0000000000,
|
|
mean: 20.5600000000,
|
|
median: 20.0000000000,
|
|
var: 20.8400000000,
|
|
std_dev: 4.5650848842,
|
|
std_dev_pct: 22.2037202539,
|
|
median_abs_dev: 5.9304000000,
|
|
median_abs_dev_pct: 29.6520000000,
|
|
quartiles: (17.0000000000,20.0000000000,24.0000000000),
|
|
iqr: 7.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_pois25lambda30() {
|
|
let val = &[
|
|
27.0000000000,
|
|
33.0000000000,
|
|
34.0000000000,
|
|
34.0000000000,
|
|
24.0000000000,
|
|
39.0000000000,
|
|
28.0000000000,
|
|
27.0000000000,
|
|
31.0000000000,
|
|
28.0000000000,
|
|
38.0000000000,
|
|
21.0000000000,
|
|
33.0000000000,
|
|
36.0000000000,
|
|
29.0000000000,
|
|
37.0000000000,
|
|
32.0000000000,
|
|
34.0000000000,
|
|
31.0000000000,
|
|
39.0000000000,
|
|
25.0000000000,
|
|
31.0000000000,
|
|
32.0000000000,
|
|
40.0000000000,
|
|
24.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 787.0000000000,
|
|
min: 21.0000000000,
|
|
max: 40.0000000000,
|
|
mean: 31.4800000000,
|
|
median: 32.0000000000,
|
|
var: 26.5933333333,
|
|
std_dev: 5.1568724372,
|
|
std_dev_pct: 16.3814245145,
|
|
median_abs_dev: 5.9304000000,
|
|
median_abs_dev_pct: 18.5325000000,
|
|
quartiles: (28.0000000000,32.0000000000,34.0000000000),
|
|
iqr: 6.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_pois25lambda40() {
|
|
let val = &[
|
|
42.0000000000,
|
|
50.0000000000,
|
|
42.0000000000,
|
|
46.0000000000,
|
|
34.0000000000,
|
|
45.0000000000,
|
|
34.0000000000,
|
|
49.0000000000,
|
|
39.0000000000,
|
|
28.0000000000,
|
|
40.0000000000,
|
|
35.0000000000,
|
|
37.0000000000,
|
|
39.0000000000,
|
|
46.0000000000,
|
|
44.0000000000,
|
|
32.0000000000,
|
|
45.0000000000,
|
|
42.0000000000,
|
|
37.0000000000,
|
|
48.0000000000,
|
|
42.0000000000,
|
|
33.0000000000,
|
|
42.0000000000,
|
|
48.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 1019.0000000000,
|
|
min: 28.0000000000,
|
|
max: 50.0000000000,
|
|
mean: 40.7600000000,
|
|
median: 42.0000000000,
|
|
var: 34.4400000000,
|
|
std_dev: 5.8685603004,
|
|
std_dev_pct: 14.3978417577,
|
|
median_abs_dev: 5.9304000000,
|
|
median_abs_dev_pct: 14.1200000000,
|
|
quartiles: (37.0000000000,42.0000000000,45.0000000000),
|
|
iqr: 8.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_pois25lambda50() {
|
|
let val = &[
|
|
45.0000000000,
|
|
43.0000000000,
|
|
44.0000000000,
|
|
61.0000000000,
|
|
51.0000000000,
|
|
53.0000000000,
|
|
59.0000000000,
|
|
52.0000000000,
|
|
49.0000000000,
|
|
51.0000000000,
|
|
51.0000000000,
|
|
50.0000000000,
|
|
49.0000000000,
|
|
56.0000000000,
|
|
42.0000000000,
|
|
52.0000000000,
|
|
51.0000000000,
|
|
43.0000000000,
|
|
48.0000000000,
|
|
48.0000000000,
|
|
50.0000000000,
|
|
42.0000000000,
|
|
43.0000000000,
|
|
42.0000000000,
|
|
60.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 1235.0000000000,
|
|
min: 42.0000000000,
|
|
max: 61.0000000000,
|
|
mean: 49.4000000000,
|
|
median: 50.0000000000,
|
|
var: 31.6666666667,
|
|
std_dev: 5.6273143387,
|
|
std_dev_pct: 11.3913245723,
|
|
median_abs_dev: 4.4478000000,
|
|
median_abs_dev_pct: 8.8956000000,
|
|
quartiles: (44.0000000000,50.0000000000,52.0000000000),
|
|
iqr: 8.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
#[test]
|
|
fn test_unif25() {
|
|
let val = &[
|
|
99.0000000000,
|
|
55.0000000000,
|
|
92.0000000000,
|
|
79.0000000000,
|
|
14.0000000000,
|
|
2.0000000000,
|
|
33.0000000000,
|
|
49.0000000000,
|
|
3.0000000000,
|
|
32.0000000000,
|
|
84.0000000000,
|
|
59.0000000000,
|
|
22.0000000000,
|
|
86.0000000000,
|
|
76.0000000000,
|
|
31.0000000000,
|
|
29.0000000000,
|
|
11.0000000000,
|
|
41.0000000000,
|
|
53.0000000000,
|
|
45.0000000000,
|
|
44.0000000000,
|
|
98.0000000000,
|
|
98.0000000000,
|
|
7.0000000000,
|
|
];
|
|
let summ = &Summary {
|
|
sum: 1242.0000000000,
|
|
min: 2.0000000000,
|
|
max: 99.0000000000,
|
|
mean: 49.6800000000,
|
|
median: 45.0000000000,
|
|
var: 1015.6433333333,
|
|
std_dev: 31.8691595957,
|
|
std_dev_pct: 64.1488719719,
|
|
median_abs_dev: 45.9606000000,
|
|
median_abs_dev_pct: 102.1346666667,
|
|
quartiles: (29.0000000000,45.0000000000,79.0000000000),
|
|
iqr: 50.0000000000,
|
|
};
|
|
check(val, summ);
|
|
}
|
|
|
|
#[test]
|
|
fn test_boxplot_nonpositive() {
|
|
fn t(s: &Summary, expected: ~str) {
|
|
use std::io::MemWriter;
|
|
let mut m = MemWriter::new();
|
|
write_boxplot(&mut m as &mut io::Writer, s, 30).unwrap();
|
|
let out = str::from_utf8_owned(m.unwrap()).unwrap();
|
|
assert_eq!(out, expected);
|
|
}
|
|
|
|
t(&Summary::new([-2.0, -1.0]), ~"-2 |[------******#*****---]| -1");
|
|
t(&Summary::new([0.0, 2.0]), ~"0 |[-------*****#*******---]| 2");
|
|
t(&Summary::new([-2.0, 0.0]), ~"-2 |[------******#******---]| 0");
|
|
|
|
}
|
|
#[test]
|
|
fn test_sum_f64s() {
|
|
assert_eq!([0.5, 3.2321, 1.5678].sum(), 5.2999);
|
|
}
|
|
#[test]
|
|
fn test_sum_f64_between_ints_that_sum_to_0() {
|
|
assert_eq!([1e30, 1.2, -1e30].sum(), 1.2);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod bench {
|
|
extern crate test;
|
|
use self::test::BenchHarness;
|
|
use std::vec;
|
|
use stats::Stats;
|
|
|
|
#[bench]
|
|
fn sum_three_items(bh: &mut BenchHarness) {
|
|
bh.iter(|| {
|
|
[1e20, 1.5, -1e20].sum();
|
|
})
|
|
}
|
|
#[bench]
|
|
fn sum_many_f64(bh: &mut BenchHarness) {
|
|
let nums = [-1e30, 1e60, 1e30, 1.0, -1e60];
|
|
let v = vec::from_fn(500, |i| nums[i%5]);
|
|
|
|
bh.iter(|| {
|
|
v.sum();
|
|
})
|
|
}
|
|
}
|