3395 lines
121 KiB
Rust
3395 lines
121 KiB
Rust
#![feature(array_chunks)]
|
||
#![feature(box_patterns)]
|
||
#![feature(control_flow_enum)]
|
||
#![feature(if_let_guard)]
|
||
#![feature(let_chains)]
|
||
#![feature(lint_reasons)]
|
||
#![feature(never_type)]
|
||
#![feature(rustc_private)]
|
||
#![feature(assert_matches)]
|
||
#![feature(unwrap_infallible)]
|
||
#![recursion_limit = "512"]
|
||
#![cfg_attr(feature = "deny-warnings", deny(warnings))]
|
||
#![allow(
|
||
clippy::missing_errors_doc,
|
||
clippy::missing_panics_doc,
|
||
clippy::must_use_candidate,
|
||
rustc::diagnostic_outside_of_impl,
|
||
rustc::untranslatable_diagnostic
|
||
)]
|
||
#![warn(
|
||
trivial_casts,
|
||
trivial_numeric_casts,
|
||
rust_2018_idioms,
|
||
unused_lifetimes,
|
||
unused_qualifications,
|
||
rustc::internal
|
||
)]
|
||
|
||
// FIXME: switch to something more ergonomic here, once available.
|
||
// (Currently there is no way to opt into sysroot crates without `extern crate`.)
|
||
extern crate rustc_ast;
|
||
extern crate rustc_ast_pretty;
|
||
extern crate rustc_attr;
|
||
extern crate rustc_const_eval;
|
||
extern crate rustc_data_structures;
|
||
// The `rustc_driver` crate seems to be required in order to use the `rust_ast` crate.
|
||
#[allow(unused_extern_crates)]
|
||
extern crate rustc_driver;
|
||
extern crate rustc_errors;
|
||
extern crate rustc_hir;
|
||
extern crate rustc_hir_typeck;
|
||
extern crate rustc_index;
|
||
extern crate rustc_infer;
|
||
extern crate rustc_lexer;
|
||
extern crate rustc_lint;
|
||
extern crate rustc_middle;
|
||
extern crate rustc_mir_dataflow;
|
||
extern crate rustc_session;
|
||
extern crate rustc_span;
|
||
extern crate rustc_target;
|
||
extern crate rustc_trait_selection;
|
||
|
||
#[macro_use]
|
||
pub mod sym_helper;
|
||
|
||
pub mod ast_utils;
|
||
pub mod attrs;
|
||
mod check_proc_macro;
|
||
pub mod comparisons;
|
||
pub mod consts;
|
||
pub mod diagnostics;
|
||
pub mod eager_or_lazy;
|
||
pub mod higher;
|
||
mod hir_utils;
|
||
pub mod macros;
|
||
pub mod mir;
|
||
pub mod numeric_literal;
|
||
pub mod paths;
|
||
pub mod ptr;
|
||
pub mod qualify_min_const_fn;
|
||
pub mod source;
|
||
pub mod str_utils;
|
||
pub mod sugg;
|
||
pub mod ty;
|
||
pub mod usage;
|
||
pub mod visitors;
|
||
|
||
pub use self::attrs::*;
|
||
pub use self::check_proc_macro::{is_from_proc_macro, is_span_if, is_span_match};
|
||
pub use self::hir_utils::{
|
||
both, count_eq, eq_expr_value, hash_expr, hash_stmt, is_bool, over, HirEqInterExpr, SpanlessEq, SpanlessHash,
|
||
};
|
||
|
||
use core::mem;
|
||
use core::ops::ControlFlow;
|
||
use std::collections::hash_map::Entry;
|
||
use std::hash::BuildHasherDefault;
|
||
use std::iter::{once, repeat};
|
||
use std::sync::{Mutex, MutexGuard, OnceLock};
|
||
|
||
use itertools::Itertools;
|
||
use rustc_ast::ast::{self, LitKind, RangeLimits};
|
||
use rustc_data_structures::fx::FxHashMap;
|
||
use rustc_data_structures::packed::Pu128;
|
||
use rustc_data_structures::unhash::UnhashMap;
|
||
use rustc_hir::def::{DefKind, Res};
|
||
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LocalModDefId, LOCAL_CRATE};
|
||
use rustc_hir::definitions::{DefPath, DefPathData};
|
||
use rustc_hir::hir_id::{HirIdMap, HirIdSet};
|
||
use rustc_hir::intravisit::{walk_expr, FnKind, Visitor};
|
||
use rustc_hir::LangItem::{OptionNone, OptionSome, ResultErr, ResultOk};
|
||
use rustc_hir::{
|
||
self as hir, def, Arm, ArrayLen, BindingMode, Block, BlockCheckMode, Body, ByRef, Closure, Destination, Expr,
|
||
ExprField, ExprKind, FnDecl, FnRetTy, GenericArgs, HirId, Impl, ImplItem, ImplItemKind, ImplItemRef, Item,
|
||
ItemKind, LangItem, LetStmt, MatchSource, Mutability, Node, OwnerId, Param, Pat, PatKind, Path, PathSegment,
|
||
PrimTy, QPath, Stmt, StmtKind, TraitItem, TraitItemKind, TraitItemRef, TraitRef, TyKind, UnOp,
|
||
};
|
||
use rustc_lexer::{tokenize, TokenKind};
|
||
use rustc_lint::{LateContext, Level, Lint, LintContext};
|
||
use rustc_middle::hir::place::PlaceBase;
|
||
use rustc_middle::mir::Const;
|
||
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow};
|
||
use rustc_middle::ty::fast_reject::SimplifiedType;
|
||
use rustc_middle::ty::layout::IntegerExt;
|
||
use rustc_middle::ty::{
|
||
self as rustc_ty, Binder, BorrowKind, ClosureKind, EarlyBinder, FloatTy, GenericArgsRef, IntTy, ParamEnv,
|
||
ParamEnvAnd, Ty, TyCtxt, TypeVisitableExt, UintTy, UpvarCapture,
|
||
};
|
||
use rustc_span::hygiene::{ExpnKind, MacroKind};
|
||
use rustc_span::source_map::SourceMap;
|
||
use rustc_span::symbol::{kw, Ident, Symbol};
|
||
use rustc_span::{sym, Span};
|
||
use rustc_target::abi::Integer;
|
||
use visitors::Visitable;
|
||
|
||
use crate::consts::{constant, mir_to_const, Constant};
|
||
use crate::higher::Range;
|
||
use crate::ty::{adt_and_variant_of_res, can_partially_move_ty, expr_sig, is_copy, is_recursively_primitive_type};
|
||
use crate::visitors::for_each_expr;
|
||
|
||
use rustc_middle::hir::nested_filter;
|
||
|
||
#[macro_export]
|
||
macro_rules! extract_msrv_attr {
|
||
($context:ident) => {
|
||
fn check_attributes(&mut self, cx: &rustc_lint::$context<'_>, attrs: &[rustc_ast::ast::Attribute]) {
|
||
let sess = rustc_lint::LintContext::sess(cx);
|
||
self.msrv.check_attributes(sess, attrs);
|
||
}
|
||
|
||
fn check_attributes_post(&mut self, cx: &rustc_lint::$context<'_>, attrs: &[rustc_ast::ast::Attribute]) {
|
||
let sess = rustc_lint::LintContext::sess(cx);
|
||
self.msrv.check_attributes_post(sess, attrs);
|
||
}
|
||
};
|
||
}
|
||
|
||
/// If the given expression is a local binding, find the initializer expression.
|
||
/// If that initializer expression is another local binding, find its initializer again.
|
||
/// This process repeats as long as possible (but usually no more than once). Initializer
|
||
/// expressions with adjustments are ignored. If this is not desired, use [`find_binding_init`]
|
||
/// instead.
|
||
///
|
||
/// Examples:
|
||
/// ```no_run
|
||
/// let abc = 1;
|
||
/// // ^ output
|
||
/// let def = abc;
|
||
/// dbg!(def);
|
||
/// // ^^^ input
|
||
///
|
||
/// // or...
|
||
/// let abc = 1;
|
||
/// let def = abc + 2;
|
||
/// // ^^^^^^^ output
|
||
/// dbg!(def);
|
||
/// // ^^^ input
|
||
/// ```
|
||
pub fn expr_or_init<'a, 'b, 'tcx: 'b>(cx: &LateContext<'tcx>, mut expr: &'a Expr<'b>) -> &'a Expr<'b> {
|
||
while let Some(init) = path_to_local(expr)
|
||
.and_then(|id| find_binding_init(cx, id))
|
||
.filter(|init| cx.typeck_results().expr_adjustments(init).is_empty())
|
||
{
|
||
expr = init;
|
||
}
|
||
expr
|
||
}
|
||
|
||
/// Finds the initializer expression for a local binding. Returns `None` if the binding is mutable.
|
||
/// By only considering immutable bindings, we guarantee that the returned expression represents the
|
||
/// value of the binding wherever it is referenced.
|
||
///
|
||
/// Example: For `let x = 1`, if the `HirId` of `x` is provided, the `Expr` `1` is returned.
|
||
/// Note: If you have an expression that references a binding `x`, use `path_to_local` to get the
|
||
/// canonical binding `HirId`.
|
||
pub fn find_binding_init<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> {
|
||
if let Node::Pat(pat) = cx.tcx.hir_node(hir_id)
|
||
&& matches!(pat.kind, PatKind::Binding(BindingMode::NONE, ..))
|
||
&& let Node::LetStmt(local) = cx.tcx.parent_hir_node(hir_id)
|
||
{
|
||
return local.init;
|
||
}
|
||
None
|
||
}
|
||
|
||
/// Checks if the given local has an initializer or is from something other than a `let` statement
|
||
///
|
||
/// e.g. returns true for `x` in `fn f(x: usize) { .. }` and `let x = 1;` but false for `let x;`
|
||
pub fn local_is_initialized(cx: &LateContext<'_>, local: HirId) -> bool {
|
||
for (_, node) in cx.tcx.hir().parent_iter(local) {
|
||
match node {
|
||
Node::Pat(..) | Node::PatField(..) => {},
|
||
Node::LetStmt(let_stmt) => return let_stmt.init.is_some(),
|
||
_ => return true,
|
||
}
|
||
}
|
||
|
||
false
|
||
}
|
||
|
||
/// Returns `true` if the given `NodeId` is inside a constant context
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust,ignore
|
||
/// if in_constant(cx, expr.hir_id) {
|
||
/// // Do something
|
||
/// }
|
||
/// ```
|
||
pub fn in_constant(cx: &LateContext<'_>, id: HirId) -> bool {
|
||
cx.tcx.hir().is_inside_const_context(id)
|
||
}
|
||
|
||
/// Checks if a `Res` refers to a constructor of a `LangItem`
|
||
/// For example, use this to check whether a function call or a pattern is `Some(..)`.
|
||
pub fn is_res_lang_ctor(cx: &LateContext<'_>, res: Res, lang_item: LangItem) -> bool {
|
||
if let Res::Def(DefKind::Ctor(..), id) = res
|
||
&& let Some(lang_id) = cx.tcx.lang_items().get(lang_item)
|
||
&& let Some(id) = cx.tcx.opt_parent(id)
|
||
{
|
||
id == lang_id
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
pub fn is_res_diagnostic_ctor(cx: &LateContext<'_>, res: Res, diag_item: Symbol) -> bool {
|
||
if let Res::Def(DefKind::Ctor(..), id) = res
|
||
&& let Some(id) = cx.tcx.opt_parent(id)
|
||
{
|
||
cx.tcx.is_diagnostic_item(diag_item, id)
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// Checks if a `QPath` resolves to a constructor of a diagnostic item.
|
||
pub fn is_diagnostic_ctor(cx: &LateContext<'_>, qpath: &QPath<'_>, diagnostic_item: Symbol) -> bool {
|
||
if let QPath::Resolved(_, path) = qpath {
|
||
if let Res::Def(DefKind::Ctor(..), ctor_id) = path.res {
|
||
return cx.tcx.is_diagnostic_item(diagnostic_item, cx.tcx.parent(ctor_id));
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Checks if the `DefId` matches the given diagnostic item or it's constructor.
|
||
pub fn is_diagnostic_item_or_ctor(cx: &LateContext<'_>, did: DefId, item: Symbol) -> bool {
|
||
let did = match cx.tcx.def_kind(did) {
|
||
DefKind::Ctor(..) => cx.tcx.parent(did),
|
||
// Constructors for types in external crates seem to have `DefKind::Variant`
|
||
DefKind::Variant => match cx.tcx.opt_parent(did) {
|
||
Some(did) if matches!(cx.tcx.def_kind(did), DefKind::Variant) => did,
|
||
_ => did,
|
||
},
|
||
_ => did,
|
||
};
|
||
|
||
cx.tcx.is_diagnostic_item(item, did)
|
||
}
|
||
|
||
/// Checks if the `DefId` matches the given `LangItem` or it's constructor.
|
||
pub fn is_lang_item_or_ctor(cx: &LateContext<'_>, did: DefId, item: LangItem) -> bool {
|
||
let did = match cx.tcx.def_kind(did) {
|
||
DefKind::Ctor(..) => cx.tcx.parent(did),
|
||
// Constructors for types in external crates seem to have `DefKind::Variant`
|
||
DefKind::Variant => match cx.tcx.opt_parent(did) {
|
||
Some(did) if matches!(cx.tcx.def_kind(did), DefKind::Variant) => did,
|
||
_ => did,
|
||
},
|
||
_ => did,
|
||
};
|
||
|
||
cx.tcx.lang_items().get(item) == Some(did)
|
||
}
|
||
|
||
pub fn is_unit_expr(expr: &Expr<'_>) -> bool {
|
||
matches!(
|
||
expr.kind,
|
||
ExprKind::Block(
|
||
Block {
|
||
stmts: [],
|
||
expr: None,
|
||
..
|
||
},
|
||
_
|
||
) | ExprKind::Tup([])
|
||
)
|
||
}
|
||
|
||
/// Checks if given pattern is a wildcard (`_`)
|
||
pub fn is_wild(pat: &Pat<'_>) -> bool {
|
||
matches!(pat.kind, PatKind::Wild)
|
||
}
|
||
|
||
/// Checks if the given `QPath` belongs to a type alias.
|
||
pub fn is_ty_alias(qpath: &QPath<'_>) -> bool {
|
||
match *qpath {
|
||
QPath::Resolved(_, path) => matches!(path.res, Res::Def(DefKind::TyAlias | DefKind::AssocTy, ..)),
|
||
QPath::TypeRelative(ty, _) if let TyKind::Path(qpath) = ty.kind => is_ty_alias(&qpath),
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
/// Checks if the method call given in `expr` belongs to the given trait.
|
||
/// This is a deprecated function, consider using [`is_trait_method`].
|
||
pub fn match_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, path: &[&str]) -> bool {
|
||
cx.typeck_results()
|
||
.type_dependent_def_id(expr.hir_id)
|
||
.and_then(|defid| cx.tcx.trait_of_item(defid))
|
||
.map_or(false, |trt_id| match_def_path(cx, trt_id, path))
|
||
}
|
||
|
||
/// Checks if a method is defined in an impl of a diagnostic item
|
||
pub fn is_diag_item_method(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
|
||
if let Some(impl_did) = cx.tcx.impl_of_method(def_id) {
|
||
if let Some(adt) = cx.tcx.type_of(impl_did).instantiate_identity().ty_adt_def() {
|
||
return cx.tcx.is_diagnostic_item(diag_item, adt.did());
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Checks if a method is in a diagnostic item trait
|
||
pub fn is_diag_trait_item(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
|
||
if let Some(trait_did) = cx.tcx.trait_of_item(def_id) {
|
||
return cx.tcx.is_diagnostic_item(diag_item, trait_did);
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Checks if the method call given in `expr` belongs to the given trait.
|
||
pub fn is_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, diag_item: Symbol) -> bool {
|
||
cx.typeck_results()
|
||
.type_dependent_def_id(expr.hir_id)
|
||
.map_or(false, |did| is_diag_trait_item(cx, did, diag_item))
|
||
}
|
||
|
||
/// Checks if the `def_id` belongs to a function that is part of a trait impl.
|
||
pub fn is_def_id_trait_method(cx: &LateContext<'_>, def_id: LocalDefId) -> bool {
|
||
if let Node::Item(item) = cx.tcx.parent_hir_node(cx.tcx.local_def_id_to_hir_id(def_id))
|
||
&& let ItemKind::Impl(imp) = item.kind
|
||
{
|
||
imp.of_trait.is_some()
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// Checks if the given expression is a path referring an item on the trait
|
||
/// that is marked with the given diagnostic item.
|
||
///
|
||
/// For checking method call expressions instead of path expressions, use
|
||
/// [`is_trait_method`].
|
||
///
|
||
/// For example, this can be used to find if an expression like `u64::default`
|
||
/// refers to an item of the trait `Default`, which is associated with the
|
||
/// `diag_item` of `sym::Default`.
|
||
pub fn is_trait_item(cx: &LateContext<'_>, expr: &Expr<'_>, diag_item: Symbol) -> bool {
|
||
if let ExprKind::Path(ref qpath) = expr.kind {
|
||
cx.qpath_res(qpath, expr.hir_id)
|
||
.opt_def_id()
|
||
.map_or(false, |def_id| is_diag_trait_item(cx, def_id, diag_item))
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
pub fn last_path_segment<'tcx>(path: &QPath<'tcx>) -> &'tcx PathSegment<'tcx> {
|
||
match *path {
|
||
QPath::Resolved(_, path) => path.segments.last().expect("A path must have at least one segment"),
|
||
QPath::TypeRelative(_, seg) => seg,
|
||
QPath::LangItem(..) => panic!("last_path_segment: lang item has no path segments"),
|
||
}
|
||
}
|
||
|
||
pub fn qpath_generic_tys<'tcx>(qpath: &QPath<'tcx>) -> impl Iterator<Item = &'tcx hir::Ty<'tcx>> {
|
||
last_path_segment(qpath)
|
||
.args
|
||
.map_or(&[][..], |a| a.args)
|
||
.iter()
|
||
.filter_map(|a| match a {
|
||
hir::GenericArg::Type(ty) => Some(*ty),
|
||
_ => None,
|
||
})
|
||
}
|
||
|
||
/// THIS METHOD IS DEPRECATED and will eventually be removed since it does not match against the
|
||
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
|
||
/// `QPath::Resolved.1.res.opt_def_id()`.
|
||
///
|
||
/// Matches a `QPath` against a slice of segment string literals.
|
||
///
|
||
/// There is also `match_path` if you are dealing with a `rustc_hir::Path` instead of a
|
||
/// `rustc_hir::QPath`.
|
||
///
|
||
/// # Examples
|
||
/// ```rust,ignore
|
||
/// match_qpath(path, &["std", "rt", "begin_unwind"])
|
||
/// ```
|
||
pub fn match_qpath(path: &QPath<'_>, segments: &[&str]) -> bool {
|
||
match *path {
|
||
QPath::Resolved(_, path) => match_path(path, segments),
|
||
QPath::TypeRelative(ty, segment) => match ty.kind {
|
||
TyKind::Path(ref inner_path) => {
|
||
if let [prefix @ .., end] = segments {
|
||
if match_qpath(inner_path, prefix) {
|
||
return segment.ident.name.as_str() == *end;
|
||
}
|
||
}
|
||
false
|
||
},
|
||
_ => false,
|
||
},
|
||
QPath::LangItem(..) => false,
|
||
}
|
||
}
|
||
|
||
/// If the expression is a path, resolves it to a `DefId` and checks if it matches the given path.
|
||
///
|
||
/// Please use `is_path_diagnostic_item` if the target is a diagnostic item.
|
||
pub fn is_expr_path_def_path(cx: &LateContext<'_>, expr: &Expr<'_>, segments: &[&str]) -> bool {
|
||
path_def_id(cx, expr).map_or(false, |id| match_def_path(cx, id, segments))
|
||
}
|
||
|
||
/// If `maybe_path` is a path node which resolves to an item, resolves it to a `DefId` and checks if
|
||
/// it matches the given lang item.
|
||
pub fn is_path_lang_item<'tcx>(cx: &LateContext<'_>, maybe_path: &impl MaybePath<'tcx>, lang_item: LangItem) -> bool {
|
||
path_def_id(cx, maybe_path).map_or(false, |id| cx.tcx.lang_items().get(lang_item) == Some(id))
|
||
}
|
||
|
||
/// If `maybe_path` is a path node which resolves to an item, resolves it to a `DefId` and checks if
|
||
/// it matches the given diagnostic item.
|
||
pub fn is_path_diagnostic_item<'tcx>(
|
||
cx: &LateContext<'_>,
|
||
maybe_path: &impl MaybePath<'tcx>,
|
||
diag_item: Symbol,
|
||
) -> bool {
|
||
path_def_id(cx, maybe_path).map_or(false, |id| cx.tcx.is_diagnostic_item(diag_item, id))
|
||
}
|
||
|
||
/// THIS METHOD IS DEPRECATED and will eventually be removed since it does not match against the
|
||
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
|
||
/// `QPath::Resolved.1.res.opt_def_id()`.
|
||
///
|
||
/// Matches a `Path` against a slice of segment string literals.
|
||
///
|
||
/// There is also `match_qpath` if you are dealing with a `rustc_hir::QPath` instead of a
|
||
/// `rustc_hir::Path`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```rust,ignore
|
||
/// if match_path(&trait_ref.path, &paths::HASH) {
|
||
/// // This is the `std::hash::Hash` trait.
|
||
/// }
|
||
///
|
||
/// if match_path(ty_path, &["rustc", "lint", "Lint"]) {
|
||
/// // This is a `rustc_middle::lint::Lint`.
|
||
/// }
|
||
/// ```
|
||
pub fn match_path(path: &Path<'_>, segments: &[&str]) -> bool {
|
||
path.segments
|
||
.iter()
|
||
.rev()
|
||
.zip(segments.iter().rev())
|
||
.all(|(a, b)| a.ident.name.as_str() == *b)
|
||
}
|
||
|
||
/// If the expression is a path to a local, returns the canonical `HirId` of the local.
|
||
pub fn path_to_local(expr: &Expr<'_>) -> Option<HirId> {
|
||
if let ExprKind::Path(QPath::Resolved(None, path)) = expr.kind {
|
||
if let Res::Local(id) = path.res {
|
||
return Some(id);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
/// Returns true if the expression is a path to a local with the specified `HirId`.
|
||
/// Use this function to see if an expression matches a function argument or a match binding.
|
||
pub fn path_to_local_id(expr: &Expr<'_>, id: HirId) -> bool {
|
||
path_to_local(expr) == Some(id)
|
||
}
|
||
|
||
pub trait MaybePath<'hir> {
|
||
fn hir_id(&self) -> HirId;
|
||
fn qpath_opt(&self) -> Option<&QPath<'hir>>;
|
||
}
|
||
|
||
macro_rules! maybe_path {
|
||
($ty:ident, $kind:ident) => {
|
||
impl<'hir> MaybePath<'hir> for hir::$ty<'hir> {
|
||
fn hir_id(&self) -> HirId {
|
||
self.hir_id
|
||
}
|
||
fn qpath_opt(&self) -> Option<&QPath<'hir>> {
|
||
match &self.kind {
|
||
hir::$kind::Path(qpath) => Some(qpath),
|
||
_ => None,
|
||
}
|
||
}
|
||
}
|
||
};
|
||
}
|
||
maybe_path!(Expr, ExprKind);
|
||
maybe_path!(Pat, PatKind);
|
||
maybe_path!(Ty, TyKind);
|
||
|
||
/// If `maybe_path` is a path node, resolves it, otherwise returns `Res::Err`
|
||
pub fn path_res<'tcx>(cx: &LateContext<'_>, maybe_path: &impl MaybePath<'tcx>) -> Res {
|
||
match maybe_path.qpath_opt() {
|
||
None => Res::Err,
|
||
Some(qpath) => cx.qpath_res(qpath, maybe_path.hir_id()),
|
||
}
|
||
}
|
||
|
||
/// If `maybe_path` is a path node which resolves to an item, retrieves the item ID
|
||
pub fn path_def_id<'tcx>(cx: &LateContext<'_>, maybe_path: &impl MaybePath<'tcx>) -> Option<DefId> {
|
||
path_res(cx, maybe_path).opt_def_id()
|
||
}
|
||
|
||
fn find_primitive_impls<'tcx>(tcx: TyCtxt<'tcx>, name: &str) -> impl Iterator<Item = DefId> + 'tcx {
|
||
let ty = match name {
|
||
"bool" => SimplifiedType::Bool,
|
||
"char" => SimplifiedType::Char,
|
||
"str" => SimplifiedType::Str,
|
||
"array" => SimplifiedType::Array,
|
||
"slice" => SimplifiedType::Slice,
|
||
// FIXME: rustdoc documents these two using just `pointer`.
|
||
//
|
||
// Maybe this is something we should do here too.
|
||
"const_ptr" => SimplifiedType::Ptr(Mutability::Not),
|
||
"mut_ptr" => SimplifiedType::Ptr(Mutability::Mut),
|
||
"isize" => SimplifiedType::Int(IntTy::Isize),
|
||
"i8" => SimplifiedType::Int(IntTy::I8),
|
||
"i16" => SimplifiedType::Int(IntTy::I16),
|
||
"i32" => SimplifiedType::Int(IntTy::I32),
|
||
"i64" => SimplifiedType::Int(IntTy::I64),
|
||
"i128" => SimplifiedType::Int(IntTy::I128),
|
||
"usize" => SimplifiedType::Uint(UintTy::Usize),
|
||
"u8" => SimplifiedType::Uint(UintTy::U8),
|
||
"u16" => SimplifiedType::Uint(UintTy::U16),
|
||
"u32" => SimplifiedType::Uint(UintTy::U32),
|
||
"u64" => SimplifiedType::Uint(UintTy::U64),
|
||
"u128" => SimplifiedType::Uint(UintTy::U128),
|
||
"f32" => SimplifiedType::Float(FloatTy::F32),
|
||
"f64" => SimplifiedType::Float(FloatTy::F64),
|
||
#[allow(trivial_casts)]
|
||
_ => {
|
||
return Result::<_, rustc_errors::ErrorGuaranteed>::Ok(&[] as &[_])
|
||
.into_iter()
|
||
.flatten()
|
||
.copied();
|
||
},
|
||
};
|
||
|
||
tcx.incoherent_impls(ty).into_iter().flatten().copied()
|
||
}
|
||
|
||
fn non_local_item_children_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: Symbol) -> Vec<Res> {
|
||
match tcx.def_kind(def_id) {
|
||
DefKind::Mod | DefKind::Enum | DefKind::Trait => tcx
|
||
.module_children(def_id)
|
||
.iter()
|
||
.filter(|item| item.ident.name == name)
|
||
.map(|child| child.res.expect_non_local())
|
||
.collect(),
|
||
DefKind::Impl { .. } => tcx
|
||
.associated_item_def_ids(def_id)
|
||
.iter()
|
||
.copied()
|
||
.filter(|assoc_def_id| tcx.item_name(*assoc_def_id) == name)
|
||
.map(|assoc_def_id| Res::Def(tcx.def_kind(assoc_def_id), assoc_def_id))
|
||
.collect(),
|
||
_ => Vec::new(),
|
||
}
|
||
}
|
||
|
||
fn local_item_children_by_name(tcx: TyCtxt<'_>, local_id: LocalDefId, name: Symbol) -> Vec<Res> {
|
||
let hir = tcx.hir();
|
||
|
||
let root_mod;
|
||
let item_kind = match tcx.hir_node_by_def_id(local_id) {
|
||
Node::Crate(r#mod) => {
|
||
root_mod = ItemKind::Mod(r#mod);
|
||
&root_mod
|
||
},
|
||
Node::Item(item) => &item.kind,
|
||
_ => return Vec::new(),
|
||
};
|
||
|
||
let res = |ident: Ident, owner_id: OwnerId| {
|
||
if ident.name == name {
|
||
let def_id = owner_id.to_def_id();
|
||
Some(Res::Def(tcx.def_kind(def_id), def_id))
|
||
} else {
|
||
None
|
||
}
|
||
};
|
||
|
||
match item_kind {
|
||
ItemKind::Mod(r#mod) => r#mod
|
||
.item_ids
|
||
.iter()
|
||
.filter_map(|&item_id| res(hir.item(item_id).ident, item_id.owner_id))
|
||
.collect(),
|
||
ItemKind::Impl(r#impl) => r#impl
|
||
.items
|
||
.iter()
|
||
.filter_map(|&ImplItemRef { ident, id, .. }| res(ident, id.owner_id))
|
||
.collect(),
|
||
ItemKind::Trait(.., trait_item_refs) => trait_item_refs
|
||
.iter()
|
||
.filter_map(|&TraitItemRef { ident, id, .. }| res(ident, id.owner_id))
|
||
.collect(),
|
||
_ => Vec::new(),
|
||
}
|
||
}
|
||
|
||
fn item_children_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: Symbol) -> Vec<Res> {
|
||
if let Some(local_id) = def_id.as_local() {
|
||
local_item_children_by_name(tcx, local_id, name)
|
||
} else {
|
||
non_local_item_children_by_name(tcx, def_id, name)
|
||
}
|
||
}
|
||
|
||
/// Resolves a def path like `std::vec::Vec`.
|
||
///
|
||
/// Can return multiple resolutions when there are multiple versions of the same crate, e.g.
|
||
/// `memchr::memchr` could return the functions from both memchr 1.0 and memchr 2.0.
|
||
///
|
||
/// Also returns multiple results when there are multiple paths under the same name e.g. `std::vec`
|
||
/// would have both a [`DefKind::Mod`] and [`DefKind::Macro`].
|
||
///
|
||
/// This function is expensive and should be used sparingly.
|
||
pub fn def_path_res(cx: &LateContext<'_>, path: &[&str]) -> Vec<Res> {
|
||
fn find_crates(tcx: TyCtxt<'_>, name: Symbol) -> impl Iterator<Item = DefId> + '_ {
|
||
tcx.crates_including_speculative(())
|
||
.iter()
|
||
.copied()
|
||
.filter(move |&num| tcx.crate_name(num) == name)
|
||
.map(CrateNum::as_def_id)
|
||
}
|
||
|
||
let tcx = cx.tcx;
|
||
|
||
let (base, mut path) = match *path {
|
||
[primitive] => {
|
||
return vec![PrimTy::from_name(Symbol::intern(primitive)).map_or(Res::Err, Res::PrimTy)];
|
||
},
|
||
[base, ref path @ ..] => (base, path),
|
||
_ => return Vec::new(),
|
||
};
|
||
|
||
let base_sym = Symbol::intern(base);
|
||
|
||
let local_crate = if tcx.crate_name(LOCAL_CRATE) == base_sym {
|
||
Some(LOCAL_CRATE.as_def_id())
|
||
} else {
|
||
None
|
||
};
|
||
|
||
let starts = find_primitive_impls(tcx, base)
|
||
.chain(find_crates(tcx, base_sym))
|
||
.chain(local_crate)
|
||
.map(|id| Res::Def(tcx.def_kind(id), id));
|
||
|
||
let mut resolutions: Vec<Res> = starts.collect();
|
||
|
||
while let [segment, rest @ ..] = path {
|
||
path = rest;
|
||
let segment = Symbol::intern(segment);
|
||
|
||
resolutions = resolutions
|
||
.into_iter()
|
||
.filter_map(|res| res.opt_def_id())
|
||
.flat_map(|def_id| {
|
||
// When the current def_id is e.g. `struct S`, check the impl items in
|
||
// `impl S { ... }`
|
||
let inherent_impl_children = tcx
|
||
.inherent_impls(def_id)
|
||
.into_iter()
|
||
.flatten()
|
||
.flat_map(|&impl_def_id| item_children_by_name(tcx, impl_def_id, segment));
|
||
|
||
let direct_children = item_children_by_name(tcx, def_id, segment);
|
||
|
||
inherent_impl_children.chain(direct_children)
|
||
})
|
||
.collect();
|
||
}
|
||
|
||
resolutions
|
||
}
|
||
|
||
/// Resolves a def path like `std::vec::Vec` to its [`DefId`]s, see [`def_path_res`].
|
||
pub fn def_path_def_ids(cx: &LateContext<'_>, path: &[&str]) -> impl Iterator<Item = DefId> {
|
||
def_path_res(cx, path).into_iter().filter_map(|res| res.opt_def_id())
|
||
}
|
||
|
||
/// Convenience function to get the `DefId` of a trait by path.
|
||
/// It could be a trait or trait alias.
|
||
///
|
||
/// This function is expensive and should be used sparingly.
|
||
pub fn get_trait_def_id(cx: &LateContext<'_>, path: &[&str]) -> Option<DefId> {
|
||
def_path_res(cx, path).into_iter().find_map(|res| match res {
|
||
Res::Def(DefKind::Trait | DefKind::TraitAlias, trait_id) => Some(trait_id),
|
||
_ => None,
|
||
})
|
||
}
|
||
|
||
/// Gets the `hir::TraitRef` of the trait the given method is implemented for.
|
||
///
|
||
/// Use this if you want to find the `TraitRef` of the `Add` trait in this example:
|
||
///
|
||
/// ```no_run
|
||
/// struct Point(isize, isize);
|
||
///
|
||
/// impl std::ops::Add for Point {
|
||
/// type Output = Self;
|
||
///
|
||
/// fn add(self, other: Self) -> Self {
|
||
/// Point(0, 0)
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
pub fn trait_ref_of_method<'tcx>(cx: &LateContext<'tcx>, def_id: LocalDefId) -> Option<&'tcx TraitRef<'tcx>> {
|
||
// Get the implemented trait for the current function
|
||
let hir_id = cx.tcx.local_def_id_to_hir_id(def_id);
|
||
let parent_impl = cx.tcx.hir().get_parent_item(hir_id);
|
||
if parent_impl != hir::CRATE_OWNER_ID
|
||
&& let Node::Item(item) = cx.tcx.hir_node_by_def_id(parent_impl.def_id)
|
||
&& let ItemKind::Impl(impl_) = &item.kind
|
||
{
|
||
return impl_.of_trait.as_ref();
|
||
}
|
||
None
|
||
}
|
||
|
||
/// This method will return tuple of projection stack and root of the expression,
|
||
/// used in `can_mut_borrow_both`.
|
||
///
|
||
/// For example, if `e` represents the `v[0].a.b[x]`
|
||
/// this method will return a tuple, composed of a `Vec`
|
||
/// containing the `Expr`s for `v[0], v[0].a, v[0].a.b, v[0].a.b[x]`
|
||
/// and an `Expr` for root of them, `v`
|
||
fn projection_stack<'a, 'hir>(mut e: &'a Expr<'hir>) -> (Vec<&'a Expr<'hir>>, &'a Expr<'hir>) {
|
||
let mut result = vec![];
|
||
let root = loop {
|
||
match e.kind {
|
||
ExprKind::Index(ep, _, _) | ExprKind::Field(ep, _) => {
|
||
result.push(e);
|
||
e = ep;
|
||
},
|
||
_ => break e,
|
||
};
|
||
};
|
||
result.reverse();
|
||
(result, root)
|
||
}
|
||
|
||
/// Gets the mutability of the custom deref adjustment, if any.
|
||
pub fn expr_custom_deref_adjustment(cx: &LateContext<'_>, e: &Expr<'_>) -> Option<Mutability> {
|
||
cx.typeck_results()
|
||
.expr_adjustments(e)
|
||
.iter()
|
||
.find_map(|a| match a.kind {
|
||
Adjust::Deref(Some(d)) => Some(Some(d.mutbl)),
|
||
Adjust::Deref(None) => None,
|
||
_ => Some(None),
|
||
})
|
||
.and_then(|x| x)
|
||
}
|
||
|
||
/// Checks if two expressions can be mutably borrowed simultaneously
|
||
/// and they aren't dependent on borrowing same thing twice
|
||
pub fn can_mut_borrow_both(cx: &LateContext<'_>, e1: &Expr<'_>, e2: &Expr<'_>) -> bool {
|
||
let (s1, r1) = projection_stack(e1);
|
||
let (s2, r2) = projection_stack(e2);
|
||
if !eq_expr_value(cx, r1, r2) {
|
||
return true;
|
||
}
|
||
if expr_custom_deref_adjustment(cx, r1).is_some() || expr_custom_deref_adjustment(cx, r2).is_some() {
|
||
return false;
|
||
}
|
||
|
||
for (x1, x2) in s1.iter().zip(s2.iter()) {
|
||
if expr_custom_deref_adjustment(cx, x1).is_some() || expr_custom_deref_adjustment(cx, x2).is_some() {
|
||
return false;
|
||
}
|
||
|
||
match (&x1.kind, &x2.kind) {
|
||
(ExprKind::Field(_, i1), ExprKind::Field(_, i2)) => {
|
||
if i1 != i2 {
|
||
return true;
|
||
}
|
||
},
|
||
(ExprKind::Index(_, i1, _), ExprKind::Index(_, i2, _)) => {
|
||
if !eq_expr_value(cx, i1, i2) {
|
||
return false;
|
||
}
|
||
},
|
||
_ => return false,
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Returns true if the `def_id` associated with the `path` is recognized as a "default-equivalent"
|
||
/// constructor from the std library
|
||
fn is_default_equivalent_ctor(cx: &LateContext<'_>, def_id: DefId, path: &QPath<'_>) -> bool {
|
||
let std_types_symbols = &[
|
||
sym::Vec,
|
||
sym::VecDeque,
|
||
sym::LinkedList,
|
||
sym::HashMap,
|
||
sym::BTreeMap,
|
||
sym::HashSet,
|
||
sym::BTreeSet,
|
||
sym::BinaryHeap,
|
||
];
|
||
|
||
if let QPath::TypeRelative(_, method) = path {
|
||
if method.ident.name == sym::new {
|
||
if let Some(impl_did) = cx.tcx.impl_of_method(def_id) {
|
||
if let Some(adt) = cx.tcx.type_of(impl_did).instantiate_identity().ty_adt_def() {
|
||
return std_types_symbols.iter().any(|&symbol| {
|
||
cx.tcx.is_diagnostic_item(symbol, adt.did()) || Some(adt.did()) == cx.tcx.lang_items().string()
|
||
});
|
||
}
|
||
}
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Returns true if the expr is equal to `Default::default` when evaluated.
|
||
pub fn is_default_equivalent_call(cx: &LateContext<'_>, repl_func: &Expr<'_>) -> bool {
|
||
if let ExprKind::Path(ref repl_func_qpath) = repl_func.kind
|
||
&& let Some(repl_def_id) = cx.qpath_res(repl_func_qpath, repl_func.hir_id).opt_def_id()
|
||
&& (is_diag_trait_item(cx, repl_def_id, sym::Default)
|
||
|| is_default_equivalent_ctor(cx, repl_def_id, repl_func_qpath))
|
||
{
|
||
true
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// Returns true if the expr is equal to `Default::default()` of it's type when evaluated.
|
||
/// It doesn't cover all cases, for example indirect function calls (some of std
|
||
/// functions are supported) but it is the best we have.
|
||
pub fn is_default_equivalent(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
|
||
match &e.kind {
|
||
ExprKind::Lit(lit) => match lit.node {
|
||
LitKind::Bool(false) | LitKind::Int(Pu128(0), _) => true,
|
||
LitKind::Str(s, _) => s.is_empty(),
|
||
_ => false,
|
||
},
|
||
ExprKind::Tup(items) | ExprKind::Array(items) => items.iter().all(|x| is_default_equivalent(cx, x)),
|
||
ExprKind::Repeat(x, ArrayLen::Body(len)) => {
|
||
if let ExprKind::Lit(const_lit) = cx.tcx.hir().body(len.body).value.kind
|
||
&& let LitKind::Int(v, _) = const_lit.node
|
||
&& v <= 32
|
||
&& is_default_equivalent(cx, x)
|
||
{
|
||
true
|
||
} else {
|
||
false
|
||
}
|
||
},
|
||
ExprKind::Call(repl_func, []) => is_default_equivalent_call(cx, repl_func),
|
||
ExprKind::Call(from_func, [ref arg]) => is_default_equivalent_from(cx, from_func, arg),
|
||
ExprKind::Path(qpath) => is_res_lang_ctor(cx, cx.qpath_res(qpath, e.hir_id), OptionNone),
|
||
ExprKind::AddrOf(rustc_hir::BorrowKind::Ref, _, expr) => matches!(expr.kind, ExprKind::Array([])),
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
fn is_default_equivalent_from(cx: &LateContext<'_>, from_func: &Expr<'_>, arg: &Expr<'_>) -> bool {
|
||
if let ExprKind::Path(QPath::TypeRelative(ty, seg)) = from_func.kind
|
||
&& seg.ident.name == sym::from
|
||
{
|
||
match arg.kind {
|
||
ExprKind::Lit(hir::Lit {
|
||
node: LitKind::Str(ref sym, _),
|
||
..
|
||
}) => return sym.is_empty() && is_path_lang_item(cx, ty, LangItem::String),
|
||
ExprKind::Array([]) => return is_path_diagnostic_item(cx, ty, sym::Vec),
|
||
ExprKind::Repeat(_, ArrayLen::Body(len)) => {
|
||
if let ExprKind::Lit(const_lit) = cx.tcx.hir().body(len.body).value.kind
|
||
&& let LitKind::Int(v, _) = const_lit.node
|
||
{
|
||
return v == 0 && is_path_diagnostic_item(cx, ty, sym::Vec);
|
||
}
|
||
},
|
||
_ => (),
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Checks if the top level expression can be moved into a closure as is.
|
||
/// Currently checks for:
|
||
/// * Break/Continue outside the given loop HIR ids.
|
||
/// * Yield/Return statements.
|
||
/// * Inline assembly.
|
||
/// * Usages of a field of a local where the type of the local can be partially moved.
|
||
///
|
||
/// For example, given the following function:
|
||
///
|
||
/// ```no_run
|
||
/// fn f<'a>(iter: &mut impl Iterator<Item = (usize, &'a mut String)>) {
|
||
/// for item in iter {
|
||
/// let s = item.1;
|
||
/// if item.0 > 10 {
|
||
/// continue;
|
||
/// } else {
|
||
/// s.clear();
|
||
/// }
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// When called on the expression `item.0` this will return false unless the local `item` is in the
|
||
/// `ignore_locals` set. The type `(usize, &mut String)` can have the second element moved, so it
|
||
/// isn't always safe to move into a closure when only a single field is needed.
|
||
///
|
||
/// When called on the `continue` expression this will return false unless the outer loop expression
|
||
/// is in the `loop_ids` set.
|
||
///
|
||
/// Note that this check is not recursive, so passing the `if` expression will always return true
|
||
/// even though sub-expressions might return false.
|
||
pub fn can_move_expr_to_closure_no_visit<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
expr: &'tcx Expr<'_>,
|
||
loop_ids: &[HirId],
|
||
ignore_locals: &HirIdSet,
|
||
) -> bool {
|
||
match expr.kind {
|
||
ExprKind::Break(Destination { target_id: Ok(id), .. }, _)
|
||
| ExprKind::Continue(Destination { target_id: Ok(id), .. })
|
||
if loop_ids.contains(&id) =>
|
||
{
|
||
true
|
||
},
|
||
ExprKind::Break(..)
|
||
| ExprKind::Continue(_)
|
||
| ExprKind::Ret(_)
|
||
| ExprKind::Yield(..)
|
||
| ExprKind::InlineAsm(_) => false,
|
||
// Accessing a field of a local value can only be done if the type isn't
|
||
// partially moved.
|
||
ExprKind::Field(
|
||
&Expr {
|
||
hir_id,
|
||
kind:
|
||
ExprKind::Path(QPath::Resolved(
|
||
_,
|
||
Path {
|
||
res: Res::Local(local_id),
|
||
..
|
||
},
|
||
)),
|
||
..
|
||
},
|
||
_,
|
||
) if !ignore_locals.contains(local_id) && can_partially_move_ty(cx, cx.typeck_results().node_type(hir_id)) => {
|
||
// TODO: check if the local has been partially moved. Assume it has for now.
|
||
false
|
||
},
|
||
_ => true,
|
||
}
|
||
}
|
||
|
||
/// How a local is captured by a closure
|
||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||
pub enum CaptureKind {
|
||
Value,
|
||
Ref(Mutability),
|
||
}
|
||
impl CaptureKind {
|
||
pub fn is_imm_ref(self) -> bool {
|
||
self == Self::Ref(Mutability::Not)
|
||
}
|
||
}
|
||
impl std::ops::BitOr for CaptureKind {
|
||
type Output = Self;
|
||
fn bitor(self, rhs: Self) -> Self::Output {
|
||
match (self, rhs) {
|
||
(CaptureKind::Value, _) | (_, CaptureKind::Value) => CaptureKind::Value,
|
||
(CaptureKind::Ref(Mutability::Mut), CaptureKind::Ref(_))
|
||
| (CaptureKind::Ref(_), CaptureKind::Ref(Mutability::Mut)) => CaptureKind::Ref(Mutability::Mut),
|
||
(CaptureKind::Ref(Mutability::Not), CaptureKind::Ref(Mutability::Not)) => CaptureKind::Ref(Mutability::Not),
|
||
}
|
||
}
|
||
}
|
||
impl std::ops::BitOrAssign for CaptureKind {
|
||
fn bitor_assign(&mut self, rhs: Self) {
|
||
*self = *self | rhs;
|
||
}
|
||
}
|
||
|
||
/// Given an expression referencing a local, determines how it would be captured in a closure.
|
||
/// Note as this will walk up to parent expressions until the capture can be determined it should
|
||
/// only be used while making a closure somewhere a value is consumed. e.g. a block, match arm, or
|
||
/// function argument (other than a receiver).
|
||
pub fn capture_local_usage(cx: &LateContext<'_>, e: &Expr<'_>) -> CaptureKind {
|
||
fn pat_capture_kind(cx: &LateContext<'_>, pat: &Pat<'_>) -> CaptureKind {
|
||
let mut capture = CaptureKind::Ref(Mutability::Not);
|
||
pat.each_binding_or_first(&mut |_, id, span, _| match cx
|
||
.typeck_results()
|
||
.extract_binding_mode(cx.sess(), id, span)
|
||
.unwrap()
|
||
.0
|
||
{
|
||
ByRef::No if !is_copy(cx, cx.typeck_results().node_type(id)) => {
|
||
capture = CaptureKind::Value;
|
||
},
|
||
ByRef::Yes(Mutability::Mut) if capture != CaptureKind::Value => {
|
||
capture = CaptureKind::Ref(Mutability::Mut);
|
||
},
|
||
_ => (),
|
||
});
|
||
capture
|
||
}
|
||
|
||
debug_assert!(matches!(
|
||
e.kind,
|
||
ExprKind::Path(QPath::Resolved(None, Path { res: Res::Local(_), .. }))
|
||
));
|
||
|
||
let mut child_id = e.hir_id;
|
||
let mut capture = CaptureKind::Value;
|
||
let mut capture_expr_ty = e;
|
||
|
||
for (parent_id, parent) in cx.tcx.hir().parent_iter(e.hir_id) {
|
||
if let [
|
||
Adjustment {
|
||
kind: Adjust::Deref(_) | Adjust::Borrow(AutoBorrow::Ref(..)),
|
||
target,
|
||
},
|
||
ref adjust @ ..,
|
||
] = *cx
|
||
.typeck_results()
|
||
.adjustments()
|
||
.get(child_id)
|
||
.map_or(&[][..], |x| &**x)
|
||
{
|
||
if let rustc_ty::RawPtr(_, mutability) | rustc_ty::Ref(_, _, mutability) =
|
||
*adjust.last().map_or(target, |a| a.target).kind()
|
||
{
|
||
return CaptureKind::Ref(mutability);
|
||
}
|
||
}
|
||
|
||
match parent {
|
||
Node::Expr(e) => match e.kind {
|
||
ExprKind::AddrOf(_, mutability, _) => return CaptureKind::Ref(mutability),
|
||
ExprKind::Index(..) | ExprKind::Unary(UnOp::Deref, _) => capture = CaptureKind::Ref(Mutability::Not),
|
||
ExprKind::Assign(lhs, ..) | ExprKind::AssignOp(_, lhs, _) if lhs.hir_id == child_id => {
|
||
return CaptureKind::Ref(Mutability::Mut);
|
||
},
|
||
ExprKind::Field(..) => {
|
||
if capture == CaptureKind::Value {
|
||
capture_expr_ty = e;
|
||
}
|
||
},
|
||
ExprKind::Let(let_expr) => {
|
||
let mutability = match pat_capture_kind(cx, let_expr.pat) {
|
||
CaptureKind::Value => Mutability::Not,
|
||
CaptureKind::Ref(m) => m,
|
||
};
|
||
return CaptureKind::Ref(mutability);
|
||
},
|
||
ExprKind::Match(_, arms, _) => {
|
||
let mut mutability = Mutability::Not;
|
||
for capture in arms.iter().map(|arm| pat_capture_kind(cx, arm.pat)) {
|
||
match capture {
|
||
CaptureKind::Value => break,
|
||
CaptureKind::Ref(Mutability::Mut) => mutability = Mutability::Mut,
|
||
CaptureKind::Ref(Mutability::Not) => (),
|
||
}
|
||
}
|
||
return CaptureKind::Ref(mutability);
|
||
},
|
||
_ => break,
|
||
},
|
||
Node::LetStmt(l) => match pat_capture_kind(cx, l.pat) {
|
||
CaptureKind::Value => break,
|
||
capture @ CaptureKind::Ref(_) => return capture,
|
||
},
|
||
_ => break,
|
||
}
|
||
|
||
child_id = parent_id;
|
||
}
|
||
|
||
if capture == CaptureKind::Value && is_copy(cx, cx.typeck_results().expr_ty(capture_expr_ty)) {
|
||
// Copy types are never automatically captured by value.
|
||
CaptureKind::Ref(Mutability::Not)
|
||
} else {
|
||
capture
|
||
}
|
||
}
|
||
|
||
/// Checks if the expression can be moved into a closure as is. This will return a list of captures
|
||
/// if so, otherwise, `None`.
|
||
pub fn can_move_expr_to_closure<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> Option<HirIdMap<CaptureKind>> {
|
||
struct V<'cx, 'tcx> {
|
||
cx: &'cx LateContext<'tcx>,
|
||
// Stack of potential break targets contained in the expression.
|
||
loops: Vec<HirId>,
|
||
/// Local variables created in the expression. These don't need to be captured.
|
||
locals: HirIdSet,
|
||
/// Whether this expression can be turned into a closure.
|
||
allow_closure: bool,
|
||
/// Locals which need to be captured, and whether they need to be by value, reference, or
|
||
/// mutable reference.
|
||
captures: HirIdMap<CaptureKind>,
|
||
}
|
||
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
|
||
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
|
||
if !self.allow_closure {
|
||
return;
|
||
}
|
||
|
||
match e.kind {
|
||
ExprKind::Path(QPath::Resolved(None, &Path { res: Res::Local(l), .. })) => {
|
||
if !self.locals.contains(&l) {
|
||
let cap = capture_local_usage(self.cx, e);
|
||
self.captures.entry(l).and_modify(|e| *e |= cap).or_insert(cap);
|
||
}
|
||
},
|
||
ExprKind::Closure(closure) => {
|
||
for capture in self.cx.typeck_results().closure_min_captures_flattened(closure.def_id) {
|
||
let local_id = match capture.place.base {
|
||
PlaceBase::Local(id) => id,
|
||
PlaceBase::Upvar(var) => var.var_path.hir_id,
|
||
_ => continue,
|
||
};
|
||
if !self.locals.contains(&local_id) {
|
||
let capture = match capture.info.capture_kind {
|
||
UpvarCapture::ByValue => CaptureKind::Value,
|
||
UpvarCapture::ByRef(kind) => match kind {
|
||
BorrowKind::ImmBorrow => CaptureKind::Ref(Mutability::Not),
|
||
BorrowKind::UniqueImmBorrow | BorrowKind::MutBorrow => {
|
||
CaptureKind::Ref(Mutability::Mut)
|
||
},
|
||
},
|
||
};
|
||
self.captures
|
||
.entry(local_id)
|
||
.and_modify(|e| *e |= capture)
|
||
.or_insert(capture);
|
||
}
|
||
}
|
||
},
|
||
ExprKind::Loop(b, ..) => {
|
||
self.loops.push(e.hir_id);
|
||
self.visit_block(b);
|
||
self.loops.pop();
|
||
},
|
||
_ => {
|
||
self.allow_closure &= can_move_expr_to_closure_no_visit(self.cx, e, &self.loops, &self.locals);
|
||
walk_expr(self, e);
|
||
},
|
||
}
|
||
}
|
||
|
||
fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
|
||
p.each_binding_or_first(&mut |_, id, _, _| {
|
||
self.locals.insert(id);
|
||
});
|
||
}
|
||
}
|
||
|
||
let mut v = V {
|
||
cx,
|
||
allow_closure: true,
|
||
loops: Vec::new(),
|
||
locals: HirIdSet::default(),
|
||
captures: HirIdMap::default(),
|
||
};
|
||
v.visit_expr(expr);
|
||
v.allow_closure.then_some(v.captures)
|
||
}
|
||
|
||
/// Arguments of a method: the receiver and all the additional arguments.
|
||
pub type MethodArguments<'tcx> = Vec<(&'tcx Expr<'tcx>, &'tcx [Expr<'tcx>])>;
|
||
|
||
/// Returns the method names and argument list of nested method call expressions that make up
|
||
/// `expr`. method/span lists are sorted with the most recent call first.
|
||
pub fn method_calls<'tcx>(expr: &'tcx Expr<'tcx>, max_depth: usize) -> (Vec<Symbol>, MethodArguments<'tcx>, Vec<Span>) {
|
||
let mut method_names = Vec::with_capacity(max_depth);
|
||
let mut arg_lists = Vec::with_capacity(max_depth);
|
||
let mut spans = Vec::with_capacity(max_depth);
|
||
|
||
let mut current = expr;
|
||
for _ in 0..max_depth {
|
||
if let ExprKind::MethodCall(path, receiver, args, _) = ¤t.kind {
|
||
if receiver.span.from_expansion() || args.iter().any(|e| e.span.from_expansion()) {
|
||
break;
|
||
}
|
||
method_names.push(path.ident.name);
|
||
arg_lists.push((*receiver, &**args));
|
||
spans.push(path.ident.span);
|
||
current = receiver;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
(method_names, arg_lists, spans)
|
||
}
|
||
|
||
/// Matches an `Expr` against a chain of methods, and return the matched `Expr`s.
|
||
///
|
||
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
|
||
/// `method_chain_args(expr, &["bar", "baz"])` will return a `Vec`
|
||
/// containing the `Expr`s for
|
||
/// `.bar()` and `.baz()`
|
||
pub fn method_chain_args<'a>(expr: &'a Expr<'_>, methods: &[&str]) -> Option<Vec<(&'a Expr<'a>, &'a [Expr<'a>])>> {
|
||
let mut current = expr;
|
||
let mut matched = Vec::with_capacity(methods.len());
|
||
for method_name in methods.iter().rev() {
|
||
// method chains are stored last -> first
|
||
if let ExprKind::MethodCall(path, receiver, args, _) = current.kind {
|
||
if path.ident.name.as_str() == *method_name {
|
||
if receiver.span.from_expansion() || args.iter().any(|e| e.span.from_expansion()) {
|
||
return None;
|
||
}
|
||
matched.push((receiver, args)); // build up `matched` backwards
|
||
current = receiver; // go to parent expression
|
||
} else {
|
||
return None;
|
||
}
|
||
} else {
|
||
return None;
|
||
}
|
||
}
|
||
// Reverse `matched` so that it is in the same order as `methods`.
|
||
matched.reverse();
|
||
Some(matched)
|
||
}
|
||
|
||
/// Returns `true` if the provided `def_id` is an entrypoint to a program.
|
||
pub fn is_entrypoint_fn(cx: &LateContext<'_>, def_id: DefId) -> bool {
|
||
cx.tcx
|
||
.entry_fn(())
|
||
.map_or(false, |(entry_fn_def_id, _)| def_id == entry_fn_def_id)
|
||
}
|
||
|
||
/// Returns `true` if the expression is in the program's `#[panic_handler]`.
|
||
pub fn is_in_panic_handler(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
|
||
let parent = cx.tcx.hir().get_parent_item(e.hir_id);
|
||
Some(parent.to_def_id()) == cx.tcx.lang_items().panic_impl()
|
||
}
|
||
|
||
/// Gets the name of the item the expression is in, if available.
|
||
pub fn get_item_name(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<Symbol> {
|
||
let parent_id = cx.tcx.hir().get_parent_item(expr.hir_id).def_id;
|
||
match cx.tcx.hir_node_by_def_id(parent_id) {
|
||
Node::Item(Item { ident, .. })
|
||
| Node::TraitItem(TraitItem { ident, .. })
|
||
| Node::ImplItem(ImplItem { ident, .. }) => Some(ident.name),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
pub struct ContainsName<'a, 'tcx> {
|
||
pub cx: &'a LateContext<'tcx>,
|
||
pub name: Symbol,
|
||
pub result: bool,
|
||
}
|
||
|
||
impl<'a, 'tcx> Visitor<'tcx> for ContainsName<'a, 'tcx> {
|
||
type NestedFilter = nested_filter::OnlyBodies;
|
||
|
||
fn visit_name(&mut self, name: Symbol) {
|
||
if self.name == name {
|
||
self.result = true;
|
||
}
|
||
}
|
||
|
||
fn nested_visit_map(&mut self) -> Self::Map {
|
||
self.cx.tcx.hir()
|
||
}
|
||
}
|
||
|
||
/// Checks if an `Expr` contains a certain name.
|
||
pub fn contains_name<'tcx>(name: Symbol, expr: &'tcx Expr<'_>, cx: &LateContext<'tcx>) -> bool {
|
||
let mut cn = ContainsName {
|
||
name,
|
||
result: false,
|
||
cx,
|
||
};
|
||
cn.visit_expr(expr);
|
||
cn.result
|
||
}
|
||
|
||
/// Returns `true` if `expr` contains a return expression
|
||
pub fn contains_return<'tcx>(expr: impl Visitable<'tcx>) -> bool {
|
||
for_each_expr(expr, |e| {
|
||
if matches!(e.kind, ExprKind::Ret(..)) {
|
||
ControlFlow::Break(())
|
||
} else {
|
||
ControlFlow::Continue(())
|
||
}
|
||
})
|
||
.is_some()
|
||
}
|
||
|
||
/// Gets the parent expression, if any –- this is useful to constrain a lint.
|
||
pub fn get_parent_expr<'tcx>(cx: &LateContext<'tcx>, e: &Expr<'_>) -> Option<&'tcx Expr<'tcx>> {
|
||
get_parent_expr_for_hir(cx, e.hir_id)
|
||
}
|
||
|
||
/// This retrieves the parent for the given `HirId` if it's an expression. This is useful for
|
||
/// constraint lints
|
||
pub fn get_parent_expr_for_hir<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> {
|
||
match cx.tcx.parent_hir_node(hir_id) {
|
||
Node::Expr(parent) => Some(parent),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
/// Gets the enclosing block, if any.
|
||
pub fn get_enclosing_block<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Block<'tcx>> {
|
||
let map = &cx.tcx.hir();
|
||
let enclosing_node = map
|
||
.get_enclosing_scope(hir_id)
|
||
.map(|enclosing_id| cx.tcx.hir_node(enclosing_id));
|
||
enclosing_node.and_then(|node| match node {
|
||
Node::Block(block) => Some(block),
|
||
Node::Item(&Item {
|
||
kind: ItemKind::Fn(_, _, eid),
|
||
..
|
||
})
|
||
| Node::ImplItem(&ImplItem {
|
||
kind: ImplItemKind::Fn(_, eid),
|
||
..
|
||
}) => match cx.tcx.hir().body(eid).value.kind {
|
||
ExprKind::Block(block, _) => Some(block),
|
||
_ => None,
|
||
},
|
||
_ => None,
|
||
})
|
||
}
|
||
|
||
/// Gets the loop or closure enclosing the given expression, if any.
|
||
pub fn get_enclosing_loop_or_multi_call_closure<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
expr: &Expr<'_>,
|
||
) -> Option<&'tcx Expr<'tcx>> {
|
||
for (_, node) in cx.tcx.hir().parent_iter(expr.hir_id) {
|
||
match node {
|
||
Node::Expr(e) => match e.kind {
|
||
ExprKind::Closure { .. }
|
||
if let rustc_ty::Closure(_, subs) = cx.typeck_results().expr_ty(e).kind()
|
||
&& subs.as_closure().kind() == ClosureKind::FnOnce => {},
|
||
|
||
// Note: A closure's kind is determined by how it's used, not it's captures.
|
||
ExprKind::Closure { .. } | ExprKind::Loop(..) => return Some(e),
|
||
_ => (),
|
||
},
|
||
Node::Stmt(_) | Node::Block(_) | Node::LetStmt(_) | Node::Arm(_) => (),
|
||
_ => break,
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
/// Gets the parent node if it's an impl block.
|
||
pub fn get_parent_as_impl(tcx: TyCtxt<'_>, id: HirId) -> Option<&Impl<'_>> {
|
||
match tcx.hir().parent_iter(id).next() {
|
||
Some((
|
||
_,
|
||
Node::Item(Item {
|
||
kind: ItemKind::Impl(imp),
|
||
..
|
||
}),
|
||
)) => Some(imp),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
/// Removes blocks around an expression, only if the block contains just one expression
|
||
/// and no statements. Unsafe blocks are not removed.
|
||
///
|
||
/// Examples:
|
||
/// * `{}` -> `{}`
|
||
/// * `{ x }` -> `x`
|
||
/// * `{{ x }}` -> `x`
|
||
/// * `{ x; }` -> `{ x; }`
|
||
/// * `{ x; y }` -> `{ x; y }`
|
||
/// * `{ unsafe { x } }` -> `unsafe { x }`
|
||
pub fn peel_blocks<'a>(mut expr: &'a Expr<'a>) -> &'a Expr<'a> {
|
||
while let ExprKind::Block(
|
||
Block {
|
||
stmts: [],
|
||
expr: Some(inner),
|
||
rules: BlockCheckMode::DefaultBlock,
|
||
..
|
||
},
|
||
_,
|
||
) = expr.kind
|
||
{
|
||
expr = inner;
|
||
}
|
||
expr
|
||
}
|
||
|
||
/// Removes blocks around an expression, only if the block contains just one expression
|
||
/// or just one expression statement with a semicolon. Unsafe blocks are not removed.
|
||
///
|
||
/// Examples:
|
||
/// * `{}` -> `{}`
|
||
/// * `{ x }` -> `x`
|
||
/// * `{ x; }` -> `x`
|
||
/// * `{{ x; }}` -> `x`
|
||
/// * `{ x; y }` -> `{ x; y }`
|
||
/// * `{ unsafe { x } }` -> `unsafe { x }`
|
||
pub fn peel_blocks_with_stmt<'a>(mut expr: &'a Expr<'a>) -> &'a Expr<'a> {
|
||
while let ExprKind::Block(
|
||
Block {
|
||
stmts: [],
|
||
expr: Some(inner),
|
||
rules: BlockCheckMode::DefaultBlock,
|
||
..
|
||
}
|
||
| Block {
|
||
stmts:
|
||
[
|
||
Stmt {
|
||
kind: StmtKind::Expr(inner) | StmtKind::Semi(inner),
|
||
..
|
||
},
|
||
],
|
||
expr: None,
|
||
rules: BlockCheckMode::DefaultBlock,
|
||
..
|
||
},
|
||
_,
|
||
) = expr.kind
|
||
{
|
||
expr = inner;
|
||
}
|
||
expr
|
||
}
|
||
|
||
/// Checks if the given expression is the else clause of either an `if` or `if let` expression.
|
||
pub fn is_else_clause(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
|
||
let mut iter = tcx.hir().parent_iter(expr.hir_id);
|
||
match iter.next() {
|
||
Some((
|
||
_,
|
||
Node::Expr(Expr {
|
||
kind: ExprKind::If(_, _, Some(else_expr)),
|
||
..
|
||
}),
|
||
)) => else_expr.hir_id == expr.hir_id,
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
/// Checks if the given expression is a part of `let else`
|
||
/// returns `true` for both the `init` and the `else` part
|
||
pub fn is_inside_let_else(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
|
||
let mut child_id = expr.hir_id;
|
||
for (parent_id, node) in tcx.hir().parent_iter(child_id) {
|
||
if let Node::LetStmt(LetStmt {
|
||
init: Some(init),
|
||
els: Some(els),
|
||
..
|
||
}) = node
|
||
&& (init.hir_id == child_id || els.hir_id == child_id)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
child_id = parent_id;
|
||
}
|
||
|
||
false
|
||
}
|
||
|
||
/// Checks if the given expression is the else clause of a `let else` expression
|
||
pub fn is_else_clause_in_let_else(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
|
||
let mut child_id = expr.hir_id;
|
||
for (parent_id, node) in tcx.hir().parent_iter(child_id) {
|
||
if let Node::LetStmt(LetStmt { els: Some(els), .. }) = node
|
||
&& els.hir_id == child_id
|
||
{
|
||
return true;
|
||
}
|
||
|
||
child_id = parent_id;
|
||
}
|
||
|
||
false
|
||
}
|
||
|
||
/// Checks whether the given `Expr` is a range equivalent to a `RangeFull`.
|
||
///
|
||
/// For the lower bound, this means that:
|
||
/// - either there is none
|
||
/// - or it is the smallest value that can be represented by the range's integer type
|
||
///
|
||
/// For the upper bound, this means that:
|
||
/// - either there is none
|
||
/// - or it is the largest value that can be represented by the range's integer type and is
|
||
/// inclusive
|
||
/// - or it is a call to some container's `len` method and is exclusive, and the range is passed to
|
||
/// a method call on that same container (e.g. `v.drain(..v.len())`)
|
||
///
|
||
/// If the given `Expr` is not some kind of range, the function returns `false`.
|
||
pub fn is_range_full(cx: &LateContext<'_>, expr: &Expr<'_>, container_path: Option<&Path<'_>>) -> bool {
|
||
let ty = cx.typeck_results().expr_ty(expr);
|
||
if let Some(Range { start, end, limits }) = Range::hir(expr) {
|
||
let start_is_none_or_min = start.map_or(true, |start| {
|
||
if let rustc_ty::Adt(_, subst) = ty.kind()
|
||
&& let bnd_ty = subst.type_at(0)
|
||
&& let Some(min_val) = bnd_ty.numeric_min_val(cx.tcx)
|
||
&& let Some(min_const) = mir_to_const(cx, Const::from_ty_const(min_val, cx.tcx))
|
||
&& let Some(start_const) = constant(cx, cx.typeck_results(), start)
|
||
{
|
||
start_const == min_const
|
||
} else {
|
||
false
|
||
}
|
||
});
|
||
let end_is_none_or_max = end.map_or(true, |end| match limits {
|
||
RangeLimits::Closed => {
|
||
if let rustc_ty::Adt(_, subst) = ty.kind()
|
||
&& let bnd_ty = subst.type_at(0)
|
||
&& let Some(max_val) = bnd_ty.numeric_max_val(cx.tcx)
|
||
&& let Some(max_const) = mir_to_const(cx, Const::from_ty_const(max_val, cx.tcx))
|
||
&& let Some(end_const) = constant(cx, cx.typeck_results(), end)
|
||
{
|
||
end_const == max_const
|
||
} else {
|
||
false
|
||
}
|
||
},
|
||
RangeLimits::HalfOpen => {
|
||
if let Some(container_path) = container_path
|
||
&& let ExprKind::MethodCall(name, self_arg, [], _) = end.kind
|
||
&& name.ident.name == sym::len
|
||
&& let ExprKind::Path(QPath::Resolved(None, path)) = self_arg.kind
|
||
{
|
||
container_path.res == path.res
|
||
} else {
|
||
false
|
||
}
|
||
},
|
||
});
|
||
return start_is_none_or_min && end_is_none_or_max;
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Checks whether the given expression is a constant integer of the given value.
|
||
/// unlike `is_integer_literal`, this version does const folding
|
||
pub fn is_integer_const(cx: &LateContext<'_>, e: &Expr<'_>, value: u128) -> bool {
|
||
if is_integer_literal(e, value) {
|
||
return true;
|
||
}
|
||
let enclosing_body = cx.tcx.hir().enclosing_body_owner(e.hir_id);
|
||
if let Some(Constant::Int(v)) = constant(cx, cx.tcx.typeck(enclosing_body), e) {
|
||
return value == v;
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Checks whether the given expression is a constant literal of the given value.
|
||
pub fn is_integer_literal(expr: &Expr<'_>, value: u128) -> bool {
|
||
// FIXME: use constant folding
|
||
if let ExprKind::Lit(spanned) = expr.kind {
|
||
if let LitKind::Int(v, _) = spanned.node {
|
||
return v == value;
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Returns `true` if the given `Expr` has been coerced before.
|
||
///
|
||
/// Examples of coercions can be found in the Nomicon at
|
||
/// <https://doc.rust-lang.org/nomicon/coercions.html>.
|
||
///
|
||
/// See `rustc_middle::ty::adjustment::Adjustment` and `rustc_hir_analysis::check::coercion` for
|
||
/// more information on adjustments and coercions.
|
||
pub fn is_adjusted(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
|
||
cx.typeck_results().adjustments().get(e.hir_id).is_some()
|
||
}
|
||
|
||
/// Returns the pre-expansion span if this comes from an expansion of the
|
||
/// macro `name`.
|
||
/// See also [`is_direct_expn_of`].
|
||
#[must_use]
|
||
pub fn is_expn_of(mut span: Span, name: &str) -> Option<Span> {
|
||
loop {
|
||
if span.from_expansion() {
|
||
let data = span.ctxt().outer_expn_data();
|
||
let new_span = data.call_site;
|
||
|
||
if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
|
||
if mac_name.as_str() == name {
|
||
return Some(new_span);
|
||
}
|
||
}
|
||
|
||
span = new_span;
|
||
} else {
|
||
return None;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Returns the pre-expansion span if the span directly comes from an expansion
|
||
/// of the macro `name`.
|
||
/// The difference with [`is_expn_of`] is that in
|
||
/// ```no_run
|
||
/// # macro_rules! foo { ($name:tt!$args:tt) => { $name!$args } }
|
||
/// # macro_rules! bar { ($e:expr) => { $e } }
|
||
/// foo!(bar!(42));
|
||
/// ```
|
||
/// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only
|
||
/// from `bar!` by `is_direct_expn_of`.
|
||
#[must_use]
|
||
pub fn is_direct_expn_of(span: Span, name: &str) -> Option<Span> {
|
||
if span.from_expansion() {
|
||
let data = span.ctxt().outer_expn_data();
|
||
let new_span = data.call_site;
|
||
|
||
if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
|
||
if mac_name.as_str() == name {
|
||
return Some(new_span);
|
||
}
|
||
}
|
||
}
|
||
|
||
None
|
||
}
|
||
|
||
/// Convenience function to get the return type of a function.
|
||
pub fn return_ty<'tcx>(cx: &LateContext<'tcx>, fn_def_id: OwnerId) -> Ty<'tcx> {
|
||
let ret_ty = cx.tcx.fn_sig(fn_def_id).instantiate_identity().output();
|
||
cx.tcx.instantiate_bound_regions_with_erased(ret_ty)
|
||
}
|
||
|
||
/// Convenience function to get the nth argument type of a function.
|
||
pub fn nth_arg<'tcx>(cx: &LateContext<'tcx>, fn_def_id: OwnerId, nth: usize) -> Ty<'tcx> {
|
||
let arg = cx.tcx.fn_sig(fn_def_id).instantiate_identity().input(nth);
|
||
cx.tcx.instantiate_bound_regions_with_erased(arg)
|
||
}
|
||
|
||
/// Checks if an expression is constructing a tuple-like enum variant or struct
|
||
pub fn is_ctor_or_promotable_const_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
|
||
if let ExprKind::Call(fun, _) = expr.kind {
|
||
if let ExprKind::Path(ref qp) = fun.kind {
|
||
let res = cx.qpath_res(qp, fun.hir_id);
|
||
return match res {
|
||
Res::Def(DefKind::Variant | DefKind::Ctor(..), ..) => true,
|
||
Res::Def(_, def_id) => cx.tcx.is_promotable_const_fn(def_id),
|
||
_ => false,
|
||
};
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Returns `true` if a pattern is refutable.
|
||
// TODO: should be implemented using rustc/mir_build/thir machinery
|
||
pub fn is_refutable(cx: &LateContext<'_>, pat: &Pat<'_>) -> bool {
|
||
fn is_enum_variant(cx: &LateContext<'_>, qpath: &QPath<'_>, id: HirId) -> bool {
|
||
matches!(
|
||
cx.qpath_res(qpath, id),
|
||
Res::Def(DefKind::Variant, ..) | Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), _)
|
||
)
|
||
}
|
||
|
||
fn are_refutable<'a, I: IntoIterator<Item = &'a Pat<'a>>>(cx: &LateContext<'_>, i: I) -> bool {
|
||
i.into_iter().any(|pat| is_refutable(cx, pat))
|
||
}
|
||
|
||
match pat.kind {
|
||
PatKind::Wild | PatKind::Never => false, // If `!` typechecked then the type is empty, so not refutable.
|
||
PatKind::Binding(_, _, _, pat) => pat.map_or(false, |pat| is_refutable(cx, pat)),
|
||
PatKind::Box(pat) | PatKind::Deref(pat) | PatKind::Ref(pat, _) => is_refutable(cx, pat),
|
||
PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id),
|
||
PatKind::Or(pats) => {
|
||
// TODO: should be the honest check, that pats is exhaustive set
|
||
are_refutable(cx, pats)
|
||
},
|
||
PatKind::Tuple(pats, _) => are_refutable(cx, pats),
|
||
PatKind::Struct(ref qpath, fields, _) => {
|
||
is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, fields.iter().map(|field| field.pat))
|
||
},
|
||
PatKind::TupleStruct(ref qpath, pats, _) => is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, pats),
|
||
PatKind::Slice(head, middle, tail) => {
|
||
match &cx.typeck_results().node_type(pat.hir_id).kind() {
|
||
rustc_ty::Slice(..) => {
|
||
// [..] is the only irrefutable slice pattern.
|
||
!head.is_empty() || middle.is_none() || !tail.is_empty()
|
||
},
|
||
rustc_ty::Array(..) => are_refutable(cx, head.iter().chain(middle).chain(tail.iter())),
|
||
_ => {
|
||
// unreachable!()
|
||
true
|
||
},
|
||
}
|
||
},
|
||
PatKind::Lit(..) | PatKind::Range(..) | PatKind::Err(_) => true,
|
||
}
|
||
}
|
||
|
||
/// If the pattern is an `or` pattern, call the function once for each sub pattern. Otherwise, call
|
||
/// the function once on the given pattern.
|
||
pub fn recurse_or_patterns<'tcx, F: FnMut(&'tcx Pat<'tcx>)>(pat: &'tcx Pat<'tcx>, mut f: F) {
|
||
if let PatKind::Or(pats) = pat.kind {
|
||
pats.iter().for_each(f);
|
||
} else {
|
||
f(pat);
|
||
}
|
||
}
|
||
|
||
pub fn is_self(slf: &Param<'_>) -> bool {
|
||
if let PatKind::Binding(.., name, _) = slf.pat.kind {
|
||
name.name == kw::SelfLower
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
pub fn is_self_ty(slf: &hir::Ty<'_>) -> bool {
|
||
if let TyKind::Path(QPath::Resolved(None, path)) = slf.kind {
|
||
if let Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } = path.res {
|
||
return true;
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
pub fn iter_input_pats<'tcx>(decl: &FnDecl<'_>, body: &'tcx Body<'_>) -> impl Iterator<Item = &'tcx Param<'tcx>> {
|
||
(0..decl.inputs.len()).map(move |i| &body.params[i])
|
||
}
|
||
|
||
/// Checks if a given expression is a match expression expanded from the `?`
|
||
/// operator or the `try` macro.
|
||
pub fn is_try<'tcx>(cx: &LateContext<'_>, expr: &'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>> {
|
||
fn is_ok(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
|
||
if let PatKind::TupleStruct(ref path, pat, ddpos) = arm.pat.kind
|
||
&& ddpos.as_opt_usize().is_none()
|
||
&& is_res_lang_ctor(cx, cx.qpath_res(path, arm.pat.hir_id), ResultOk)
|
||
&& let PatKind::Binding(_, hir_id, _, None) = pat[0].kind
|
||
&& path_to_local_id(arm.body, hir_id)
|
||
{
|
||
return true;
|
||
}
|
||
false
|
||
}
|
||
|
||
fn is_err(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
|
||
if let PatKind::TupleStruct(ref path, _, _) = arm.pat.kind {
|
||
is_res_lang_ctor(cx, cx.qpath_res(path, arm.pat.hir_id), ResultErr)
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
if let ExprKind::Match(_, arms, ref source) = expr.kind {
|
||
// desugared from a `?` operator
|
||
if let MatchSource::TryDesugar(_) = *source {
|
||
return Some(expr);
|
||
}
|
||
|
||
if arms.len() == 2
|
||
&& arms[0].guard.is_none()
|
||
&& arms[1].guard.is_none()
|
||
&& ((is_ok(cx, &arms[0]) && is_err(cx, &arms[1])) || (is_ok(cx, &arms[1]) && is_err(cx, &arms[0])))
|
||
{
|
||
return Some(expr);
|
||
}
|
||
}
|
||
|
||
None
|
||
}
|
||
|
||
/// Returns `true` if the lint is `#[allow]`ed or `#[expect]`ed at any of the `ids`, fulfilling all
|
||
/// of the expectations in `ids`
|
||
///
|
||
/// This should only be used when the lint would otherwise be emitted, for a way to check if a lint
|
||
/// is allowed early to skip work see [`is_lint_allowed`]
|
||
///
|
||
/// To emit at a lint at a different context than the one current see
|
||
/// [`span_lint_hir`](diagnostics::span_lint_hir) or
|
||
/// [`span_lint_hir_and_then`](diagnostics::span_lint_hir_and_then)
|
||
pub fn fulfill_or_allowed(cx: &LateContext<'_>, lint: &'static Lint, ids: impl IntoIterator<Item = HirId>) -> bool {
|
||
let mut suppress_lint = false;
|
||
|
||
for id in ids {
|
||
let (level, _) = cx.tcx.lint_level_at_node(lint, id);
|
||
if let Some(expectation) = level.get_expectation_id() {
|
||
cx.fulfill_expectation(expectation);
|
||
}
|
||
|
||
match level {
|
||
Level::Allow | Level::Expect(_) => suppress_lint = true,
|
||
Level::Warn | Level::ForceWarn(_) | Level::Deny | Level::Forbid => {},
|
||
}
|
||
}
|
||
|
||
suppress_lint
|
||
}
|
||
|
||
/// Returns `true` if the lint is allowed in the current context. This is useful for
|
||
/// skipping long running code when it's unnecessary
|
||
///
|
||
/// This function should check the lint level for the same node, that the lint will
|
||
/// be emitted at. If the information is buffered to be emitted at a later point, please
|
||
/// make sure to use `span_lint_hir` functions to emit the lint. This ensures that
|
||
/// expectations at the checked nodes will be fulfilled.
|
||
pub fn is_lint_allowed(cx: &LateContext<'_>, lint: &'static Lint, id: HirId) -> bool {
|
||
cx.tcx.lint_level_at_node(lint, id).0 == Level::Allow
|
||
}
|
||
|
||
pub fn strip_pat_refs<'hir>(mut pat: &'hir Pat<'hir>) -> &'hir Pat<'hir> {
|
||
while let PatKind::Ref(subpat, _) = pat.kind {
|
||
pat = subpat;
|
||
}
|
||
pat
|
||
}
|
||
|
||
pub fn int_bits(tcx: TyCtxt<'_>, ity: IntTy) -> u64 {
|
||
Integer::from_int_ty(&tcx, ity).size().bits()
|
||
}
|
||
|
||
#[expect(clippy::cast_possible_wrap)]
|
||
/// Turn a constant int byte representation into an i128
|
||
pub fn sext(tcx: TyCtxt<'_>, u: u128, ity: IntTy) -> i128 {
|
||
let amt = 128 - int_bits(tcx, ity);
|
||
((u as i128) << amt) >> amt
|
||
}
|
||
|
||
#[expect(clippy::cast_sign_loss)]
|
||
/// clip unused bytes
|
||
pub fn unsext(tcx: TyCtxt<'_>, u: i128, ity: IntTy) -> u128 {
|
||
let amt = 128 - int_bits(tcx, ity);
|
||
((u as u128) << amt) >> amt
|
||
}
|
||
|
||
/// clip unused bytes
|
||
pub fn clip(tcx: TyCtxt<'_>, u: u128, ity: UintTy) -> u128 {
|
||
let bits = Integer::from_uint_ty(&tcx, ity).size().bits();
|
||
let amt = 128 - bits;
|
||
(u << amt) >> amt
|
||
}
|
||
|
||
pub fn has_attr(attrs: &[ast::Attribute], symbol: Symbol) -> bool {
|
||
attrs.iter().any(|attr| attr.has_name(symbol))
|
||
}
|
||
|
||
pub fn has_repr_attr(cx: &LateContext<'_>, hir_id: HirId) -> bool {
|
||
has_attr(cx.tcx.hir().attrs(hir_id), sym::repr)
|
||
}
|
||
|
||
pub fn any_parent_has_attr(tcx: TyCtxt<'_>, node: HirId, symbol: Symbol) -> bool {
|
||
let map = &tcx.hir();
|
||
let mut prev_enclosing_node = None;
|
||
let mut enclosing_node = node;
|
||
while Some(enclosing_node) != prev_enclosing_node {
|
||
if has_attr(map.attrs(enclosing_node), symbol) {
|
||
return true;
|
||
}
|
||
prev_enclosing_node = Some(enclosing_node);
|
||
enclosing_node = map.get_parent_item(enclosing_node).into();
|
||
}
|
||
|
||
false
|
||
}
|
||
|
||
pub fn any_parent_is_automatically_derived(tcx: TyCtxt<'_>, node: HirId) -> bool {
|
||
any_parent_has_attr(tcx, node, sym::automatically_derived)
|
||
}
|
||
|
||
/// Matches a function call with the given path and returns the arguments.
|
||
///
|
||
/// Usage:
|
||
///
|
||
/// ```rust,ignore
|
||
/// if let Some(args) = match_function_call(cx, cmp_max_call, &paths::CMP_MAX);
|
||
/// ```
|
||
/// This function is deprecated. Use [`match_function_call_with_def_id`].
|
||
pub fn match_function_call<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
expr: &'tcx Expr<'_>,
|
||
path: &[&str],
|
||
) -> Option<&'tcx [Expr<'tcx>]> {
|
||
if let ExprKind::Call(fun, args) = expr.kind
|
||
&& let ExprKind::Path(ref qpath) = fun.kind
|
||
&& let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id()
|
||
&& match_def_path(cx, fun_def_id, path)
|
||
{
|
||
return Some(args);
|
||
};
|
||
None
|
||
}
|
||
|
||
pub fn match_function_call_with_def_id<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
expr: &'tcx Expr<'_>,
|
||
fun_def_id: DefId,
|
||
) -> Option<&'tcx [Expr<'tcx>]> {
|
||
if let ExprKind::Call(fun, args) = expr.kind
|
||
&& let ExprKind::Path(ref qpath) = fun.kind
|
||
&& cx.qpath_res(qpath, fun.hir_id).opt_def_id() == Some(fun_def_id)
|
||
{
|
||
return Some(args);
|
||
};
|
||
None
|
||
}
|
||
|
||
/// Checks if the given `DefId` matches any of the paths. Returns the index of matching path, if
|
||
/// any.
|
||
///
|
||
/// Please use `tcx.get_diagnostic_name` if the targets are all diagnostic items.
|
||
pub fn match_any_def_paths(cx: &LateContext<'_>, did: DefId, paths: &[&[&str]]) -> Option<usize> {
|
||
let search_path = cx.get_def_path(did);
|
||
paths
|
||
.iter()
|
||
.position(|p| p.iter().map(|x| Symbol::intern(x)).eq(search_path.iter().copied()))
|
||
}
|
||
|
||
/// Checks if the given `DefId` matches the path.
|
||
pub fn match_def_path(cx: &LateContext<'_>, did: DefId, syms: &[&str]) -> bool {
|
||
// We should probably move to Symbols in Clippy as well rather than interning every time.
|
||
let path = cx.get_def_path(did);
|
||
syms.iter().map(|x| Symbol::intern(x)).eq(path.iter().copied())
|
||
}
|
||
|
||
/// Checks if the given `DefId` matches the `libc` item.
|
||
pub fn match_libc_symbol(cx: &LateContext<'_>, did: DefId, name: &str) -> bool {
|
||
let path = cx.get_def_path(did);
|
||
// libc is meant to be used as a flat list of names, but they're all actually defined in different
|
||
// modules based on the target platform. Ignore everything but crate name and the item name.
|
||
path.first().map_or(false, |s| s.as_str() == "libc") && path.last().map_or(false, |s| s.as_str() == name)
|
||
}
|
||
|
||
/// Returns the list of condition expressions and the list of blocks in a
|
||
/// sequence of `if/else`.
|
||
/// E.g., this returns `([a, b], [c, d, e])` for the expression
|
||
/// `if a { c } else if b { d } else { e }`.
|
||
pub fn if_sequence<'tcx>(mut expr: &'tcx Expr<'tcx>) -> (Vec<&'tcx Expr<'tcx>>, Vec<&'tcx Block<'tcx>>) {
|
||
let mut conds = Vec::new();
|
||
let mut blocks: Vec<&Block<'_>> = Vec::new();
|
||
|
||
while let Some(higher::IfOrIfLet { cond, then, r#else }) = higher::IfOrIfLet::hir(expr) {
|
||
conds.push(cond);
|
||
if let ExprKind::Block(block, _) = then.kind {
|
||
blocks.push(block);
|
||
} else {
|
||
panic!("ExprKind::If node is not an ExprKind::Block");
|
||
}
|
||
|
||
if let Some(else_expr) = r#else {
|
||
expr = else_expr;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
// final `else {..}`
|
||
if !blocks.is_empty() {
|
||
if let ExprKind::Block(block, _) = expr.kind {
|
||
blocks.push(block);
|
||
}
|
||
}
|
||
|
||
(conds, blocks)
|
||
}
|
||
|
||
/// Checks if the given function kind is an async function.
|
||
pub fn is_async_fn(kind: FnKind<'_>) -> bool {
|
||
match kind {
|
||
FnKind::ItemFn(_, _, header) => header.asyncness.is_async(),
|
||
FnKind::Method(_, sig) => sig.header.asyncness.is_async(),
|
||
FnKind::Closure => false,
|
||
}
|
||
}
|
||
|
||
/// Peels away all the compiler generated code surrounding the body of an async function,
|
||
pub fn get_async_fn_body<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'_>) -> Option<&'tcx Expr<'tcx>> {
|
||
if let ExprKind::Closure(&Closure { body, .. }) = body.value.kind {
|
||
if let ExprKind::Block(
|
||
Block {
|
||
stmts: [],
|
||
expr:
|
||
Some(Expr {
|
||
kind: ExprKind::DropTemps(expr),
|
||
..
|
||
}),
|
||
..
|
||
},
|
||
_,
|
||
) = tcx.hir().body(body).value.kind
|
||
{
|
||
return Some(expr);
|
||
}
|
||
};
|
||
None
|
||
}
|
||
|
||
// check if expr is calling method or function with #[must_use] attribute
|
||
pub fn is_must_use_func_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
|
||
let did = match expr.kind {
|
||
ExprKind::Call(path, _) => {
|
||
if let ExprKind::Path(ref qpath) = path.kind
|
||
&& let Res::Def(_, did) = cx.qpath_res(qpath, path.hir_id)
|
||
{
|
||
Some(did)
|
||
} else {
|
||
None
|
||
}
|
||
},
|
||
ExprKind::MethodCall(..) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
|
||
_ => None,
|
||
};
|
||
|
||
did.map_or(false, |did| cx.tcx.has_attr(did, sym::must_use))
|
||
}
|
||
|
||
/// Checks if a function's body represents the identity function. Looks for bodies of the form:
|
||
/// * `|x| x`
|
||
/// * `|x| return x`
|
||
/// * `|x| { return x }`
|
||
/// * `|x| { return x; }`
|
||
/// * `|(x, y)| (x, y)`
|
||
///
|
||
/// Consider calling [`is_expr_untyped_identity_function`] or [`is_expr_identity_function`] instead.
|
||
fn is_body_identity_function(cx: &LateContext<'_>, func: &Body<'_>) -> bool {
|
||
fn check_pat(cx: &LateContext<'_>, pat: &Pat<'_>, expr: &Expr<'_>) -> bool {
|
||
if cx
|
||
.typeck_results()
|
||
.pat_binding_modes()
|
||
.get(pat.hir_id)
|
||
.is_some_and(|mode| matches!(mode.0, ByRef::Yes(_)))
|
||
{
|
||
// If a tuple `(x, y)` is of type `&(i32, i32)`, then due to match ergonomics,
|
||
// the inner patterns become references. Don't consider this the identity function
|
||
// as that changes types.
|
||
return false;
|
||
}
|
||
|
||
match (pat.kind, expr.kind) {
|
||
(PatKind::Binding(_, id, _, _), _) => {
|
||
path_to_local_id(expr, id) && cx.typeck_results().expr_adjustments(expr).is_empty()
|
||
},
|
||
(PatKind::Tuple(pats, dotdot), ExprKind::Tup(tup))
|
||
if dotdot.as_opt_usize().is_none() && pats.len() == tup.len() =>
|
||
{
|
||
pats.iter().zip(tup).all(|(pat, expr)| check_pat(cx, pat, expr))
|
||
},
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
let [param] = func.params else {
|
||
return false;
|
||
};
|
||
|
||
let mut expr = func.value;
|
||
loop {
|
||
match expr.kind {
|
||
ExprKind::Block(
|
||
&Block {
|
||
stmts: [],
|
||
expr: Some(e),
|
||
..
|
||
},
|
||
_,
|
||
)
|
||
| ExprKind::Ret(Some(e)) => expr = e,
|
||
ExprKind::Block(
|
||
&Block {
|
||
stmts: [stmt],
|
||
expr: None,
|
||
..
|
||
},
|
||
_,
|
||
) => {
|
||
if let StmtKind::Semi(e) | StmtKind::Expr(e) = stmt.kind
|
||
&& let ExprKind::Ret(Some(ret_val)) = e.kind
|
||
{
|
||
expr = ret_val;
|
||
} else {
|
||
return false;
|
||
}
|
||
},
|
||
_ => return check_pat(cx, param.pat, expr),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// This is the same as [`is_expr_identity_function`], but does not consider closures
|
||
/// with type annotations for its bindings (or similar) as identity functions:
|
||
/// * `|x: u8| x`
|
||
/// * `std::convert::identity::<u8>`
|
||
pub fn is_expr_untyped_identity_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
|
||
match expr.kind {
|
||
ExprKind::Closure(&Closure { body, fn_decl, .. })
|
||
if fn_decl.inputs.iter().all(|ty| matches!(ty.kind, TyKind::Infer)) =>
|
||
{
|
||
is_body_identity_function(cx, cx.tcx.hir().body(body))
|
||
},
|
||
ExprKind::Path(QPath::Resolved(_, path))
|
||
if path.segments.iter().all(|seg| seg.infer_args)
|
||
&& let Some(did) = path.res.opt_def_id() =>
|
||
{
|
||
cx.tcx.is_diagnostic_item(sym::convert_identity, did)
|
||
},
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
/// Checks if an expression represents the identity function
|
||
/// Only examines closures and `std::convert::identity`
|
||
///
|
||
/// NOTE: If you want to use this function to find out if a closure is unnecessary, you likely want
|
||
/// to call [`is_expr_untyped_identity_function`] instead, which makes sure that the closure doesn't
|
||
/// have type annotations. This is important because removing a closure with bindings can
|
||
/// remove type information that helped type inference before, which can then lead to compile
|
||
/// errors.
|
||
pub fn is_expr_identity_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
|
||
match expr.kind {
|
||
ExprKind::Closure(&Closure { body, .. }) => is_body_identity_function(cx, cx.tcx.hir().body(body)),
|
||
_ => path_def_id(cx, expr).map_or(false, |id| cx.tcx.is_diagnostic_item(sym::convert_identity, id)),
|
||
}
|
||
}
|
||
|
||
/// Gets the node where an expression is either used, or it's type is unified with another branch.
|
||
/// Returns both the node and the `HirId` of the closest child node.
|
||
pub fn get_expr_use_or_unification_node<'tcx>(tcx: TyCtxt<'tcx>, expr: &Expr<'_>) -> Option<(Node<'tcx>, HirId)> {
|
||
let mut child_id = expr.hir_id;
|
||
let mut iter = tcx.hir().parent_iter(child_id);
|
||
loop {
|
||
match iter.next() {
|
||
None => break None,
|
||
Some((id, Node::Block(_))) => child_id = id,
|
||
Some((id, Node::Arm(arm))) if arm.body.hir_id == child_id => child_id = id,
|
||
Some((_, Node::Expr(expr))) => match expr.kind {
|
||
ExprKind::Match(_, [arm], _) if arm.hir_id == child_id => child_id = expr.hir_id,
|
||
ExprKind::Block(..) | ExprKind::DropTemps(_) => child_id = expr.hir_id,
|
||
ExprKind::If(_, then_expr, None) if then_expr.hir_id == child_id => break None,
|
||
_ => break Some((Node::Expr(expr), child_id)),
|
||
},
|
||
Some((_, node)) => break Some((node, child_id)),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Checks if the result of an expression is used, or it's type is unified with another branch.
|
||
pub fn is_expr_used_or_unified(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
|
||
!matches!(
|
||
get_expr_use_or_unification_node(tcx, expr),
|
||
None | Some((
|
||
Node::Stmt(Stmt {
|
||
kind: StmtKind::Expr(_)
|
||
| StmtKind::Semi(_)
|
||
| StmtKind::Let(LetStmt {
|
||
pat: Pat {
|
||
kind: PatKind::Wild,
|
||
..
|
||
},
|
||
..
|
||
}),
|
||
..
|
||
}),
|
||
_
|
||
))
|
||
)
|
||
}
|
||
|
||
/// Checks if the expression is the final expression returned from a block.
|
||
pub fn is_expr_final_block_expr(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
|
||
matches!(tcx.parent_hir_node(expr.hir_id), Node::Block(..))
|
||
}
|
||
|
||
pub fn std_or_core(cx: &LateContext<'_>) -> Option<&'static str> {
|
||
if !is_no_std_crate(cx) {
|
||
Some("std")
|
||
} else if !is_no_core_crate(cx) {
|
||
Some("core")
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
pub fn is_no_std_crate(cx: &LateContext<'_>) -> bool {
|
||
cx.tcx.hir().attrs(hir::CRATE_HIR_ID).iter().any(|attr| {
|
||
if let ast::AttrKind::Normal(ref normal) = attr.kind {
|
||
normal.item.path == sym::no_std
|
||
} else {
|
||
false
|
||
}
|
||
})
|
||
}
|
||
|
||
pub fn is_no_core_crate(cx: &LateContext<'_>) -> bool {
|
||
cx.tcx.hir().attrs(hir::CRATE_HIR_ID).iter().any(|attr| {
|
||
if let ast::AttrKind::Normal(ref normal) = attr.kind {
|
||
normal.item.path == sym::no_core
|
||
} else {
|
||
false
|
||
}
|
||
})
|
||
}
|
||
|
||
/// Check if parent of a hir node is a trait implementation block.
|
||
/// For example, `f` in
|
||
/// ```no_run
|
||
/// # struct S;
|
||
/// # trait Trait { fn f(); }
|
||
/// impl Trait for S {
|
||
/// fn f() {}
|
||
/// }
|
||
/// ```
|
||
pub fn is_trait_impl_item(cx: &LateContext<'_>, hir_id: HirId) -> bool {
|
||
if let Node::Item(item) = cx.tcx.parent_hir_node(hir_id) {
|
||
matches!(item.kind, ItemKind::Impl(Impl { of_trait: Some(_), .. }))
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// Check if it's even possible to satisfy the `where` clause for the item.
|
||
///
|
||
/// `trivial_bounds` feature allows functions with unsatisfiable bounds, for example:
|
||
///
|
||
/// ```ignore
|
||
/// fn foo() where i32: Iterator {
|
||
/// for _ in 2i32 {}
|
||
/// }
|
||
/// ```
|
||
pub fn fn_has_unsatisfiable_preds(cx: &LateContext<'_>, did: DefId) -> bool {
|
||
use rustc_trait_selection::traits;
|
||
let predicates = cx
|
||
.tcx
|
||
.predicates_of(did)
|
||
.predicates
|
||
.iter()
|
||
.filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
|
||
traits::impossible_predicates(cx.tcx, traits::elaborate(cx.tcx, predicates).collect::<Vec<_>>())
|
||
}
|
||
|
||
/// Returns the `DefId` of the callee if the given expression is a function or method call.
|
||
pub fn fn_def_id(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<DefId> {
|
||
fn_def_id_with_node_args(cx, expr).map(|(did, _)| did)
|
||
}
|
||
|
||
/// Returns the `DefId` of the callee if the given expression is a function or method call,
|
||
/// as well as its node args.
|
||
pub fn fn_def_id_with_node_args<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
expr: &Expr<'_>,
|
||
) -> Option<(DefId, GenericArgsRef<'tcx>)> {
|
||
let typeck = cx.typeck_results();
|
||
match &expr.kind {
|
||
ExprKind::MethodCall(..) => Some((
|
||
typeck.type_dependent_def_id(expr.hir_id)?,
|
||
typeck.node_args(expr.hir_id),
|
||
)),
|
||
ExprKind::Call(
|
||
Expr {
|
||
kind: ExprKind::Path(qpath),
|
||
hir_id: path_hir_id,
|
||
..
|
||
},
|
||
..,
|
||
) => {
|
||
// Only return Fn-like DefIds, not the DefIds of statics/consts/etc that contain or
|
||
// deref to fn pointers, dyn Fn, impl Fn - #8850
|
||
if let Res::Def(DefKind::Fn | DefKind::Ctor(..) | DefKind::AssocFn, id) =
|
||
typeck.qpath_res(qpath, *path_hir_id)
|
||
{
|
||
Some((id, typeck.node_args(*path_hir_id)))
|
||
} else {
|
||
None
|
||
}
|
||
},
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
/// Returns `Option<String>` where String is a textual representation of the type encapsulated in
|
||
/// the slice iff the given expression is a slice of primitives (as defined in the
|
||
/// `is_recursively_primitive_type` function) and `None` otherwise.
|
||
pub fn is_slice_of_primitives(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<String> {
|
||
let expr_type = cx.typeck_results().expr_ty_adjusted(expr);
|
||
let expr_kind = expr_type.kind();
|
||
let is_primitive = match expr_kind {
|
||
rustc_ty::Slice(element_type) => is_recursively_primitive_type(*element_type),
|
||
rustc_ty::Ref(_, inner_ty, _) if matches!(inner_ty.kind(), &rustc_ty::Slice(_)) => {
|
||
if let rustc_ty::Slice(element_type) = inner_ty.kind() {
|
||
is_recursively_primitive_type(*element_type)
|
||
} else {
|
||
unreachable!()
|
||
}
|
||
},
|
||
_ => false,
|
||
};
|
||
|
||
if is_primitive {
|
||
// if we have wrappers like Array, Slice or Tuple, print these
|
||
// and get the type enclosed in the slice ref
|
||
match expr_type.peel_refs().walk().nth(1).unwrap().expect_ty().kind() {
|
||
rustc_ty::Slice(..) => return Some("slice".into()),
|
||
rustc_ty::Array(..) => return Some("array".into()),
|
||
rustc_ty::Tuple(..) => return Some("tuple".into()),
|
||
_ => {
|
||
// is_recursively_primitive_type() should have taken care
|
||
// of the rest and we can rely on the type that is found
|
||
let refs_peeled = expr_type.peel_refs();
|
||
return Some(refs_peeled.walk().last().unwrap().to_string());
|
||
},
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
/// Returns list of all pairs `(a, b)` where `eq(a, b) == true`
|
||
/// and `a` is before `b` in `exprs` for all `a` and `b` in
|
||
/// `exprs`
|
||
///
|
||
/// Given functions `eq` and `hash` such that `eq(a, b) == true`
|
||
/// implies `hash(a) == hash(b)`
|
||
pub fn search_same<T, Hash, Eq>(exprs: &[T], mut hash: Hash, mut eq: Eq) -> Vec<(&T, &T)>
|
||
where
|
||
Hash: FnMut(&T) -> u64,
|
||
Eq: FnMut(&T, &T) -> bool,
|
||
{
|
||
match exprs {
|
||
[a, b] if eq(a, b) => return vec![(a, b)],
|
||
_ if exprs.len() <= 2 => return vec![],
|
||
_ => {},
|
||
}
|
||
|
||
let mut match_expr_list: Vec<(&T, &T)> = Vec::new();
|
||
|
||
let mut map: UnhashMap<u64, Vec<&_>> =
|
||
UnhashMap::with_capacity_and_hasher(exprs.len(), BuildHasherDefault::default());
|
||
|
||
for expr in exprs {
|
||
match map.entry(hash(expr)) {
|
||
Entry::Occupied(mut o) => {
|
||
for o in o.get() {
|
||
if eq(o, expr) {
|
||
match_expr_list.push((o, expr));
|
||
}
|
||
}
|
||
o.get_mut().push(expr);
|
||
},
|
||
Entry::Vacant(v) => {
|
||
v.insert(vec![expr]);
|
||
},
|
||
}
|
||
}
|
||
|
||
match_expr_list
|
||
}
|
||
|
||
/// Peels off all references on the pattern. Returns the underlying pattern and the number of
|
||
/// references removed.
|
||
pub fn peel_hir_pat_refs<'a>(pat: &'a Pat<'a>) -> (&'a Pat<'a>, usize) {
|
||
fn peel<'a>(pat: &'a Pat<'a>, count: usize) -> (&'a Pat<'a>, usize) {
|
||
if let PatKind::Ref(pat, _) = pat.kind {
|
||
peel(pat, count + 1)
|
||
} else {
|
||
(pat, count)
|
||
}
|
||
}
|
||
peel(pat, 0)
|
||
}
|
||
|
||
/// Peels of expressions while the given closure returns `Some`.
|
||
pub fn peel_hir_expr_while<'tcx>(
|
||
mut expr: &'tcx Expr<'tcx>,
|
||
mut f: impl FnMut(&'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>>,
|
||
) -> &'tcx Expr<'tcx> {
|
||
while let Some(e) = f(expr) {
|
||
expr = e;
|
||
}
|
||
expr
|
||
}
|
||
|
||
/// Peels off up to the given number of references on the expression. Returns the underlying
|
||
/// expression and the number of references removed.
|
||
pub fn peel_n_hir_expr_refs<'a>(expr: &'a Expr<'a>, count: usize) -> (&'a Expr<'a>, usize) {
|
||
let mut remaining = count;
|
||
let e = peel_hir_expr_while(expr, |e| match e.kind {
|
||
ExprKind::AddrOf(ast::BorrowKind::Ref, _, e) if remaining != 0 => {
|
||
remaining -= 1;
|
||
Some(e)
|
||
},
|
||
_ => None,
|
||
});
|
||
(e, count - remaining)
|
||
}
|
||
|
||
/// Peels off all unary operators of an expression. Returns the underlying expression and the number
|
||
/// of operators removed.
|
||
pub fn peel_hir_expr_unary<'a>(expr: &'a Expr<'a>) -> (&'a Expr<'a>, usize) {
|
||
let mut count: usize = 0;
|
||
let mut curr_expr = expr;
|
||
while let ExprKind::Unary(_, local_expr) = curr_expr.kind {
|
||
count = count.wrapping_add(1);
|
||
curr_expr = local_expr;
|
||
}
|
||
(curr_expr, count)
|
||
}
|
||
|
||
/// Peels off all references on the expression. Returns the underlying expression and the number of
|
||
/// references removed.
|
||
pub fn peel_hir_expr_refs<'a>(expr: &'a Expr<'a>) -> (&'a Expr<'a>, usize) {
|
||
let mut count = 0;
|
||
let e = peel_hir_expr_while(expr, |e| match e.kind {
|
||
ExprKind::AddrOf(ast::BorrowKind::Ref, _, e) => {
|
||
count += 1;
|
||
Some(e)
|
||
},
|
||
_ => None,
|
||
});
|
||
(e, count)
|
||
}
|
||
|
||
/// Peels off all references on the type. Returns the underlying type and the number of references
|
||
/// removed.
|
||
pub fn peel_hir_ty_refs<'a>(mut ty: &'a hir::Ty<'a>) -> (&'a hir::Ty<'a>, usize) {
|
||
let mut count = 0;
|
||
loop {
|
||
match &ty.kind {
|
||
TyKind::Ref(_, ref_ty) => {
|
||
ty = ref_ty.ty;
|
||
count += 1;
|
||
},
|
||
_ => break (ty, count),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Removes `AddrOf` operators (`&`) or deref operators (`*`), but only if a reference type is
|
||
/// dereferenced. An overloaded deref such as `Vec` to slice would not be removed.
|
||
pub fn peel_ref_operators<'hir>(cx: &LateContext<'_>, mut expr: &'hir Expr<'hir>) -> &'hir Expr<'hir> {
|
||
loop {
|
||
match expr.kind {
|
||
ExprKind::AddrOf(_, _, e) => expr = e,
|
||
ExprKind::Unary(UnOp::Deref, e) if cx.typeck_results().expr_ty(e).is_ref() => expr = e,
|
||
_ => break,
|
||
}
|
||
}
|
||
expr
|
||
}
|
||
|
||
pub fn is_hir_ty_cfg_dependant(cx: &LateContext<'_>, ty: &hir::Ty<'_>) -> bool {
|
||
if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind {
|
||
if let Res::Def(_, def_id) = path.res {
|
||
return cx.tcx.has_attr(def_id, sym::cfg) || cx.tcx.has_attr(def_id, sym::cfg_attr);
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
static TEST_ITEM_NAMES_CACHE: OnceLock<Mutex<FxHashMap<LocalModDefId, Vec<Symbol>>>> = OnceLock::new();
|
||
|
||
fn with_test_item_names(tcx: TyCtxt<'_>, module: LocalModDefId, f: impl Fn(&[Symbol]) -> bool) -> bool {
|
||
let cache = TEST_ITEM_NAMES_CACHE.get_or_init(|| Mutex::new(FxHashMap::default()));
|
||
let mut map: MutexGuard<'_, FxHashMap<LocalModDefId, Vec<Symbol>>> = cache.lock().unwrap();
|
||
let value = map.entry(module);
|
||
match value {
|
||
Entry::Occupied(entry) => f(entry.get()),
|
||
Entry::Vacant(entry) => {
|
||
let mut names = Vec::new();
|
||
for id in tcx.hir().module_items(module) {
|
||
if matches!(tcx.def_kind(id.owner_id), DefKind::Const)
|
||
&& let item = tcx.hir().item(id)
|
||
&& let ItemKind::Const(ty, _generics, _body) = item.kind
|
||
{
|
||
if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind {
|
||
// We could also check for the type name `test::TestDescAndFn`
|
||
if let Res::Def(DefKind::Struct, _) = path.res {
|
||
let has_test_marker = tcx
|
||
.hir()
|
||
.attrs(item.hir_id())
|
||
.iter()
|
||
.any(|a| a.has_name(sym::rustc_test_marker));
|
||
if has_test_marker {
|
||
names.push(item.ident.name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
names.sort_unstable();
|
||
f(entry.insert(names))
|
||
},
|
||
}
|
||
}
|
||
|
||
/// Checks if the function containing the given `HirId` is a `#[test]` function
|
||
///
|
||
/// Note: Add `//@compile-flags: --test` to UI tests with a `#[test]` function
|
||
pub fn is_in_test_function(tcx: TyCtxt<'_>, id: HirId) -> bool {
|
||
with_test_item_names(tcx, tcx.parent_module(id), |names| {
|
||
let node = tcx.hir_node(id);
|
||
once((id, node))
|
||
.chain(tcx.hir().parent_iter(id))
|
||
// Since you can nest functions we need to collect all until we leave
|
||
// function scope
|
||
.any(|(_id, node)| {
|
||
if let Node::Item(item) = node {
|
||
if let ItemKind::Fn(_, _, _) = item.kind {
|
||
// Note that we have sorted the item names in the visitor,
|
||
// so the binary_search gets the same as `contains`, but faster.
|
||
return names.binary_search(&item.ident.name).is_ok();
|
||
}
|
||
}
|
||
false
|
||
})
|
||
})
|
||
}
|
||
|
||
/// Checks if `id` has a `#[cfg(test)]` attribute applied
|
||
///
|
||
/// This only checks directly applied attributes, to see if a node is inside a `#[cfg(test)]` parent
|
||
/// use [`is_in_cfg_test`]
|
||
pub fn is_cfg_test(tcx: TyCtxt<'_>, id: HirId) -> bool {
|
||
tcx.hir().attrs(id).iter().any(|attr| {
|
||
if attr.has_name(sym::cfg)
|
||
&& let Some(items) = attr.meta_item_list()
|
||
&& let [item] = &*items
|
||
&& item.has_name(sym::test)
|
||
{
|
||
true
|
||
} else {
|
||
false
|
||
}
|
||
})
|
||
}
|
||
|
||
/// Checks if any parent node of `HirId` has `#[cfg(test)]` attribute applied
|
||
pub fn is_in_cfg_test(tcx: TyCtxt<'_>, id: HirId) -> bool {
|
||
tcx.hir()
|
||
.parent_id_iter(id)
|
||
.any(|parent_id| is_cfg_test(tcx, parent_id))
|
||
}
|
||
|
||
/// Checks if the node is in a `#[test]` function or has any parent node marked `#[cfg(test)]`
|
||
pub fn is_in_test(tcx: TyCtxt<'_>, hir_id: HirId) -> bool {
|
||
is_in_test_function(tcx, hir_id) || is_in_cfg_test(tcx, hir_id)
|
||
}
|
||
|
||
/// Checks if the item of any of its parents has `#[cfg(...)]` attribute applied.
|
||
pub fn inherits_cfg(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
|
||
let hir = tcx.hir();
|
||
|
||
tcx.has_attr(def_id, sym::cfg)
|
||
|| hir
|
||
.parent_iter(tcx.local_def_id_to_hir_id(def_id))
|
||
.flat_map(|(parent_id, _)| hir.attrs(parent_id))
|
||
.any(|attr| attr.has_name(sym::cfg))
|
||
}
|
||
|
||
/// Checks whether item either has `test` attribute applied, or
|
||
/// is a module with `test` in its name.
|
||
///
|
||
/// Note: Add `//@compile-flags: --test` to UI tests with a `#[test]` function
|
||
pub fn is_test_module_or_function(tcx: TyCtxt<'_>, item: &Item<'_>) -> bool {
|
||
is_in_test_function(tcx, item.hir_id())
|
||
|| matches!(item.kind, ItemKind::Mod(..))
|
||
&& item.ident.name.as_str().split('_').any(|a| a == "test" || a == "tests")
|
||
}
|
||
|
||
/// Walks up the HIR tree from the given expression in an attempt to find where the value is
|
||
/// consumed.
|
||
///
|
||
/// Termination has three conditions:
|
||
/// - The given function returns `Break`. This function will return the value.
|
||
/// - The consuming node is found. This function will return `Continue(use_node, child_id)`.
|
||
/// - No further parent nodes are found. This will trigger a debug assert or return `None`.
|
||
///
|
||
/// This allows walking through `if`, `match`, `break`, and block expressions to find where the
|
||
/// value produced by the expression is consumed.
|
||
pub fn walk_to_expr_usage<'tcx, T>(
|
||
cx: &LateContext<'tcx>,
|
||
e: &Expr<'tcx>,
|
||
mut f: impl FnMut(HirId, Node<'tcx>, HirId) -> ControlFlow<T>,
|
||
) -> Option<ControlFlow<T, (Node<'tcx>, HirId)>> {
|
||
let map = cx.tcx.hir();
|
||
let mut iter = map.parent_iter(e.hir_id);
|
||
let mut child_id = e.hir_id;
|
||
|
||
while let Some((parent_id, parent)) = iter.next() {
|
||
if let ControlFlow::Break(x) = f(parent_id, parent, child_id) {
|
||
return Some(ControlFlow::Break(x));
|
||
}
|
||
let parent_expr = match parent {
|
||
Node::Expr(e) => e,
|
||
Node::Block(Block { expr: Some(body), .. }) | Node::Arm(Arm { body, .. }) if body.hir_id == child_id => {
|
||
child_id = parent_id;
|
||
continue;
|
||
},
|
||
Node::Arm(a) if a.body.hir_id == child_id => {
|
||
child_id = parent_id;
|
||
continue;
|
||
},
|
||
_ => return Some(ControlFlow::Continue((parent, child_id))),
|
||
};
|
||
match parent_expr.kind {
|
||
ExprKind::If(child, ..) | ExprKind::Match(child, ..) if child.hir_id != child_id => child_id = parent_id,
|
||
ExprKind::Break(Destination { target_id: Ok(id), .. }, _) => {
|
||
child_id = id;
|
||
iter = map.parent_iter(id);
|
||
},
|
||
ExprKind::Block(..) | ExprKind::DropTemps(_) => child_id = parent_id,
|
||
_ => return Some(ControlFlow::Continue((parent, child_id))),
|
||
}
|
||
}
|
||
debug_assert!(false, "no parent node found for `{child_id:?}`");
|
||
None
|
||
}
|
||
|
||
/// A type definition as it would be viewed from within a function.
|
||
#[derive(Clone, Copy)]
|
||
pub enum DefinedTy<'tcx> {
|
||
// Used for locals and closures defined within the function.
|
||
Hir(&'tcx hir::Ty<'tcx>),
|
||
/// Used for function signatures, and constant and static values. This includes the `ParamEnv`
|
||
/// from the definition site.
|
||
Mir(ParamEnvAnd<'tcx, Binder<'tcx, Ty<'tcx>>>),
|
||
}
|
||
|
||
/// The context an expressions value is used in.
|
||
pub struct ExprUseCtxt<'tcx> {
|
||
/// The parent node which consumes the value.
|
||
pub node: ExprUseNode<'tcx>,
|
||
/// Any adjustments applied to the type.
|
||
pub adjustments: &'tcx [Adjustment<'tcx>],
|
||
/// Whether or not the type must unify with another code path.
|
||
pub is_ty_unified: bool,
|
||
/// Whether or not the value will be moved before it's used.
|
||
pub moved_before_use: bool,
|
||
}
|
||
|
||
/// The node which consumes a value.
|
||
pub enum ExprUseNode<'tcx> {
|
||
/// Assignment to, or initializer for, a local
|
||
LetStmt(&'tcx LetStmt<'tcx>),
|
||
/// Initializer for a const or static item.
|
||
ConstStatic(OwnerId),
|
||
/// Implicit or explicit return from a function.
|
||
Return(OwnerId),
|
||
/// Initialization of a struct field.
|
||
Field(&'tcx ExprField<'tcx>),
|
||
/// An argument to a function.
|
||
FnArg(&'tcx Expr<'tcx>, usize),
|
||
/// An argument to a method.
|
||
MethodArg(HirId, Option<&'tcx GenericArgs<'tcx>>, usize),
|
||
/// The callee of a function call.
|
||
Callee,
|
||
/// Access of a field.
|
||
FieldAccess(Ident),
|
||
Expr,
|
||
Other,
|
||
}
|
||
impl<'tcx> ExprUseNode<'tcx> {
|
||
/// Checks if the value is returned from the function.
|
||
pub fn is_return(&self) -> bool {
|
||
matches!(self, Self::Return(_))
|
||
}
|
||
|
||
/// Checks if the value is used as a method call receiver.
|
||
pub fn is_recv(&self) -> bool {
|
||
matches!(self, Self::MethodArg(_, _, 0))
|
||
}
|
||
|
||
/// Gets the needed type as it's defined without any type inference.
|
||
pub fn defined_ty(&self, cx: &LateContext<'tcx>) -> Option<DefinedTy<'tcx>> {
|
||
match *self {
|
||
Self::LetStmt(LetStmt { ty: Some(ty), .. }) => Some(DefinedTy::Hir(ty)),
|
||
Self::ConstStatic(id) => Some(DefinedTy::Mir(
|
||
cx.param_env
|
||
.and(Binder::dummy(cx.tcx.type_of(id).instantiate_identity())),
|
||
)),
|
||
Self::Return(id) => {
|
||
if let Node::Expr(Expr {
|
||
kind: ExprKind::Closure(c),
|
||
..
|
||
}) = cx.tcx.hir_node_by_def_id(id.def_id)
|
||
{
|
||
match c.fn_decl.output {
|
||
FnRetTy::DefaultReturn(_) => None,
|
||
FnRetTy::Return(ty) => Some(DefinedTy::Hir(ty)),
|
||
}
|
||
} else {
|
||
Some(DefinedTy::Mir(
|
||
cx.param_env.and(cx.tcx.fn_sig(id).instantiate_identity().output()),
|
||
))
|
||
}
|
||
},
|
||
Self::Field(field) => match get_parent_expr_for_hir(cx, field.hir_id) {
|
||
Some(Expr {
|
||
hir_id,
|
||
kind: ExprKind::Struct(path, ..),
|
||
..
|
||
}) => adt_and_variant_of_res(cx, cx.qpath_res(path, *hir_id))
|
||
.and_then(|(adt, variant)| {
|
||
variant
|
||
.fields
|
||
.iter()
|
||
.find(|f| f.name == field.ident.name)
|
||
.map(|f| (adt, f))
|
||
})
|
||
.map(|(adt, field_def)| {
|
||
DefinedTy::Mir(
|
||
cx.tcx
|
||
.param_env(adt.did())
|
||
.and(Binder::dummy(cx.tcx.type_of(field_def.did).instantiate_identity())),
|
||
)
|
||
}),
|
||
_ => None,
|
||
},
|
||
Self::FnArg(callee, i) => {
|
||
let sig = expr_sig(cx, callee)?;
|
||
let (hir_ty, ty) = sig.input_with_hir(i)?;
|
||
Some(match hir_ty {
|
||
Some(hir_ty) => DefinedTy::Hir(hir_ty),
|
||
None => DefinedTy::Mir(
|
||
sig.predicates_id()
|
||
.map_or(ParamEnv::empty(), |id| cx.tcx.param_env(id))
|
||
.and(ty),
|
||
),
|
||
})
|
||
},
|
||
Self::MethodArg(id, _, i) => {
|
||
let id = cx.typeck_results().type_dependent_def_id(id)?;
|
||
let sig = cx.tcx.fn_sig(id).skip_binder();
|
||
Some(DefinedTy::Mir(cx.tcx.param_env(id).and(sig.input(i))))
|
||
},
|
||
Self::LetStmt(_) | Self::FieldAccess(..) | Self::Callee | Self::Expr | Self::Other => None,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Gets the context an expression's value is used in.
|
||
pub fn expr_use_ctxt<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>) -> Option<ExprUseCtxt<'tcx>> {
|
||
let mut adjustments = [].as_slice();
|
||
let mut is_ty_unified = false;
|
||
let mut moved_before_use = false;
|
||
let ctxt = e.span.ctxt();
|
||
walk_to_expr_usage(cx, e, &mut |parent_id, parent, child_id| {
|
||
if adjustments.is_empty()
|
||
&& let Node::Expr(e) = cx.tcx.hir_node(child_id)
|
||
{
|
||
adjustments = cx.typeck_results().expr_adjustments(e);
|
||
}
|
||
if cx.tcx.hir().span(parent_id).ctxt() != ctxt {
|
||
return ControlFlow::Break(());
|
||
}
|
||
if let Node::Expr(e) = parent {
|
||
match e.kind {
|
||
ExprKind::If(e, _, _) | ExprKind::Match(e, _, _) if e.hir_id != child_id => {
|
||
is_ty_unified = true;
|
||
moved_before_use = true;
|
||
},
|
||
ExprKind::Block(_, Some(_)) | ExprKind::Break(..) => {
|
||
is_ty_unified = true;
|
||
moved_before_use = true;
|
||
},
|
||
ExprKind::Block(..) => moved_before_use = true,
|
||
_ => {},
|
||
}
|
||
}
|
||
ControlFlow::Continue(())
|
||
})?
|
||
.continue_value()
|
||
.map(|(use_node, child_id)| {
|
||
let node = match use_node {
|
||
Node::LetStmt(l) => ExprUseNode::LetStmt(l),
|
||
Node::ExprField(field) => ExprUseNode::Field(field),
|
||
|
||
Node::Item(&Item {
|
||
kind: ItemKind::Static(..) | ItemKind::Const(..),
|
||
owner_id,
|
||
..
|
||
})
|
||
| Node::TraitItem(&TraitItem {
|
||
kind: TraitItemKind::Const(..),
|
||
owner_id,
|
||
..
|
||
})
|
||
| Node::ImplItem(&ImplItem {
|
||
kind: ImplItemKind::Const(..),
|
||
owner_id,
|
||
..
|
||
}) => ExprUseNode::ConstStatic(owner_id),
|
||
|
||
Node::Item(&Item {
|
||
kind: ItemKind::Fn(..),
|
||
owner_id,
|
||
..
|
||
})
|
||
| Node::TraitItem(&TraitItem {
|
||
kind: TraitItemKind::Fn(..),
|
||
owner_id,
|
||
..
|
||
})
|
||
| Node::ImplItem(&ImplItem {
|
||
kind: ImplItemKind::Fn(..),
|
||
owner_id,
|
||
..
|
||
}) => ExprUseNode::Return(owner_id),
|
||
|
||
Node::Expr(use_expr) => match use_expr.kind {
|
||
ExprKind::Ret(_) => ExprUseNode::Return(OwnerId {
|
||
def_id: cx.tcx.hir().body_owner_def_id(cx.enclosing_body.unwrap()),
|
||
}),
|
||
ExprKind::Closure(closure) => ExprUseNode::Return(OwnerId { def_id: closure.def_id }),
|
||
ExprKind::Call(func, args) => match args.iter().position(|arg| arg.hir_id == child_id) {
|
||
Some(i) => ExprUseNode::FnArg(func, i),
|
||
None => ExprUseNode::Callee,
|
||
},
|
||
ExprKind::MethodCall(name, _, args, _) => ExprUseNode::MethodArg(
|
||
use_expr.hir_id,
|
||
name.args,
|
||
args.iter().position(|arg| arg.hir_id == child_id).map_or(0, |i| i + 1),
|
||
),
|
||
ExprKind::Field(child, name) if child.hir_id == e.hir_id => ExprUseNode::FieldAccess(name),
|
||
_ => ExprUseNode::Expr,
|
||
},
|
||
_ => ExprUseNode::Other,
|
||
};
|
||
ExprUseCtxt {
|
||
node,
|
||
adjustments,
|
||
is_ty_unified,
|
||
moved_before_use,
|
||
}
|
||
})
|
||
}
|
||
|
||
/// Tokenizes the input while keeping the text associated with each token.
|
||
pub fn tokenize_with_text(s: &str) -> impl Iterator<Item = (TokenKind, &str)> {
|
||
let mut pos = 0;
|
||
tokenize(s).map(move |t| {
|
||
let end = pos + t.len;
|
||
let range = pos as usize..end as usize;
|
||
pos = end;
|
||
(t.kind, s.get(range).unwrap_or_default())
|
||
})
|
||
}
|
||
|
||
/// Checks whether a given span has any comment token
|
||
/// This checks for all types of comment: line "//", block "/**", doc "///" "//!"
|
||
pub fn span_contains_comment(sm: &SourceMap, span: Span) -> bool {
|
||
let Ok(snippet) = sm.span_to_snippet(span) else {
|
||
return false;
|
||
};
|
||
return tokenize(&snippet).any(|token| {
|
||
matches!(
|
||
token.kind,
|
||
TokenKind::BlockComment { .. } | TokenKind::LineComment { .. }
|
||
)
|
||
});
|
||
}
|
||
|
||
/// Returns all the comments a given span contains
|
||
///
|
||
/// Comments are returned wrapped with their relevant delimiters
|
||
pub fn span_extract_comment(sm: &SourceMap, span: Span) -> String {
|
||
let snippet = sm.span_to_snippet(span).unwrap_or_default();
|
||
let res = tokenize_with_text(&snippet)
|
||
.filter(|(t, _)| matches!(t, TokenKind::BlockComment { .. } | TokenKind::LineComment { .. }))
|
||
.map(|(_, s)| s)
|
||
.join("\n");
|
||
res
|
||
}
|
||
|
||
pub fn span_find_starting_semi(sm: &SourceMap, span: Span) -> Span {
|
||
sm.span_take_while(span, |&ch| ch == ' ' || ch == ';')
|
||
}
|
||
|
||
/// Returns whether the given let pattern and else body can be turned into a question mark
|
||
///
|
||
/// For this example:
|
||
/// ```ignore
|
||
/// let FooBar { a, b } = if let Some(a) = ex { a } else { return None };
|
||
/// ```
|
||
/// We get as parameters:
|
||
/// ```ignore
|
||
/// pat: Some(a)
|
||
/// else_body: return None
|
||
/// ```
|
||
|
||
/// And for this example:
|
||
/// ```ignore
|
||
/// let Some(FooBar { a, b }) = ex else { return None };
|
||
/// ```
|
||
/// We get as parameters:
|
||
/// ```ignore
|
||
/// pat: Some(FooBar { a, b })
|
||
/// else_body: return None
|
||
/// ```
|
||
|
||
/// We output `Some(a)` in the first instance, and `Some(FooBar { a, b })` in the second, because
|
||
/// the question mark operator is applicable here. Callers have to check whether we are in a
|
||
/// constant or not.
|
||
pub fn pat_and_expr_can_be_question_mark<'a, 'hir>(
|
||
cx: &LateContext<'_>,
|
||
pat: &'a Pat<'hir>,
|
||
else_body: &Expr<'_>,
|
||
) -> Option<&'a Pat<'hir>> {
|
||
if let PatKind::TupleStruct(pat_path, [inner_pat], _) = pat.kind
|
||
&& is_res_lang_ctor(cx, cx.qpath_res(&pat_path, pat.hir_id), OptionSome)
|
||
&& !is_refutable(cx, inner_pat)
|
||
&& let else_body = peel_blocks(else_body)
|
||
&& let ExprKind::Ret(Some(ret_val)) = else_body.kind
|
||
&& let ExprKind::Path(ret_path) = ret_val.kind
|
||
&& is_res_lang_ctor(cx, cx.qpath_res(&ret_path, ret_val.hir_id), OptionNone)
|
||
{
|
||
Some(inner_pat)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
macro_rules! op_utils {
|
||
($($name:ident $assign:ident)*) => {
|
||
/// Binary operation traits like `LangItem::Add`
|
||
pub static BINOP_TRAITS: &[LangItem] = &[$(LangItem::$name,)*];
|
||
|
||
/// Operator-Assign traits like `LangItem::AddAssign`
|
||
pub static OP_ASSIGN_TRAITS: &[LangItem] = &[$(LangItem::$assign,)*];
|
||
|
||
/// Converts `BinOpKind::Add` to `(LangItem::Add, LangItem::AddAssign)`, for example
|
||
pub fn binop_traits(kind: hir::BinOpKind) -> Option<(LangItem, LangItem)> {
|
||
match kind {
|
||
$(hir::BinOpKind::$name => Some((LangItem::$name, LangItem::$assign)),)*
|
||
_ => None,
|
||
}
|
||
}
|
||
};
|
||
}
|
||
|
||
op_utils! {
|
||
Add AddAssign
|
||
Sub SubAssign
|
||
Mul MulAssign
|
||
Div DivAssign
|
||
Rem RemAssign
|
||
BitXor BitXorAssign
|
||
BitAnd BitAndAssign
|
||
BitOr BitOrAssign
|
||
Shl ShlAssign
|
||
Shr ShrAssign
|
||
}
|
||
|
||
/// Returns `true` if the pattern is a `PatWild`, or is an ident prefixed with `_`
|
||
/// that is not locally used.
|
||
pub fn pat_is_wild<'tcx>(cx: &LateContext<'tcx>, pat: &'tcx PatKind<'_>, body: impl Visitable<'tcx>) -> bool {
|
||
match *pat {
|
||
PatKind::Wild => true,
|
||
PatKind::Binding(_, id, ident, None) if ident.as_str().starts_with('_') => {
|
||
!visitors::is_local_used(cx, body, id)
|
||
},
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
#[derive(Clone, Copy)]
|
||
pub enum RequiresSemi {
|
||
Yes,
|
||
No,
|
||
}
|
||
impl RequiresSemi {
|
||
pub fn requires_semi(self) -> bool {
|
||
matches!(self, Self::Yes)
|
||
}
|
||
}
|
||
|
||
/// Check if the expression return `!`, a type coerced from `!`, or could return `!` if the final
|
||
/// expression were turned into a statement.
|
||
#[expect(clippy::too_many_lines)]
|
||
pub fn is_never_expr<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> Option<RequiresSemi> {
|
||
struct BreakTarget {
|
||
id: HirId,
|
||
unused: bool,
|
||
}
|
||
|
||
struct V<'cx, 'tcx> {
|
||
cx: &'cx LateContext<'tcx>,
|
||
break_targets: Vec<BreakTarget>,
|
||
break_targets_for_result_ty: u32,
|
||
in_final_expr: bool,
|
||
requires_semi: bool,
|
||
is_never: bool,
|
||
}
|
||
|
||
impl<'tcx> V<'_, 'tcx> {
|
||
fn push_break_target(&mut self, id: HirId) {
|
||
self.break_targets.push(BreakTarget { id, unused: true });
|
||
self.break_targets_for_result_ty += u32::from(self.in_final_expr);
|
||
}
|
||
}
|
||
|
||
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
|
||
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
|
||
// Note: Part of the complexity here comes from the fact that
|
||
// coercions are applied to the innermost expression.
|
||
// e.g. In `let x: u32 = { break () };` the never-to-any coercion
|
||
// is applied to the break expression. This means we can't just
|
||
// check the block's type as it will be `u32` despite the fact
|
||
// that the block always diverges.
|
||
|
||
// The rest of the complexity comes from checking blocks which
|
||
// syntactically return a value, but will always diverge before
|
||
// reaching that point.
|
||
// e.g. In `let x = { foo(panic!()) };` the block's type will be the
|
||
// return type of `foo` even though it will never actually run. This
|
||
// can be trivially fixed by adding a semicolon after the call, but
|
||
// we must first detect that a semicolon is needed to make that
|
||
// suggestion.
|
||
|
||
if self.is_never && self.break_targets.is_empty() {
|
||
if self.in_final_expr && !self.requires_semi {
|
||
// This expression won't ever run, but we still need to check
|
||
// if it can affect the type of the final expression.
|
||
match e.kind {
|
||
ExprKind::DropTemps(e) => self.visit_expr(e),
|
||
ExprKind::If(_, then, Some(else_)) => {
|
||
self.visit_expr(then);
|
||
self.visit_expr(else_);
|
||
},
|
||
ExprKind::Match(_, arms, _) => {
|
||
for arm in arms {
|
||
self.visit_expr(arm.body);
|
||
}
|
||
},
|
||
ExprKind::Loop(b, ..) => {
|
||
self.push_break_target(e.hir_id);
|
||
self.in_final_expr = false;
|
||
self.visit_block(b);
|
||
self.break_targets.pop();
|
||
},
|
||
ExprKind::Block(b, _) => {
|
||
if b.targeted_by_break {
|
||
self.push_break_target(b.hir_id);
|
||
self.visit_block(b);
|
||
self.break_targets.pop();
|
||
} else {
|
||
self.visit_block(b);
|
||
}
|
||
},
|
||
_ => {
|
||
self.requires_semi = !self.cx.typeck_results().expr_ty(e).is_never();
|
||
},
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
match e.kind {
|
||
ExprKind::DropTemps(e) => self.visit_expr(e),
|
||
ExprKind::Ret(None) | ExprKind::Continue(_) => self.is_never = true,
|
||
ExprKind::Ret(Some(e)) | ExprKind::Become(e) => {
|
||
self.in_final_expr = false;
|
||
self.visit_expr(e);
|
||
self.is_never = true;
|
||
},
|
||
ExprKind::Break(dest, e) => {
|
||
if let Some(e) = e {
|
||
self.in_final_expr = false;
|
||
self.visit_expr(e);
|
||
}
|
||
if let Ok(id) = dest.target_id
|
||
&& let Some((i, target)) = self
|
||
.break_targets
|
||
.iter_mut()
|
||
.enumerate()
|
||
.find(|(_, target)| target.id == id)
|
||
{
|
||
target.unused &= self.is_never;
|
||
if i < self.break_targets_for_result_ty as usize {
|
||
self.requires_semi = true;
|
||
}
|
||
}
|
||
self.is_never = true;
|
||
},
|
||
ExprKind::If(cond, then, else_) => {
|
||
let in_final_expr = mem::replace(&mut self.in_final_expr, false);
|
||
self.visit_expr(cond);
|
||
self.in_final_expr = in_final_expr;
|
||
|
||
if self.is_never {
|
||
self.visit_expr(then);
|
||
if let Some(else_) = else_ {
|
||
self.visit_expr(else_);
|
||
}
|
||
} else {
|
||
self.visit_expr(then);
|
||
let is_never = mem::replace(&mut self.is_never, false);
|
||
if let Some(else_) = else_ {
|
||
self.visit_expr(else_);
|
||
self.is_never &= is_never;
|
||
}
|
||
}
|
||
},
|
||
ExprKind::Match(scrutinee, arms, _) => {
|
||
let in_final_expr = mem::replace(&mut self.in_final_expr, false);
|
||
self.visit_expr(scrutinee);
|
||
self.in_final_expr = in_final_expr;
|
||
|
||
if self.is_never {
|
||
for arm in arms {
|
||
self.visit_arm(arm);
|
||
}
|
||
} else {
|
||
let mut is_never = true;
|
||
for arm in arms {
|
||
self.is_never = false;
|
||
if let Some(guard) = arm.guard {
|
||
let in_final_expr = mem::replace(&mut self.in_final_expr, false);
|
||
self.visit_expr(guard);
|
||
self.in_final_expr = in_final_expr;
|
||
// The compiler doesn't consider diverging guards as causing the arm to diverge.
|
||
self.is_never = false;
|
||
}
|
||
self.visit_expr(arm.body);
|
||
is_never &= self.is_never;
|
||
}
|
||
self.is_never = is_never;
|
||
}
|
||
},
|
||
ExprKind::Loop(b, _, _, _) => {
|
||
self.push_break_target(e.hir_id);
|
||
self.in_final_expr = false;
|
||
self.visit_block(b);
|
||
self.is_never = self.break_targets.pop().unwrap().unused;
|
||
},
|
||
ExprKind::Block(b, _) => {
|
||
if b.targeted_by_break {
|
||
self.push_break_target(b.hir_id);
|
||
self.visit_block(b);
|
||
self.is_never &= self.break_targets.pop().unwrap().unused;
|
||
} else {
|
||
self.visit_block(b);
|
||
}
|
||
},
|
||
_ => {
|
||
self.in_final_expr = false;
|
||
walk_expr(self, e);
|
||
self.is_never |= self.cx.typeck_results().expr_ty(e).is_never();
|
||
},
|
||
}
|
||
}
|
||
|
||
fn visit_block(&mut self, b: &'tcx Block<'_>) {
|
||
let in_final_expr = mem::replace(&mut self.in_final_expr, false);
|
||
for s in b.stmts {
|
||
self.visit_stmt(s);
|
||
}
|
||
self.in_final_expr = in_final_expr;
|
||
if let Some(e) = b.expr {
|
||
self.visit_expr(e);
|
||
}
|
||
}
|
||
|
||
fn visit_local(&mut self, l: &'tcx LetStmt<'_>) {
|
||
if let Some(e) = l.init {
|
||
self.visit_expr(e);
|
||
}
|
||
if let Some(else_) = l.els {
|
||
let is_never = self.is_never;
|
||
self.visit_block(else_);
|
||
self.is_never = is_never;
|
||
}
|
||
}
|
||
|
||
fn visit_arm(&mut self, arm: &Arm<'tcx>) {
|
||
if let Some(guard) = arm.guard {
|
||
let in_final_expr = mem::replace(&mut self.in_final_expr, false);
|
||
self.visit_expr(guard);
|
||
self.in_final_expr = in_final_expr;
|
||
}
|
||
self.visit_expr(arm.body);
|
||
}
|
||
}
|
||
|
||
if cx.typeck_results().expr_ty(e).is_never() {
|
||
Some(RequiresSemi::No)
|
||
} else if let ExprKind::Block(b, _) = e.kind
|
||
&& !b.targeted_by_break
|
||
&& b.expr.is_none()
|
||
{
|
||
// If a block diverges without a final expression then it's type is `!`.
|
||
None
|
||
} else {
|
||
let mut v = V {
|
||
cx,
|
||
break_targets: Vec::new(),
|
||
break_targets_for_result_ty: 0,
|
||
in_final_expr: true,
|
||
requires_semi: false,
|
||
is_never: false,
|
||
};
|
||
v.visit_expr(e);
|
||
v.is_never
|
||
.then_some(if v.requires_semi && matches!(e.kind, ExprKind::Block(..)) {
|
||
RequiresSemi::Yes
|
||
} else {
|
||
RequiresSemi::No
|
||
})
|
||
}
|
||
}
|
||
|
||
/// Produces a path from a local caller to the type of the called method. Suitable for user
|
||
/// output/suggestions.
|
||
///
|
||
/// Returned path can be either absolute (for methods defined non-locally), or relative (for local
|
||
/// methods).
|
||
pub fn get_path_from_caller_to_method_type<'tcx>(
|
||
tcx: TyCtxt<'tcx>,
|
||
from: LocalDefId,
|
||
method: DefId,
|
||
args: GenericArgsRef<'tcx>,
|
||
) -> String {
|
||
let assoc_item = tcx.associated_item(method);
|
||
let def_id = assoc_item.container_id(tcx);
|
||
match assoc_item.container {
|
||
rustc_ty::TraitContainer => get_path_to_callee(tcx, from, def_id),
|
||
rustc_ty::ImplContainer => {
|
||
let ty = tcx.type_of(def_id).instantiate_identity();
|
||
get_path_to_ty(tcx, from, ty, args)
|
||
},
|
||
}
|
||
}
|
||
|
||
fn get_path_to_ty<'tcx>(tcx: TyCtxt<'tcx>, from: LocalDefId, ty: Ty<'tcx>, args: GenericArgsRef<'tcx>) -> String {
|
||
match ty.kind() {
|
||
rustc_ty::Adt(adt, _) => get_path_to_callee(tcx, from, adt.did()),
|
||
// TODO these types need to be recursively resolved as well
|
||
rustc_ty::Array(..)
|
||
| rustc_ty::Dynamic(..)
|
||
| rustc_ty::Never
|
||
| rustc_ty::RawPtr(_, _)
|
||
| rustc_ty::Ref(..)
|
||
| rustc_ty::Slice(_)
|
||
| rustc_ty::Tuple(_) => format!("<{}>", EarlyBinder::bind(ty).instantiate(tcx, args)),
|
||
_ => ty.to_string(),
|
||
}
|
||
}
|
||
|
||
/// Produce a path from some local caller to the callee. Suitable for user output/suggestions.
|
||
fn get_path_to_callee(tcx: TyCtxt<'_>, from: LocalDefId, callee: DefId) -> String {
|
||
// only search for a relative path if the call is fully local
|
||
if callee.is_local() {
|
||
let callee_path = tcx.def_path(callee);
|
||
let caller_path = tcx.def_path(from.to_def_id());
|
||
maybe_get_relative_path(&caller_path, &callee_path, 2)
|
||
} else {
|
||
tcx.def_path_str(callee)
|
||
}
|
||
}
|
||
|
||
/// Tries to produce a relative path from `from` to `to`; if such a path would contain more than
|
||
/// `max_super` `super` items, produces an absolute path instead. Both `from` and `to` should be in
|
||
/// the local crate.
|
||
///
|
||
/// Suitable for user output/suggestions.
|
||
///
|
||
/// This ignores use items, and assumes that the target path is visible from the source
|
||
/// path (which _should_ be a reasonable assumption since we in order to be able to use an object of
|
||
/// certain type T, T is required to be visible).
|
||
///
|
||
/// TODO make use of `use` items. Maybe we should have something more sophisticated like
|
||
/// rust-analyzer does? <https://docs.rs/ra_ap_hir_def/0.0.169/src/ra_ap_hir_def/find_path.rs.html#19-27>
|
||
fn maybe_get_relative_path(from: &DefPath, to: &DefPath, max_super: usize) -> String {
|
||
use itertools::EitherOrBoth::{Both, Left, Right};
|
||
|
||
// 1. skip the segments common for both paths (regardless of their type)
|
||
let unique_parts = to
|
||
.data
|
||
.iter()
|
||
.zip_longest(from.data.iter())
|
||
.skip_while(|el| matches!(el, Both(l, r) if l == r))
|
||
.map(|el| match el {
|
||
Both(l, r) => Both(l.data, r.data),
|
||
Left(l) => Left(l.data),
|
||
Right(r) => Right(r.data),
|
||
});
|
||
|
||
// 2. for the remaining segments, construct relative path using only mod names and `super`
|
||
let mut go_up_by = 0;
|
||
let mut path = Vec::new();
|
||
for el in unique_parts {
|
||
match el {
|
||
Both(l, r) => {
|
||
// consider:
|
||
// a::b::sym:: :: refers to
|
||
// c::d::e ::f::sym
|
||
// result should be super::super::c::d::e::f
|
||
//
|
||
// alternatively:
|
||
// a::b::c ::d::sym refers to
|
||
// e::f::sym:: ::
|
||
// result should be super::super::super::super::e::f
|
||
if let DefPathData::TypeNs(s) = l {
|
||
path.push(s.to_string());
|
||
}
|
||
if let DefPathData::TypeNs(_) = r {
|
||
go_up_by += 1;
|
||
}
|
||
},
|
||
// consider:
|
||
// a::b::sym:: :: refers to
|
||
// c::d::e ::f::sym
|
||
// when looking at `f`
|
||
Left(DefPathData::TypeNs(sym)) => path.push(sym.to_string()),
|
||
// consider:
|
||
// a::b::c ::d::sym refers to
|
||
// e::f::sym:: ::
|
||
// when looking at `d`
|
||
Right(DefPathData::TypeNs(_)) => go_up_by += 1,
|
||
_ => {},
|
||
}
|
||
}
|
||
|
||
if go_up_by > max_super {
|
||
// `super` chain would be too long, just use the absolute path instead
|
||
once(String::from("crate"))
|
||
.chain(to.data.iter().filter_map(|el| {
|
||
if let DefPathData::TypeNs(sym) = el.data {
|
||
Some(sym.to_string())
|
||
} else {
|
||
None
|
||
}
|
||
}))
|
||
.join("::")
|
||
} else {
|
||
repeat(String::from("super")).take(go_up_by).chain(path).join("::")
|
||
}
|
||
}
|
||
|
||
/// Returns true if the specified `HirId` is the top-level expression of a statement or the only
|
||
/// expression in a block.
|
||
pub fn is_parent_stmt(cx: &LateContext<'_>, id: HirId) -> bool {
|
||
matches!(
|
||
cx.tcx.parent_hir_node(id),
|
||
Node::Stmt(..) | Node::Block(Block { stmts: &[], .. })
|
||
)
|
||
}
|
||
|
||
/// Returns true if the given `expr` is a block or resembled as a block,
|
||
/// such as `if`, `loop`, `match` expressions etc.
|
||
pub fn is_block_like(expr: &Expr<'_>) -> bool {
|
||
matches!(
|
||
expr.kind,
|
||
ExprKind::Block(..) | ExprKind::ConstBlock(..) | ExprKind::If(..) | ExprKind::Loop(..) | ExprKind::Match(..)
|
||
)
|
||
}
|
||
|
||
/// Returns true if the given `expr` is binary expression that needs to be wrapped in parentheses.
|
||
pub fn binary_expr_needs_parentheses(expr: &Expr<'_>) -> bool {
|
||
fn contains_block(expr: &Expr<'_>, is_operand: bool) -> bool {
|
||
match expr.kind {
|
||
ExprKind::Binary(_, lhs, _) => contains_block(lhs, true),
|
||
_ if is_block_like(expr) => is_operand,
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
contains_block(expr, false)
|
||
}
|