83351fa02e
This replaces all uses of private enum variants with a struct that has one private field pointing at a private enum. RFC: 0006-remove-priv
2928 lines
111 KiB
Rust
2928 lines
111 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
# Debug Info Module
|
|
|
|
This module serves the purpose of generating debug symbols. We use LLVM's
|
|
[source level debugging](http://llvm.org/docs/SourceLevelDebugging.html) features for generating
|
|
the debug information. The general principle is this:
|
|
|
|
Given the right metadata in the LLVM IR, the LLVM code generator is able to create DWARF debug
|
|
symbols for the given code. The [metadata](http://llvm.org/docs/LangRef.html#metadata-type) is
|
|
structured much like DWARF *debugging information entries* (DIE), representing type information
|
|
such as datatype layout, function signatures, block layout, variable location and scope information,
|
|
etc. It is the purpose of this module to generate correct metadata and insert it into the LLVM IR.
|
|
|
|
As the exact format of metadata trees may change between different LLVM versions, we now use LLVM
|
|
[DIBuilder](http://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) to create metadata
|
|
where possible. This will hopefully ease the adaption of this module to future LLVM versions.
|
|
|
|
The public API of the module is a set of functions that will insert the correct metadata into the
|
|
LLVM IR when called with the right parameters. The module is thus driven from an outside client with
|
|
functions like `debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`.
|
|
|
|
Internally the module will try to reuse already created metadata by utilizing a cache. The way to
|
|
get a shared metadata node when needed is thus to just call the corresponding function in this
|
|
module:
|
|
|
|
let file_metadata = file_metadata(crate_context, path);
|
|
|
|
The function will take care of probing the cache for an existing node for that exact file path.
|
|
|
|
All private state used by the module is stored within either the CrateDebugContext struct (owned by
|
|
the CrateContext) or the FunctionDebugContext (owned by the FunctionContext).
|
|
|
|
This file consists of three conceptual sections:
|
|
1. The public interface of the module
|
|
2. Module-internal metadata creation functions
|
|
3. Minor utility functions
|
|
|
|
|
|
## Recursive Types
|
|
Some kinds of types, such as structs and enums can be recursive. That means that the type definition
|
|
of some type X refers to some other type which in turn (transitively) refers to X. This introduces
|
|
cycles into the type referral graph. A naive algorithm doing an on-demand, depth-first traversal of
|
|
this graph when describing types, can get trapped in an endless loop when it reaches such a cycle.
|
|
|
|
For example, the following simple type for a singly-linked list...
|
|
|
|
```
|
|
struct List {
|
|
value: int,
|
|
tail: Option<@List>,
|
|
}
|
|
```
|
|
|
|
will generate the following callstack with a naive DFS algorithm:
|
|
|
|
```
|
|
describe(t = List)
|
|
describe(t = int)
|
|
describe(t = Option<@List>)
|
|
describe(t = @List)
|
|
describe(t = List) // at the beginning again...
|
|
...
|
|
```
|
|
|
|
To break cycles like these, we use "forward declarations". That is, when the algorithm encounters a
|
|
possibly recursive type (any struct or enum), it immediately creates a type description node and
|
|
inserts it into the cache *before* describing the members of the type. This type description is just
|
|
a stub (as type members are not described and added to it yet) but it allows the algorithm to
|
|
already refer to the type. After the stub is inserted into the cache, the algorithm continues as
|
|
before. If it now encounters a recursive reference, it will hit the cache and does not try to
|
|
describe the type anew.
|
|
|
|
This behaviour is encapsulated in the 'RecursiveTypeDescription' enum, which represents a kind of
|
|
continuation, storing all state needed to continue traversal at the type members after the type has
|
|
been registered with the cache. (This implementation approach might be a tad over-engineered and
|
|
may change in the future)
|
|
|
|
|
|
## Source Locations and Line Information
|
|
In addition to data type descriptions the debugging information must also allow to map machine code
|
|
locations back to source code locations in order to be useful. This functionality is also handled in
|
|
this module. The following functions allow to control source mappings:
|
|
|
|
+ set_source_location()
|
|
+ clear_source_location()
|
|
+ start_emitting_source_locations()
|
|
|
|
`set_source_location()` allows to set the current source location. All IR instructions created after
|
|
a call to this function will be linked to the given source location, until another location is
|
|
specified with `set_source_location()` or the source location is cleared with
|
|
`clear_source_location()`. In the later case, subsequent IR instruction will not be linked to any
|
|
source location. As you can see, this is a stateful API (mimicking the one in LLVM), so be careful
|
|
with source locations set by previous calls. It's probably best to not rely on any specific state
|
|
being present at a given point in code.
|
|
|
|
One topic that deserves some extra attention is *function prologues*. At the beginning of a
|
|
function's machine code there are typically a few instructions for loading argument values into
|
|
allocas and checking if there's enough stack space for the function to execute. This *prologue* is
|
|
not visible in the source code and LLVM puts a special PROLOGUE END marker into the line table at
|
|
the first non-prologue instruction of the function. In order to find out where the prologue ends,
|
|
LLVM looks for the first instruction in the function body that is linked to a source location. So,
|
|
when generating prologue instructions we have to make sure that we don't emit source location
|
|
information until the 'real' function body begins. For this reason, source location emission is
|
|
disabled by default for any new function being translated and is only activated after a call to the
|
|
third function from the list above, `start_emitting_source_locations()`. This function should be
|
|
called right before regularly starting to translate the top-level block of the given function.
|
|
|
|
There is one exception to the above rule: `llvm.dbg.declare` instruction must be linked to the
|
|
source location of the variable being declared. For function parameters these `llvm.dbg.declare`
|
|
instructions typically occur in the middle of the prologue, however, they are ignored by LLVM's
|
|
prologue detection. The `create_argument_metadata()` and related functions take care of linking the
|
|
`llvm.dbg.declare` instructions to the correct source locations even while source location emission
|
|
is still disabled, so there is no need to do anything special with source location handling here.
|
|
|
|
*/
|
|
|
|
|
|
use driver::session;
|
|
use driver::session::{FullDebugInfo, LimitedDebugInfo, NoDebugInfo};
|
|
use lib::llvm::llvm;
|
|
use lib::llvm::{ModuleRef, ContextRef, ValueRef};
|
|
use lib::llvm::debuginfo::*;
|
|
use metadata::csearch;
|
|
use middle::trans::adt;
|
|
use middle::trans::common::*;
|
|
use middle::trans::datum::{Datum, Lvalue};
|
|
use middle::trans::machine;
|
|
use middle::trans::type_of;
|
|
use middle::trans::type_::Type;
|
|
use middle::trans;
|
|
use middle::ty;
|
|
use middle::pat_util;
|
|
use util::ppaux;
|
|
|
|
use std::c_str::{CString, ToCStr};
|
|
use std::cell::{Cell, RefCell};
|
|
use collections::HashMap;
|
|
use collections::HashSet;
|
|
use libc::{c_uint, c_ulonglong, c_longlong};
|
|
use std::ptr;
|
|
use std::slice;
|
|
use std::strbuf::StrBuf;
|
|
use std::sync::atomics;
|
|
use syntax::codemap::{Span, Pos};
|
|
use syntax::{abi, ast, codemap, ast_util, ast_map};
|
|
use syntax::owned_slice::OwnedSlice;
|
|
use syntax::parse::token;
|
|
use syntax::parse::token::special_idents;
|
|
|
|
static DW_LANG_RUST: c_uint = 0x9000;
|
|
|
|
static DW_TAG_auto_variable: c_uint = 0x100;
|
|
static DW_TAG_arg_variable: c_uint = 0x101;
|
|
|
|
static DW_ATE_boolean: c_uint = 0x02;
|
|
static DW_ATE_float: c_uint = 0x04;
|
|
static DW_ATE_signed: c_uint = 0x05;
|
|
// static DW_ATE_signed_char: c_uint = 0x06;
|
|
static DW_ATE_unsigned: c_uint = 0x07;
|
|
static DW_ATE_unsigned_char: c_uint = 0x08;
|
|
|
|
//=-------------------------------------------------------------------------------------------------
|
|
// Public Interface of debuginfo module
|
|
//=-------------------------------------------------------------------------------------------------
|
|
|
|
/// A context object for maintaining all state needed by the debuginfo module.
|
|
pub struct CrateDebugContext {
|
|
llcontext: ContextRef,
|
|
builder: DIBuilderRef,
|
|
current_debug_location: Cell<DebugLocation>,
|
|
created_files: RefCell<HashMap<~str, DIFile>>,
|
|
created_types: RefCell<HashMap<uint, DIType>>,
|
|
created_enum_disr_types: RefCell<HashMap<ast::DefId, DIType>>,
|
|
namespace_map: RefCell<HashMap<Vec<ast::Name> , @NamespaceTreeNode>>,
|
|
// This collection is used to assert that composite types (structs, enums, ...) have their
|
|
// members only set once:
|
|
composite_types_completed: RefCell<HashSet<DIType>>,
|
|
}
|
|
|
|
impl CrateDebugContext {
|
|
pub fn new(llmod: ModuleRef) -> CrateDebugContext {
|
|
debug!("CrateDebugContext::new");
|
|
let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) };
|
|
// DIBuilder inherits context from the module, so we'd better use the same one
|
|
let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) };
|
|
return CrateDebugContext {
|
|
llcontext: llcontext,
|
|
builder: builder,
|
|
current_debug_location: Cell::new(UnknownLocation),
|
|
created_files: RefCell::new(HashMap::new()),
|
|
created_types: RefCell::new(HashMap::new()),
|
|
created_enum_disr_types: RefCell::new(HashMap::new()),
|
|
namespace_map: RefCell::new(HashMap::new()),
|
|
composite_types_completed: RefCell::new(HashSet::new()),
|
|
};
|
|
}
|
|
}
|
|
|
|
pub struct FunctionDebugContext {
|
|
repr: FunctionDebugContextRepr,
|
|
}
|
|
|
|
enum FunctionDebugContextRepr {
|
|
FunctionDebugContext(~FunctionDebugContextData),
|
|
DebugInfoDisabled,
|
|
FunctionWithoutDebugInfo,
|
|
}
|
|
|
|
impl FunctionDebugContext {
|
|
fn get_ref<'a>(&'a self, cx: &CrateContext, span: Span) -> &'a FunctionDebugContextData {
|
|
match self.repr {
|
|
FunctionDebugContext(~ref data) => data,
|
|
DebugInfoDisabled => {
|
|
cx.sess().span_bug(span, FunctionDebugContext::debuginfo_disabled_message());
|
|
}
|
|
FunctionWithoutDebugInfo => {
|
|
cx.sess().span_bug(span, FunctionDebugContext::should_be_ignored_message());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn debuginfo_disabled_message() -> &'static str {
|
|
"debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!"
|
|
}
|
|
|
|
fn should_be_ignored_message() -> &'static str {
|
|
"debuginfo: Error trying to access FunctionDebugContext for function that should be \
|
|
ignored by debug info!"
|
|
}
|
|
}
|
|
|
|
struct FunctionDebugContextData {
|
|
scope_map: RefCell<HashMap<ast::NodeId, DIScope>>,
|
|
fn_metadata: DISubprogram,
|
|
argument_counter: Cell<uint>,
|
|
source_locations_enabled: Cell<bool>,
|
|
}
|
|
|
|
enum VariableAccess<'a> {
|
|
// The llptr given is an alloca containing the variable's value
|
|
DirectVariable { alloca: ValueRef },
|
|
// The llptr given is an alloca containing the start of some pointer chain leading to the
|
|
// variable's content.
|
|
IndirectVariable { alloca: ValueRef, address_operations: &'a [ValueRef] }
|
|
}
|
|
|
|
enum VariableKind {
|
|
ArgumentVariable(uint /*index*/),
|
|
LocalVariable,
|
|
CapturedVariable,
|
|
}
|
|
|
|
/// Create any deferred debug metadata nodes
|
|
pub fn finalize(cx: &CrateContext) {
|
|
if cx.dbg_cx.is_none() {
|
|
return;
|
|
}
|
|
|
|
debug!("finalize");
|
|
compile_unit_metadata(cx);
|
|
unsafe {
|
|
llvm::LLVMDIBuilderFinalize(DIB(cx));
|
|
llvm::LLVMDIBuilderDispose(DIB(cx));
|
|
// Debuginfo generation in LLVM by default uses a higher
|
|
// version of dwarf than OS X currently understands. We can
|
|
// instruct LLVM to emit an older version of dwarf, however,
|
|
// for OS X to understand. For more info see #11352
|
|
// This can be overridden using --llvm-opts -dwarf-version,N.
|
|
if cx.sess().targ_cfg.os == abi::OsMacos {
|
|
"Dwarf Version".with_c_str(
|
|
|s| llvm::LLVMRustAddModuleFlag(cx.llmod, s, 2));
|
|
}
|
|
|
|
// Prevent bitcode readers from deleting the debug info.
|
|
"Debug Info Version".with_c_str(
|
|
|s| llvm::LLVMRustAddModuleFlag(cx.llmod, s,
|
|
llvm::LLVMRustDebugMetadataVersion));
|
|
};
|
|
}
|
|
|
|
/// Creates debug information for the given global variable.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_global_var_metadata(cx: &CrateContext,
|
|
node_id: ast::NodeId,
|
|
global: ValueRef) {
|
|
if cx.dbg_cx.is_none() {
|
|
return;
|
|
}
|
|
|
|
// Don't create debuginfo for globals inlined from other crates. The other crate should already
|
|
// contain debuginfo for it. More importantly, the global might not even exist in un-inlined
|
|
// form anywhere which would lead to a linker errors.
|
|
if cx.external_srcs.borrow().contains_key(&node_id) {
|
|
return;
|
|
}
|
|
|
|
let var_item = cx.tcx.map.get(node_id);
|
|
|
|
let (ident, span) = match var_item {
|
|
ast_map::NodeItem(item) => {
|
|
match item.node {
|
|
ast::ItemStatic(..) => (item.ident, item.span),
|
|
_ => cx.sess().span_bug(item.span,
|
|
format!("debuginfo::create_global_var_metadata() -
|
|
Captured var-id refers to unexpected ast_item
|
|
variant: {:?}",
|
|
var_item))
|
|
}
|
|
},
|
|
_ => cx.sess().bug(format!("debuginfo::create_global_var_metadata() - Captured var-id \
|
|
refers to unexpected ast_map variant: {:?}",
|
|
var_item))
|
|
};
|
|
|
|
let filename = span_start(cx, span).file.name.clone();
|
|
let file_metadata = file_metadata(cx, filename);
|
|
|
|
let is_local_to_unit = is_node_local_to_unit(cx, node_id);
|
|
let loc = span_start(cx, span);
|
|
|
|
let variable_type = ty::node_id_to_type(cx.tcx(), node_id);
|
|
let type_metadata = type_metadata(cx, variable_type, span);
|
|
|
|
let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id));
|
|
let var_name = token::get_ident(ident).get().to_str();
|
|
let linkage_name = namespace_node.mangled_name_of_contained_item(var_name);
|
|
let var_scope = namespace_node.scope;
|
|
|
|
var_name.with_c_str(|var_name| {
|
|
linkage_name.with_c_str(|linkage_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx),
|
|
var_scope,
|
|
var_name,
|
|
linkage_name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
type_metadata,
|
|
is_local_to_unit,
|
|
global,
|
|
ptr::null());
|
|
}
|
|
})
|
|
});
|
|
}
|
|
|
|
/// Creates debug information for the given local variable.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_local_var_metadata(bcx: &Block, local: &ast::Local) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let cx = bcx.ccx();
|
|
let def_map = cx.tcx.def_map;
|
|
|
|
pat_util::pat_bindings(def_map, local.pat, |_, node_id, span, path_ref| {
|
|
let var_ident = ast_util::path_to_ident(path_ref);
|
|
|
|
let datum = match bcx.fcx.lllocals.borrow().find_copy(&node_id) {
|
|
Some(datum) => datum,
|
|
None => {
|
|
bcx.sess().span_bug(span,
|
|
format!("no entry in lllocals table for {:?}",
|
|
node_id));
|
|
}
|
|
};
|
|
|
|
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
|
|
|
|
declare_local(bcx,
|
|
var_ident,
|
|
datum.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: datum.val },
|
|
LocalVariable,
|
|
span);
|
|
})
|
|
}
|
|
|
|
/// Creates debug information for a variable captured in a closure.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_captured_var_metadata(bcx: &Block,
|
|
node_id: ast::NodeId,
|
|
env_data_type: ty::t,
|
|
env_pointer: ValueRef,
|
|
env_index: uint,
|
|
closure_store: ty::TraitStore,
|
|
span: Span) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let cx = bcx.ccx();
|
|
|
|
let ast_item = cx.tcx.map.find(node_id);
|
|
|
|
let variable_ident = match ast_item {
|
|
None => {
|
|
cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found");
|
|
}
|
|
Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => {
|
|
match pat.node {
|
|
ast::PatIdent(_, ref path, _) => {
|
|
ast_util::path_to_ident(path)
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.span_bug(span,
|
|
format!(
|
|
"debuginfo::create_captured_var_metadata() - \
|
|
Captured var-id refers to unexpected \
|
|
ast_map variant: {:?}",
|
|
ast_item));
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.sess().span_bug(span, format!("debuginfo::create_captured_var_metadata() - \
|
|
Captured var-id refers to unexpected ast_map variant: {:?}", ast_item));
|
|
}
|
|
};
|
|
|
|
let variable_type = node_id_type(bcx, node_id);
|
|
let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata;
|
|
|
|
let llvm_env_data_type = type_of::type_of(cx, env_data_type);
|
|
let byte_offset_of_var_in_env = machine::llelement_offset(cx, llvm_env_data_type, env_index);
|
|
|
|
let address_operations = unsafe {
|
|
[llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref()),
|
|
llvm::LLVMDIBuilderCreateOpPlus(Type::i64(cx).to_ref()),
|
|
C_i64(cx, byte_offset_of_var_in_env as i64),
|
|
llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref())]
|
|
};
|
|
|
|
let address_op_count = match closure_store {
|
|
ty::RegionTraitStore(..) => {
|
|
address_operations.len()
|
|
}
|
|
ty::UniqTraitStore => {
|
|
address_operations.len() - 1
|
|
}
|
|
};
|
|
|
|
let variable_access = IndirectVariable {
|
|
alloca: env_pointer,
|
|
address_operations: address_operations.slice_to(address_op_count)
|
|
};
|
|
|
|
declare_local(bcx,
|
|
variable_ident,
|
|
variable_type,
|
|
scope_metadata,
|
|
variable_access,
|
|
CapturedVariable,
|
|
span);
|
|
}
|
|
|
|
/// Creates debug information for a local variable introduced in the head of a match-statement arm.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_match_binding_metadata(bcx: &Block,
|
|
variable_ident: ast::Ident,
|
|
node_id: ast::NodeId,
|
|
span: Span,
|
|
datum: Datum<Lvalue>) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
|
|
|
|
declare_local(bcx,
|
|
variable_ident,
|
|
datum.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: datum.val },
|
|
LocalVariable,
|
|
span);
|
|
}
|
|
|
|
/// Creates debug information for the given function argument.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_argument_metadata(bcx: &Block, arg: &ast::Arg) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let fcx = bcx.fcx;
|
|
let cx = fcx.ccx;
|
|
|
|
let def_map = cx.tcx.def_map;
|
|
let scope_metadata = bcx.fcx.debug_context.get_ref(cx, arg.pat.span).fn_metadata;
|
|
|
|
pat_util::pat_bindings(def_map, arg.pat, |_, node_id, span, path_ref| {
|
|
let llarg = match bcx.fcx.llargs.borrow().find_copy(&node_id) {
|
|
Some(v) => v,
|
|
None => {
|
|
bcx.sess().span_bug(span,
|
|
format!("no entry in llargs table for {:?}",
|
|
node_id));
|
|
}
|
|
};
|
|
|
|
if unsafe { llvm::LLVMIsAAllocaInst(llarg.val) } == ptr::null() {
|
|
cx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \
|
|
Referenced variable location is not an alloca!");
|
|
}
|
|
|
|
let argument_ident = ast_util::path_to_ident(path_ref);
|
|
|
|
let argument_index = {
|
|
let counter = &fcx.debug_context.get_ref(cx, span).argument_counter;
|
|
let argument_index = counter.get();
|
|
counter.set(argument_index + 1);
|
|
argument_index
|
|
};
|
|
|
|
declare_local(bcx,
|
|
argument_ident,
|
|
llarg.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: llarg.val },
|
|
ArgumentVariable(argument_index),
|
|
span);
|
|
})
|
|
}
|
|
|
|
/// Sets the current debug location at the beginning of the span.
|
|
///
|
|
/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id parameter is used to
|
|
/// reliably find the correct visibility scope for the code position.
|
|
pub fn set_source_location(fcx: &FunctionContext,
|
|
node_id: ast::NodeId,
|
|
span: Span) {
|
|
match fcx.debug_context.repr {
|
|
DebugInfoDisabled => return,
|
|
FunctionWithoutDebugInfo => {
|
|
set_debug_location(fcx.ccx, UnknownLocation);
|
|
return;
|
|
}
|
|
FunctionDebugContext(~ref function_debug_context) => {
|
|
let cx = fcx.ccx;
|
|
|
|
debug!("set_source_location: {}", cx.sess().codemap().span_to_str(span));
|
|
|
|
if function_debug_context.source_locations_enabled.get() {
|
|
let loc = span_start(cx, span);
|
|
let scope = scope_metadata(fcx, node_id, span);
|
|
|
|
set_debug_location(cx, DebugLocation::new(scope, loc.line, loc.col.to_uint()));
|
|
} else {
|
|
set_debug_location(cx, UnknownLocation);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clears the current debug location.
|
|
///
|
|
/// Instructions generated hereafter won't be assigned a source location.
|
|
pub fn clear_source_location(fcx: &FunctionContext) {
|
|
if fn_should_be_ignored(fcx) {
|
|
return;
|
|
}
|
|
|
|
set_debug_location(fcx.ccx, UnknownLocation);
|
|
}
|
|
|
|
/// Enables emitting source locations for the given functions.
|
|
///
|
|
/// Since we don't want source locations to be emitted for the function prelude, they are disabled
|
|
/// when beginning to translate a new function. This functions switches source location emitting on
|
|
/// and must therefore be called before the first real statement/expression of the function is
|
|
/// translated.
|
|
pub fn start_emitting_source_locations(fcx: &FunctionContext) {
|
|
match fcx.debug_context.repr {
|
|
FunctionDebugContext(~ref data) => {
|
|
data.source_locations_enabled.set(true)
|
|
},
|
|
_ => { /* safe to ignore */ }
|
|
}
|
|
}
|
|
|
|
/// Creates the function-specific debug context.
|
|
///
|
|
/// Returns the FunctionDebugContext for the function which holds state needed for debug info
|
|
/// creation. The function may also return another variant of the FunctionDebugContext enum which
|
|
/// indicates why no debuginfo should be created for the function.
|
|
pub fn create_function_debug_context(cx: &CrateContext,
|
|
fn_ast_id: ast::NodeId,
|
|
param_substs: Option<@param_substs>,
|
|
llfn: ValueRef) -> FunctionDebugContext {
|
|
if cx.sess().opts.debuginfo == NoDebugInfo {
|
|
return FunctionDebugContext { repr: DebugInfoDisabled };
|
|
}
|
|
|
|
// Clear the debug location so we don't assign them in the function prelude. Do this here
|
|
// already, in case we do an early exit from this function.
|
|
set_debug_location(cx, UnknownLocation);
|
|
|
|
if fn_ast_id == -1 {
|
|
return FunctionDebugContext { repr: FunctionWithoutDebugInfo };
|
|
}
|
|
|
|
let empty_generics = ast::Generics { lifetimes: Vec::new(), ty_params: OwnedSlice::empty() };
|
|
|
|
let fnitem = cx.tcx.map.get(fn_ast_id);
|
|
|
|
let (ident, fn_decl, generics, top_level_block, span, has_path) = match fnitem {
|
|
ast_map::NodeItem(ref item) => {
|
|
match item.node {
|
|
ast::ItemFn(fn_decl, _, _, ref generics, top_level_block) => {
|
|
(item.ident, fn_decl, generics, top_level_block, item.span, true)
|
|
}
|
|
_ => {
|
|
cx.sess().span_bug(item.span,
|
|
"create_function_debug_context: item bound to non-function");
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeMethod(method) => {
|
|
(method.ident,
|
|
method.decl,
|
|
&method.generics,
|
|
method.body,
|
|
method.span,
|
|
true)
|
|
}
|
|
ast_map::NodeExpr(ref expr) => {
|
|
match expr.node {
|
|
ast::ExprFnBlock(fn_decl, top_level_block) |
|
|
ast::ExprProc(fn_decl, top_level_block) => {
|
|
let name = format!("fn{}", token::gensym("fn"));
|
|
let name = token::str_to_ident(name);
|
|
(name, fn_decl,
|
|
// This is not quite right. It should actually inherit the generics of the
|
|
// enclosing function.
|
|
&empty_generics,
|
|
top_level_block,
|
|
expr.span,
|
|
// Don't try to lookup the item path:
|
|
false)
|
|
}
|
|
_ => cx.sess().span_bug(expr.span,
|
|
"create_function_debug_context: expected an expr_fn_block here")
|
|
}
|
|
}
|
|
ast_map::NodeTraitMethod(trait_method) => {
|
|
match *trait_method {
|
|
ast::Provided(method) => {
|
|
(method.ident,
|
|
method.decl,
|
|
&method.generics,
|
|
method.body,
|
|
method.span,
|
|
true)
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.bug(format!("create_function_debug_context: \
|
|
unexpected sort of node: {:?}",
|
|
fnitem))
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeForeignItem(..) |
|
|
ast_map::NodeVariant(..) |
|
|
ast_map::NodeStructCtor(..) => {
|
|
return FunctionDebugContext { repr: FunctionWithoutDebugInfo };
|
|
}
|
|
_ => cx.sess().bug(format!("create_function_debug_context: \
|
|
unexpected sort of node: {:?}", fnitem))
|
|
};
|
|
|
|
// This can be the case for functions inlined from another crate
|
|
if span == codemap::DUMMY_SP {
|
|
return FunctionDebugContext { repr: FunctionWithoutDebugInfo };
|
|
}
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
|
|
let function_type_metadata = unsafe {
|
|
let fn_signature = get_function_signature(cx, fn_ast_id, fn_decl, param_substs, span);
|
|
llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature)
|
|
};
|
|
|
|
// get_template_parameters() will append a `<...>` clause to the function name if necessary.
|
|
let mut function_name = StrBuf::from_str(token::get_ident(ident).get());
|
|
let template_parameters = get_template_parameters(cx,
|
|
generics,
|
|
param_substs,
|
|
file_metadata,
|
|
&mut function_name);
|
|
|
|
// There is no ast_map::Path for ast::ExprFnBlock-type functions. For now, just don't put them
|
|
// into a namespace. In the future this could be improved somehow (storing a path in the
|
|
// ast_map, or construct a path using the enclosing function).
|
|
let (linkage_name, containing_scope) = if has_path {
|
|
let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id));
|
|
let linkage_name = namespace_node.mangled_name_of_contained_item(
|
|
function_name.as_slice());
|
|
let containing_scope = namespace_node.scope;
|
|
(linkage_name, containing_scope)
|
|
} else {
|
|
(function_name.as_slice().to_owned(), file_metadata)
|
|
};
|
|
|
|
// Clang sets this parameter to the opening brace of the function's block, so let's do this too.
|
|
let scope_line = span_start(cx, top_level_block.span).line;
|
|
|
|
let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id);
|
|
|
|
let fn_metadata = function_name.as_slice().with_c_str(|function_name| {
|
|
linkage_name.with_c_str(|linkage_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateFunction(
|
|
DIB(cx),
|
|
containing_scope,
|
|
function_name,
|
|
linkage_name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
function_type_metadata,
|
|
is_local_to_unit,
|
|
true,
|
|
scope_line as c_uint,
|
|
FlagPrototyped as c_uint,
|
|
cx.sess().opts.optimize != session::No,
|
|
llfn,
|
|
template_parameters,
|
|
ptr::null())
|
|
}
|
|
})
|
|
});
|
|
|
|
// Initialize fn debug context (including scope map and namespace map)
|
|
let fn_debug_context = ~FunctionDebugContextData {
|
|
scope_map: RefCell::new(HashMap::new()),
|
|
fn_metadata: fn_metadata,
|
|
argument_counter: Cell::new(1),
|
|
source_locations_enabled: Cell::new(false),
|
|
};
|
|
|
|
let arg_pats = fn_decl.inputs.iter().map(|arg_ref| arg_ref.pat).collect::<Vec<_>>();
|
|
populate_scope_map(cx,
|
|
arg_pats.as_slice(),
|
|
top_level_block,
|
|
fn_metadata,
|
|
&mut *fn_debug_context.scope_map.borrow_mut());
|
|
|
|
return FunctionDebugContext { repr: FunctionDebugContext(fn_debug_context) };
|
|
|
|
fn get_function_signature(cx: &CrateContext,
|
|
fn_ast_id: ast::NodeId,
|
|
fn_decl: &ast::FnDecl,
|
|
param_substs: Option<@param_substs>,
|
|
error_span: Span) -> DIArray {
|
|
if cx.sess().opts.debuginfo == LimitedDebugInfo {
|
|
return create_DIArray(DIB(cx), []);
|
|
}
|
|
|
|
let mut signature = slice::with_capacity(fn_decl.inputs.len() + 1);
|
|
|
|
// Return type -- llvm::DIBuilder wants this at index 0
|
|
match fn_decl.output.node {
|
|
ast::TyNil => {
|
|
signature.push(ptr::null());
|
|
}
|
|
_ => {
|
|
assert_type_for_node_id(cx, fn_ast_id, error_span);
|
|
|
|
let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id);
|
|
let return_type = match param_substs {
|
|
None => return_type,
|
|
Some(substs) => {
|
|
ty::subst_tps(cx.tcx(),
|
|
substs.tys.as_slice(),
|
|
substs.self_ty,
|
|
return_type)
|
|
}
|
|
};
|
|
|
|
signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP));
|
|
}
|
|
}
|
|
|
|
// Arguments types
|
|
for arg in fn_decl.inputs.iter() {
|
|
assert_type_for_node_id(cx, arg.pat.id, arg.pat.span);
|
|
let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id);
|
|
let arg_type = match param_substs {
|
|
None => arg_type,
|
|
Some(substs) => {
|
|
ty::subst_tps(cx.tcx(),
|
|
substs.tys.as_slice(),
|
|
substs.self_ty,
|
|
arg_type)
|
|
}
|
|
};
|
|
|
|
signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP));
|
|
}
|
|
|
|
return create_DIArray(DIB(cx), signature);
|
|
}
|
|
|
|
fn get_template_parameters(cx: &CrateContext,
|
|
generics: &ast::Generics,
|
|
param_substs: Option<@param_substs>,
|
|
file_metadata: DIFile,
|
|
name_to_append_suffix_to: &mut StrBuf)
|
|
-> DIArray {
|
|
let self_type = match param_substs {
|
|
Some(param_substs) => param_substs.self_ty,
|
|
_ => None
|
|
};
|
|
|
|
// Only true for static default methods:
|
|
let has_self_type = self_type.is_some();
|
|
|
|
if !generics.is_type_parameterized() && !has_self_type {
|
|
return create_DIArray(DIB(cx), []);
|
|
}
|
|
|
|
name_to_append_suffix_to.push_char('<');
|
|
|
|
// The list to be filled with template parameters:
|
|
let mut template_params: Vec<DIDescriptor> =
|
|
Vec::with_capacity(generics.ty_params.len() + 1);
|
|
|
|
// Handle self type
|
|
if has_self_type {
|
|
let actual_self_type = self_type.unwrap();
|
|
// Add self type name to <...> clause of function name
|
|
let actual_self_type_name = ppaux::ty_to_str(cx.tcx(), actual_self_type);
|
|
name_to_append_suffix_to.push_str(actual_self_type_name);
|
|
|
|
if generics.is_type_parameterized() {
|
|
name_to_append_suffix_to.push_str(",");
|
|
}
|
|
|
|
// Only create type information if full debuginfo is enabled
|
|
if cx.sess().opts.debuginfo == FullDebugInfo {
|
|
let actual_self_type_metadata = type_metadata(cx,
|
|
actual_self_type,
|
|
codemap::DUMMY_SP);
|
|
|
|
let ident = special_idents::type_self;
|
|
|
|
let param_metadata = token::get_ident(ident).get()
|
|
.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
|
|
DIB(cx),
|
|
file_metadata,
|
|
name,
|
|
actual_self_type_metadata,
|
|
ptr::null(),
|
|
0,
|
|
0)
|
|
}
|
|
});
|
|
|
|
template_params.push(param_metadata);
|
|
}
|
|
}
|
|
|
|
// Handle other generic parameters
|
|
let actual_types = match param_substs {
|
|
Some(param_substs) => ¶m_substs.tys,
|
|
None => {
|
|
return create_DIArray(DIB(cx), template_params.as_slice());
|
|
}
|
|
};
|
|
|
|
for (index, &ast::TyParam{ ident: ident, .. }) in generics.ty_params.iter().enumerate() {
|
|
let actual_type = *actual_types.get(index);
|
|
// Add actual type name to <...> clause of function name
|
|
let actual_type_name = ppaux::ty_to_str(cx.tcx(), actual_type);
|
|
name_to_append_suffix_to.push_str(actual_type_name);
|
|
|
|
if index != generics.ty_params.len() - 1 {
|
|
name_to_append_suffix_to.push_str(",");
|
|
}
|
|
|
|
// Again, only create type information if full debuginfo is enabled
|
|
if cx.sess().opts.debuginfo == FullDebugInfo {
|
|
let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP);
|
|
let param_metadata = token::get_ident(ident).get()
|
|
.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
|
|
DIB(cx),
|
|
file_metadata,
|
|
name,
|
|
actual_type_metadata,
|
|
ptr::null(),
|
|
0,
|
|
0)
|
|
}
|
|
});
|
|
template_params.push(param_metadata);
|
|
}
|
|
}
|
|
|
|
name_to_append_suffix_to.push_char('>');
|
|
|
|
return create_DIArray(DIB(cx), template_params.as_slice());
|
|
}
|
|
}
|
|
|
|
//=-------------------------------------------------------------------------------------------------
|
|
// Module-Internal debug info creation functions
|
|
//=-------------------------------------------------------------------------------------------------
|
|
|
|
fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool
|
|
{
|
|
// The is_local_to_unit flag indicates whether a function is local to the current compilation
|
|
// unit (i.e. if it is *static* in the C-sense). The *reachable* set should provide a good
|
|
// approximation of this, as it contains everything that might leak out of the current crate
|
|
// (by being externally visible or by being inlined into something externally visible). It might
|
|
// better to use the `exported_items` set from `driver::CrateAnalysis` in the future, but (atm)
|
|
// this set is not available in the translation pass.
|
|
!cx.reachable.contains(&node_id)
|
|
}
|
|
|
|
fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray {
|
|
return unsafe {
|
|
llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32)
|
|
};
|
|
}
|
|
|
|
fn compile_unit_metadata(cx: &CrateContext) {
|
|
let work_dir = &cx.sess().working_dir;
|
|
let compile_unit_name = match cx.sess().local_crate_source_file {
|
|
None => fallback_path(cx),
|
|
Some(ref abs_path) => {
|
|
if abs_path.is_relative() {
|
|
cx.sess().warn("debuginfo: Invalid path to crate's local root source file!");
|
|
fallback_path(cx)
|
|
} else {
|
|
match abs_path.path_relative_from(work_dir) {
|
|
Some(ref p) if p.is_relative() => {
|
|
// prepend "./" if necessary
|
|
let dotdot = bytes!("..");
|
|
let prefix = &[dotdot[0], ::std::path::SEP_BYTE];
|
|
let mut path_bytes = p.as_vec().to_owned();
|
|
|
|
if path_bytes.slice_to(2) != prefix &&
|
|
path_bytes.slice_to(2) != dotdot {
|
|
path_bytes.insert(0, prefix[0]);
|
|
path_bytes.insert(1, prefix[1]);
|
|
}
|
|
|
|
path_bytes.to_c_str()
|
|
}
|
|
_ => fallback_path(cx)
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
debug!("compile_unit_metadata: {:?}", compile_unit_name);
|
|
let producer = format!("rustc version {}", env!("CFG_VERSION"));
|
|
|
|
compile_unit_name.with_ref(|compile_unit_name| {
|
|
work_dir.as_vec().with_c_str(|work_dir| {
|
|
producer.with_c_str(|producer| {
|
|
"".with_c_str(|flags| {
|
|
"".with_c_str(|split_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateCompileUnit(
|
|
debug_context(cx).builder,
|
|
DW_LANG_RUST,
|
|
compile_unit_name,
|
|
work_dir,
|
|
producer,
|
|
cx.sess().opts.optimize != session::No,
|
|
flags,
|
|
0,
|
|
split_name);
|
|
}
|
|
})
|
|
})
|
|
})
|
|
})
|
|
});
|
|
|
|
fn fallback_path(cx: &CrateContext) -> CString {
|
|
cx.link_meta.crateid.name.to_c_str()
|
|
}
|
|
}
|
|
|
|
fn declare_local(bcx: &Block,
|
|
variable_ident: ast::Ident,
|
|
variable_type: ty::t,
|
|
scope_metadata: DIScope,
|
|
variable_access: VariableAccess,
|
|
variable_kind: VariableKind,
|
|
span: Span) {
|
|
let cx: &CrateContext = bcx.ccx();
|
|
|
|
let filename = span_start(cx, span).file.name.clone();
|
|
let file_metadata = file_metadata(cx, filename);
|
|
|
|
let name = token::get_ident(variable_ident);
|
|
let loc = span_start(cx, span);
|
|
let type_metadata = type_metadata(cx, variable_type, span);
|
|
|
|
let (argument_index, dwarf_tag) = match variable_kind {
|
|
ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable),
|
|
LocalVariable |
|
|
CapturedVariable => (0, DW_TAG_auto_variable)
|
|
};
|
|
|
|
let (var_alloca, var_metadata) = name.get().with_c_str(|name| {
|
|
match variable_access {
|
|
DirectVariable { alloca } => (
|
|
alloca,
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateLocalVariable(
|
|
DIB(cx),
|
|
dwarf_tag,
|
|
scope_metadata,
|
|
name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
type_metadata,
|
|
cx.sess().opts.optimize != session::No,
|
|
0,
|
|
argument_index)
|
|
}
|
|
),
|
|
IndirectVariable { alloca, address_operations } => (
|
|
alloca,
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateComplexVariable(
|
|
DIB(cx),
|
|
dwarf_tag,
|
|
scope_metadata,
|
|
name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
type_metadata,
|
|
address_operations.as_ptr(),
|
|
address_operations.len() as c_uint,
|
|
argument_index)
|
|
}
|
|
)
|
|
}
|
|
});
|
|
|
|
set_debug_location(cx, DebugLocation::new(scope_metadata, loc.line, loc.col.to_uint()));
|
|
unsafe {
|
|
let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd(
|
|
DIB(cx),
|
|
var_alloca,
|
|
var_metadata,
|
|
bcx.llbb);
|
|
|
|
llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr);
|
|
}
|
|
|
|
match variable_kind {
|
|
ArgumentVariable(_) | CapturedVariable => {
|
|
assert!(!bcx.fcx
|
|
.debug_context
|
|
.get_ref(cx, span)
|
|
.source_locations_enabled
|
|
.get());
|
|
set_debug_location(cx, UnknownLocation);
|
|
}
|
|
_ => { /* nothing to do */ }
|
|
}
|
|
}
|
|
|
|
fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile {
|
|
match debug_context(cx).created_files.borrow().find_equiv(&full_path) {
|
|
Some(file_metadata) => return *file_metadata,
|
|
None => ()
|
|
}
|
|
|
|
debug!("file_metadata: {}", full_path);
|
|
|
|
// FIXME (#9639): This needs to handle non-utf8 paths
|
|
let work_dir = cx.sess().working_dir.as_str().unwrap();
|
|
let file_name =
|
|
if full_path.starts_with(work_dir) {
|
|
full_path.slice(work_dir.len() + 1u, full_path.len())
|
|
} else {
|
|
full_path
|
|
};
|
|
|
|
let file_metadata =
|
|
file_name.with_c_str(|file_name| {
|
|
work_dir.with_c_str(|work_dir| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name, work_dir)
|
|
}
|
|
})
|
|
});
|
|
|
|
let mut created_files = debug_context(cx).created_files.borrow_mut();
|
|
created_files.insert(full_path.to_owned(), file_metadata);
|
|
return file_metadata;
|
|
}
|
|
|
|
/// Finds the scope metadata node for the given AST node.
|
|
fn scope_metadata(fcx: &FunctionContext,
|
|
node_id: ast::NodeId,
|
|
span: Span)
|
|
-> DIScope {
|
|
let scope_map = &fcx.debug_context.get_ref(fcx.ccx, span).scope_map;
|
|
match scope_map.borrow().find_copy(&node_id) {
|
|
Some(scope_metadata) => scope_metadata,
|
|
None => {
|
|
let node = fcx.ccx.tcx.map.get(node_id);
|
|
|
|
fcx.ccx.sess().span_bug(span,
|
|
format!("debuginfo: Could not find scope info for node {:?}", node));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn basic_type_metadata(cx: &CrateContext, t: ty::t) -> DIType {
|
|
|
|
debug!("basic_type_metadata: {:?}", ty::get(t));
|
|
|
|
let (name, encoding) = match ty::get(t).sty {
|
|
ty::ty_nil => (~"()", DW_ATE_unsigned),
|
|
ty::ty_bot => (~"!", DW_ATE_unsigned),
|
|
ty::ty_bool => (~"bool", DW_ATE_boolean),
|
|
ty::ty_char => (~"char", DW_ATE_unsigned_char),
|
|
ty::ty_int(int_ty) => match int_ty {
|
|
ast::TyI => (~"int", DW_ATE_signed),
|
|
ast::TyI8 => (~"i8", DW_ATE_signed),
|
|
ast::TyI16 => (~"i16", DW_ATE_signed),
|
|
ast::TyI32 => (~"i32", DW_ATE_signed),
|
|
ast::TyI64 => (~"i64", DW_ATE_signed)
|
|
},
|
|
ty::ty_uint(uint_ty) => match uint_ty {
|
|
ast::TyU => (~"uint", DW_ATE_unsigned),
|
|
ast::TyU8 => (~"u8", DW_ATE_unsigned),
|
|
ast::TyU16 => (~"u16", DW_ATE_unsigned),
|
|
ast::TyU32 => (~"u32", DW_ATE_unsigned),
|
|
ast::TyU64 => (~"u64", DW_ATE_unsigned)
|
|
},
|
|
ty::ty_float(float_ty) => match float_ty {
|
|
ast::TyF32 => (~"f32", DW_ATE_float),
|
|
ast::TyF64 => (~"f64", DW_ATE_float)
|
|
},
|
|
_ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type")
|
|
};
|
|
|
|
let llvm_type = type_of::type_of(cx, t);
|
|
let (size, align) = size_and_align_of(cx, llvm_type);
|
|
let ty_metadata = name.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateBasicType(
|
|
DIB(cx),
|
|
name,
|
|
bytes_to_bits(size),
|
|
bytes_to_bits(align),
|
|
encoding)
|
|
}
|
|
});
|
|
|
|
return ty_metadata;
|
|
}
|
|
|
|
fn pointer_type_metadata(cx: &CrateContext,
|
|
pointer_type: ty::t,
|
|
pointee_type_metadata: DIType)
|
|
-> DIType {
|
|
let pointer_llvm_type = type_of::type_of(cx, pointer_type);
|
|
let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type);
|
|
let name = ppaux::ty_to_str(cx.tcx(), pointer_type);
|
|
let ptr_metadata = name.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreatePointerType(
|
|
DIB(cx),
|
|
pointee_type_metadata,
|
|
bytes_to_bits(pointer_size),
|
|
bytes_to_bits(pointer_align),
|
|
name)
|
|
}
|
|
});
|
|
return ptr_metadata;
|
|
}
|
|
|
|
enum MemberDescriptionFactory {
|
|
StructMD(StructMemberDescriptionFactory),
|
|
TupleMD(TupleMemberDescriptionFactory),
|
|
GeneralMD(GeneralMemberDescriptionFactory),
|
|
EnumVariantMD(EnumVariantMemberDescriptionFactory)
|
|
}
|
|
|
|
impl MemberDescriptionFactory {
|
|
fn create_member_descriptions(&self, cx: &CrateContext)
|
|
-> Vec<MemberDescription> {
|
|
match *self {
|
|
StructMD(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
TupleMD(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
GeneralMD(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
EnumVariantMD(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct StructMemberDescriptionFactory {
|
|
fields: Vec<ty::field> ,
|
|
span: Span,
|
|
}
|
|
|
|
impl StructMemberDescriptionFactory {
|
|
fn create_member_descriptions(&self, cx: &CrateContext)
|
|
-> Vec<MemberDescription> {
|
|
self.fields.iter().map(|field| {
|
|
let name = if field.ident.name == special_idents::unnamed_field.name {
|
|
~""
|
|
} else {
|
|
token::get_ident(field.ident).get().to_str()
|
|
};
|
|
|
|
MemberDescription {
|
|
name: name,
|
|
llvm_type: type_of::type_of(cx, field.mt.ty),
|
|
type_metadata: type_metadata(cx, field.mt.ty, self.span),
|
|
offset: ComputedMemberOffset,
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
fn prepare_struct_metadata(cx: &CrateContext,
|
|
struct_type: ty::t,
|
|
def_id: ast::DefId,
|
|
substs: &ty::substs,
|
|
span: Span)
|
|
-> RecursiveTypeDescription {
|
|
let struct_name = ppaux::ty_to_str(cx.tcx(), struct_type);
|
|
let struct_llvm_type = type_of::type_of(cx, struct_type);
|
|
|
|
let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, def_id);
|
|
|
|
let file_name = span_start(cx, definition_span).file.name.clone();
|
|
let file_metadata = file_metadata(cx, file_name);
|
|
|
|
let struct_metadata_stub = create_struct_stub(cx,
|
|
struct_llvm_type,
|
|
struct_name,
|
|
containing_scope,
|
|
file_metadata,
|
|
definition_span);
|
|
|
|
let fields = ty::struct_fields(cx.tcx(), def_id, substs);
|
|
|
|
UnfinishedMetadata {
|
|
cache_id: cache_id_for_type(struct_type),
|
|
metadata_stub: struct_metadata_stub,
|
|
llvm_type: struct_llvm_type,
|
|
file_metadata: file_metadata,
|
|
member_description_factory: StructMD(StructMemberDescriptionFactory {
|
|
fields: fields,
|
|
span: span,
|
|
}),
|
|
}
|
|
}
|
|
|
|
enum RecursiveTypeDescription {
|
|
UnfinishedMetadata {
|
|
cache_id: uint,
|
|
metadata_stub: DICompositeType,
|
|
llvm_type: Type,
|
|
file_metadata: DIFile,
|
|
member_description_factory: MemberDescriptionFactory,
|
|
},
|
|
FinalMetadata(DICompositeType)
|
|
}
|
|
|
|
impl RecursiveTypeDescription {
|
|
|
|
fn finalize(&self, cx: &CrateContext) -> DICompositeType {
|
|
match *self {
|
|
FinalMetadata(metadata) => metadata,
|
|
UnfinishedMetadata {
|
|
cache_id,
|
|
metadata_stub,
|
|
llvm_type,
|
|
file_metadata,
|
|
ref member_description_factory
|
|
} => {
|
|
// Insert the stub into the cache in order to allow recursive references ...
|
|
debug_context(cx).created_types.borrow_mut()
|
|
.insert(cache_id, metadata_stub);
|
|
|
|
// ... then create the member descriptions ...
|
|
let member_descriptions = member_description_factory.create_member_descriptions(cx);
|
|
|
|
// ... and attach them to the stub to complete it.
|
|
set_members_of_composite_type(cx,
|
|
metadata_stub,
|
|
llvm_type,
|
|
member_descriptions.as_slice(),
|
|
file_metadata,
|
|
codemap::DUMMY_SP);
|
|
return metadata_stub;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct TupleMemberDescriptionFactory {
|
|
component_types: Vec<ty::t> ,
|
|
span: Span,
|
|
}
|
|
|
|
impl TupleMemberDescriptionFactory {
|
|
fn create_member_descriptions(&self, cx: &CrateContext)
|
|
-> Vec<MemberDescription> {
|
|
self.component_types.iter().map(|&component_type| {
|
|
MemberDescription {
|
|
name: ~"",
|
|
llvm_type: type_of::type_of(cx, component_type),
|
|
type_metadata: type_metadata(cx, component_type, self.span),
|
|
offset: ComputedMemberOffset,
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
fn prepare_tuple_metadata(cx: &CrateContext,
|
|
tuple_type: ty::t,
|
|
component_types: &[ty::t],
|
|
span: Span)
|
|
-> RecursiveTypeDescription {
|
|
let tuple_name = ppaux::ty_to_str(cx.tcx(), tuple_type);
|
|
let tuple_llvm_type = type_of::type_of(cx, tuple_type);
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
|
|
UnfinishedMetadata {
|
|
cache_id: cache_id_for_type(tuple_type),
|
|
metadata_stub: create_struct_stub(cx,
|
|
tuple_llvm_type,
|
|
tuple_name,
|
|
file_metadata,
|
|
file_metadata,
|
|
span),
|
|
llvm_type: tuple_llvm_type,
|
|
file_metadata: file_metadata,
|
|
member_description_factory: TupleMD(TupleMemberDescriptionFactory {
|
|
component_types: Vec::from_slice(component_types),
|
|
span: span,
|
|
})
|
|
}
|
|
}
|
|
|
|
struct GeneralMemberDescriptionFactory {
|
|
type_rep: @adt::Repr,
|
|
variants: @Vec<@ty::VariantInfo> ,
|
|
discriminant_type_metadata: ValueRef,
|
|
containing_scope: DIScope,
|
|
file_metadata: DIFile,
|
|
span: Span,
|
|
}
|
|
|
|
impl GeneralMemberDescriptionFactory {
|
|
fn create_member_descriptions(&self, cx: &CrateContext)
|
|
-> Vec<MemberDescription> {
|
|
// Capture type_rep, so we don't have to copy the struct_defs array
|
|
let struct_defs = match *self.type_rep {
|
|
adt::General(_, ref struct_defs) => struct_defs,
|
|
_ => cx.sess().bug("unreachable")
|
|
};
|
|
|
|
struct_defs
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, struct_def)| {
|
|
let (variant_type_metadata, variant_llvm_type, member_desc_factory) =
|
|
describe_enum_variant(cx,
|
|
struct_def,
|
|
*self.variants.get(i),
|
|
Some(self.discriminant_type_metadata),
|
|
self.containing_scope,
|
|
self.file_metadata,
|
|
self.span);
|
|
|
|
let member_descriptions =
|
|
member_desc_factory.create_member_descriptions(cx);
|
|
|
|
set_members_of_composite_type(cx,
|
|
variant_type_metadata,
|
|
variant_llvm_type,
|
|
member_descriptions.as_slice(),
|
|
self.file_metadata,
|
|
codemap::DUMMY_SP);
|
|
MemberDescription {
|
|
name: ~"",
|
|
llvm_type: variant_llvm_type,
|
|
type_metadata: variant_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
struct EnumVariantMemberDescriptionFactory {
|
|
args: Vec<(~str, ty::t)> ,
|
|
discriminant_type_metadata: Option<DIType>,
|
|
span: Span,
|
|
}
|
|
|
|
impl EnumVariantMemberDescriptionFactory {
|
|
fn create_member_descriptions(&self, cx: &CrateContext)
|
|
-> Vec<MemberDescription> {
|
|
self.args.iter().enumerate().map(|(i, &(ref name, ty))| {
|
|
MemberDescription {
|
|
name: name.to_str(),
|
|
llvm_type: type_of::type_of(cx, ty),
|
|
type_metadata: match self.discriminant_type_metadata {
|
|
Some(metadata) if i == 0 => metadata,
|
|
_ => type_metadata(cx, ty, self.span)
|
|
},
|
|
offset: ComputedMemberOffset,
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
fn describe_enum_variant(cx: &CrateContext,
|
|
struct_def: &adt::Struct,
|
|
variant_info: &ty::VariantInfo,
|
|
discriminant_type_metadata: Option<DIType>,
|
|
containing_scope: DIScope,
|
|
file_metadata: DIFile,
|
|
span: Span)
|
|
-> (DICompositeType, Type, MemberDescriptionFactory) {
|
|
let variant_llvm_type =
|
|
Type::struct_(cx, struct_def.fields
|
|
.iter()
|
|
.map(|&t| type_of::type_of(cx, t))
|
|
.collect::<Vec<_>>()
|
|
.as_slice(),
|
|
struct_def.packed);
|
|
// Could some consistency checks here: size, align, field count, discr type
|
|
|
|
// Find the source code location of the variant's definition
|
|
let variant_definition_span = if variant_info.id.krate == ast::LOCAL_CRATE {
|
|
cx.tcx.map.span(variant_info.id.node)
|
|
} else {
|
|
// For definitions from other crates we have no location information available.
|
|
codemap::DUMMY_SP
|
|
};
|
|
|
|
let metadata_stub = create_struct_stub(cx,
|
|
variant_llvm_type,
|
|
token::get_ident(variant_info.name).get(),
|
|
containing_scope,
|
|
file_metadata,
|
|
variant_definition_span);
|
|
|
|
// Get the argument names from the enum variant info
|
|
let mut arg_names: Vec<_> = match variant_info.arg_names {
|
|
Some(ref names) => {
|
|
names.iter().map(|ident| token::get_ident(*ident).get().to_str()).collect()
|
|
}
|
|
None => variant_info.args.iter().map(|_| ~"").collect()
|
|
};
|
|
|
|
// If this is not a univariant enum, there is also the (unnamed) discriminant field
|
|
if discriminant_type_metadata.is_some() {
|
|
arg_names.insert(0, ~"");
|
|
}
|
|
|
|
// Build an array of (field name, field type) pairs to be captured in the factory closure.
|
|
let args: Vec<(~str, ty::t)> = arg_names.iter()
|
|
.zip(struct_def.fields.iter())
|
|
.map(|(s, &t)| (s.to_str(), t))
|
|
.collect();
|
|
|
|
let member_description_factory =
|
|
EnumVariantMD(EnumVariantMemberDescriptionFactory {
|
|
args: args,
|
|
discriminant_type_metadata: discriminant_type_metadata,
|
|
span: span,
|
|
});
|
|
|
|
(metadata_stub, variant_llvm_type, member_description_factory)
|
|
}
|
|
|
|
fn prepare_enum_metadata(cx: &CrateContext,
|
|
enum_type: ty::t,
|
|
enum_def_id: ast::DefId,
|
|
span: Span)
|
|
-> RecursiveTypeDescription {
|
|
let enum_name = ppaux::ty_to_str(cx.tcx(), enum_type);
|
|
|
|
let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id);
|
|
let loc = span_start(cx, definition_span);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
|
|
// For empty enums there is an early exit. Just describe it as an empty struct with the
|
|
// appropriate type name
|
|
if ty::type_is_empty(cx.tcx(), enum_type) {
|
|
let empty_type_metadata = composite_type_metadata(cx,
|
|
Type::nil(cx),
|
|
enum_name,
|
|
[],
|
|
containing_scope,
|
|
file_metadata,
|
|
definition_span);
|
|
|
|
return FinalMetadata(empty_type_metadata);
|
|
}
|
|
|
|
let variants = ty::enum_variants(cx.tcx(), enum_def_id);
|
|
|
|
let enumerators_metadata: Vec<DIDescriptor> = variants
|
|
.iter()
|
|
.map(|v| {
|
|
token::get_ident(v.name).get().with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateEnumerator(
|
|
DIB(cx),
|
|
name,
|
|
v.disr_val as c_ulonglong)
|
|
}
|
|
})
|
|
})
|
|
.collect();
|
|
|
|
let discriminant_type_metadata = |inttype| {
|
|
// We can reuse the type of the discriminant for all monomorphized instances of an enum
|
|
// because it doesn't depend on any type parameters. The def_id, uniquely identifying the
|
|
// enum's polytype acts as key in this cache.
|
|
let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types
|
|
.borrow()
|
|
.find_copy(&enum_def_id);
|
|
match cached_discriminant_type_metadata {
|
|
Some(discriminant_type_metadata) => discriminant_type_metadata,
|
|
None => {
|
|
let discriminant_llvm_type = adt::ll_inttype(cx, inttype);
|
|
let (discriminant_size, discriminant_align) =
|
|
size_and_align_of(cx, discriminant_llvm_type);
|
|
let discriminant_base_type_metadata = type_metadata(cx,
|
|
adt::ty_of_inttype(inttype),
|
|
codemap::DUMMY_SP);
|
|
let discriminant_name = get_enum_discriminant_name(cx, enum_def_id);
|
|
|
|
let discriminant_type_metadata = discriminant_name.get().with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateEnumerationType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
bytes_to_bits(discriminant_size),
|
|
bytes_to_bits(discriminant_align),
|
|
create_DIArray(DIB(cx), enumerators_metadata.as_slice()),
|
|
discriminant_base_type_metadata)
|
|
}
|
|
});
|
|
|
|
debug_context(cx).created_enum_disr_types
|
|
.borrow_mut()
|
|
.insert(enum_def_id, discriminant_type_metadata);
|
|
|
|
discriminant_type_metadata
|
|
}
|
|
}
|
|
};
|
|
|
|
let type_rep = adt::represent_type(cx, enum_type);
|
|
|
|
return match *type_rep {
|
|
adt::CEnum(inttype, _, _) => {
|
|
FinalMetadata(discriminant_type_metadata(inttype))
|
|
}
|
|
adt::Univariant(ref struct_def, _) => {
|
|
assert!(variants.len() == 1);
|
|
let (metadata_stub,
|
|
variant_llvm_type,
|
|
member_description_factory) =
|
|
describe_enum_variant(cx,
|
|
struct_def,
|
|
*variants.get(0),
|
|
None,
|
|
containing_scope,
|
|
file_metadata,
|
|
span);
|
|
UnfinishedMetadata {
|
|
cache_id: cache_id_for_type(enum_type),
|
|
metadata_stub: metadata_stub,
|
|
llvm_type: variant_llvm_type,
|
|
file_metadata: file_metadata,
|
|
member_description_factory: member_description_factory
|
|
}
|
|
}
|
|
adt::General(inttype, _) => {
|
|
let discriminant_type_metadata = discriminant_type_metadata(inttype);
|
|
let enum_llvm_type = type_of::type_of(cx, enum_type);
|
|
let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type);
|
|
let unique_id = generate_unique_type_id("DI_ENUM_");
|
|
|
|
let enum_metadata = enum_name.with_c_str(|enum_name| {
|
|
unique_id.with_c_str(|unique_id| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateUnionType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
enum_name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
bytes_to_bits(enum_type_size),
|
|
bytes_to_bits(enum_type_align),
|
|
0, // Flags
|
|
ptr::null(),
|
|
0, // RuntimeLang
|
|
unique_id)
|
|
}
|
|
})
|
|
});
|
|
|
|
UnfinishedMetadata {
|
|
cache_id: cache_id_for_type(enum_type),
|
|
metadata_stub: enum_metadata,
|
|
llvm_type: enum_llvm_type,
|
|
file_metadata: file_metadata,
|
|
member_description_factory: GeneralMD(GeneralMemberDescriptionFactory {
|
|
type_rep: type_rep,
|
|
variants: variants,
|
|
discriminant_type_metadata: discriminant_type_metadata,
|
|
containing_scope: containing_scope,
|
|
file_metadata: file_metadata,
|
|
span: span,
|
|
}),
|
|
}
|
|
}
|
|
adt::NullablePointer { nonnull: ref struct_def, nndiscr, .. } => {
|
|
let (metadata_stub,
|
|
variant_llvm_type,
|
|
member_description_factory) =
|
|
describe_enum_variant(cx,
|
|
struct_def,
|
|
*variants.get(nndiscr as uint),
|
|
None,
|
|
containing_scope,
|
|
file_metadata,
|
|
span);
|
|
UnfinishedMetadata {
|
|
cache_id: cache_id_for_type(enum_type),
|
|
metadata_stub: metadata_stub,
|
|
llvm_type: variant_llvm_type,
|
|
file_metadata: file_metadata,
|
|
member_description_factory: member_description_factory
|
|
}
|
|
}
|
|
};
|
|
|
|
fn get_enum_discriminant_name(cx: &CrateContext, def_id: ast::DefId) -> token::InternedString {
|
|
let name = if def_id.krate == ast::LOCAL_CRATE {
|
|
cx.tcx.map.get_path_elem(def_id.node).name()
|
|
} else {
|
|
csearch::get_item_path(&cx.tcx, def_id).last().unwrap().name()
|
|
};
|
|
|
|
token::get_name(name)
|
|
}
|
|
}
|
|
|
|
enum MemberOffset {
|
|
FixedMemberOffset { bytes: uint },
|
|
// For ComputedMemberOffset, the offset is read from the llvm type definition
|
|
ComputedMemberOffset
|
|
}
|
|
|
|
struct MemberDescription {
|
|
name: ~str,
|
|
llvm_type: Type,
|
|
type_metadata: DIType,
|
|
offset: MemberOffset,
|
|
}
|
|
|
|
/// Creates debug information for a composite type, that is, anything that results in a LLVM struct.
|
|
///
|
|
/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums.
|
|
fn composite_type_metadata(cx: &CrateContext,
|
|
composite_llvm_type: Type,
|
|
composite_type_name: &str,
|
|
member_descriptions: &[MemberDescription],
|
|
containing_scope: DIScope,
|
|
file_metadata: DIFile,
|
|
definition_span: Span)
|
|
-> DICompositeType {
|
|
// Create the (empty) struct metadata node ...
|
|
let composite_type_metadata = create_struct_stub(cx,
|
|
composite_llvm_type,
|
|
composite_type_name,
|
|
containing_scope,
|
|
file_metadata,
|
|
definition_span);
|
|
|
|
// ... and immediately create and add the member descriptions.
|
|
set_members_of_composite_type(cx,
|
|
composite_type_metadata,
|
|
composite_llvm_type,
|
|
member_descriptions,
|
|
file_metadata,
|
|
definition_span);
|
|
|
|
return composite_type_metadata;
|
|
}
|
|
|
|
fn set_members_of_composite_type(cx: &CrateContext,
|
|
composite_type_metadata: DICompositeType,
|
|
composite_llvm_type: Type,
|
|
member_descriptions: &[MemberDescription],
|
|
file_metadata: DIFile,
|
|
definition_span: Span) {
|
|
// In some rare cases LLVM metadata uniquing would lead to an existing type description being
|
|
// used instead of a new one created in create_struct_stub. This would cause a hard to trace
|
|
// assertion in DICompositeType::SetTypeArray(). The following check makes sure that we get a
|
|
// better error message if this should happen again due to some regression.
|
|
{
|
|
let mut composite_types_completed =
|
|
debug_context(cx).composite_types_completed.borrow_mut();
|
|
if composite_types_completed.contains(&composite_type_metadata) {
|
|
cx.sess().span_bug(definition_span, "debuginfo::set_members_of_composite_type() - \
|
|
Already completed forward declaration \
|
|
re-encountered.");
|
|
} else {
|
|
composite_types_completed.insert(composite_type_metadata);
|
|
}
|
|
}
|
|
|
|
let loc = span_start(cx, definition_span);
|
|
|
|
let member_metadata: Vec<DIDescriptor> = member_descriptions
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, member_description)| {
|
|
let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type);
|
|
let member_offset = match member_description.offset {
|
|
FixedMemberOffset { bytes } => bytes as u64,
|
|
ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i)
|
|
};
|
|
|
|
member_description.name.with_c_str(|member_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateMemberType(
|
|
DIB(cx),
|
|
composite_type_metadata,
|
|
member_name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
bytes_to_bits(member_size),
|
|
bytes_to_bits(member_align),
|
|
bytes_to_bits(member_offset),
|
|
0,
|
|
member_description.type_metadata)
|
|
}
|
|
})
|
|
})
|
|
.collect();
|
|
|
|
unsafe {
|
|
let type_array = create_DIArray(DIB(cx), member_metadata.as_slice());
|
|
llvm::LLVMDICompositeTypeSetTypeArray(composite_type_metadata, type_array);
|
|
}
|
|
}
|
|
|
|
// A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any caching, does not
|
|
// add any fields to the struct. This can be done later with set_members_of_composite_type().
|
|
fn create_struct_stub(cx: &CrateContext,
|
|
struct_llvm_type: Type,
|
|
struct_type_name: &str,
|
|
containing_scope: DIScope,
|
|
file_metadata: DIFile,
|
|
definition_span: Span)
|
|
-> DICompositeType {
|
|
let loc = span_start(cx, definition_span);
|
|
let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type);
|
|
|
|
// We assign unique IDs to the type stubs so LLVM metadata uniquing does not reuse instances
|
|
// where we don't want it.
|
|
let unique_id = generate_unique_type_id("DI_STRUCT_");
|
|
|
|
return unsafe {
|
|
struct_type_name.with_c_str(|name| {
|
|
unique_id.with_c_str(|unique_id| {
|
|
// LLVMDIBuilderCreateStructType() wants an empty array. A null pointer will lead to
|
|
// hard to trace and debug LLVM assertions later on in llvm/lib/IR/Value.cpp
|
|
let empty_array = create_DIArray(DIB(cx), []);
|
|
|
|
llvm::LLVMDIBuilderCreateStructType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
bytes_to_bits(struct_size),
|
|
bytes_to_bits(struct_align),
|
|
0,
|
|
ptr::null(),
|
|
empty_array,
|
|
0,
|
|
ptr::null(),
|
|
unique_id)
|
|
})
|
|
})
|
|
};
|
|
}
|
|
|
|
fn boxed_type_metadata(cx: &CrateContext,
|
|
content_type_name: Option<&str>,
|
|
content_llvm_type: Type,
|
|
content_type_metadata: DIType,
|
|
span: Span)
|
|
-> DICompositeType {
|
|
let box_type_name = match content_type_name {
|
|
Some(content_type_name) => format!("Boxed<{}>", content_type_name),
|
|
None => ~"BoxedType"
|
|
};
|
|
|
|
let box_llvm_type = Type::at_box(cx, content_llvm_type);
|
|
let member_llvm_types = box_llvm_type.field_types();
|
|
assert!(box_layout_is_correct(cx,
|
|
member_llvm_types.as_slice(),
|
|
content_llvm_type));
|
|
|
|
let int_type = ty::mk_int();
|
|
let nil_pointer_type = ty::mk_nil_ptr(cx.tcx());
|
|
let nil_pointer_type_metadata = type_metadata(cx, nil_pointer_type, codemap::DUMMY_SP);
|
|
|
|
let member_descriptions = [
|
|
MemberDescription {
|
|
name: ~"refcnt",
|
|
llvm_type: *member_llvm_types.get(0),
|
|
type_metadata: type_metadata(cx, int_type, codemap::DUMMY_SP),
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
MemberDescription {
|
|
name: ~"drop_glue",
|
|
llvm_type: *member_llvm_types.get(1),
|
|
type_metadata: nil_pointer_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
MemberDescription {
|
|
name: ~"prev",
|
|
llvm_type: *member_llvm_types.get(2),
|
|
type_metadata: nil_pointer_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
MemberDescription {
|
|
name: ~"next",
|
|
llvm_type: *member_llvm_types.get(3),
|
|
type_metadata: nil_pointer_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
MemberDescription {
|
|
name: ~"val",
|
|
llvm_type: *member_llvm_types.get(4),
|
|
type_metadata: content_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
}
|
|
];
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
|
|
return composite_type_metadata(
|
|
cx,
|
|
box_llvm_type,
|
|
box_type_name,
|
|
member_descriptions,
|
|
file_metadata,
|
|
file_metadata,
|
|
span);
|
|
|
|
// Unfortunately, we cannot assert anything but the correct types here---and not whether the
|
|
// 'next' and 'prev' pointers are in the correct order.
|
|
fn box_layout_is_correct(cx: &CrateContext,
|
|
member_llvm_types: &[Type],
|
|
content_llvm_type: Type)
|
|
-> bool {
|
|
member_llvm_types.len() == 5 &&
|
|
member_llvm_types[0] == cx.int_type &&
|
|
member_llvm_types[1] == Type::generic_glue_fn(cx).ptr_to() &&
|
|
member_llvm_types[2] == Type::i8(cx).ptr_to() &&
|
|
member_llvm_types[3] == Type::i8(cx).ptr_to() &&
|
|
member_llvm_types[4] == content_llvm_type
|
|
}
|
|
}
|
|
|
|
fn fixed_vec_metadata(cx: &CrateContext,
|
|
element_type: ty::t,
|
|
len: uint,
|
|
span: Span)
|
|
-> DIType {
|
|
let element_type_metadata = type_metadata(cx, element_type, span);
|
|
let element_llvm_type = type_of::type_of(cx, element_type);
|
|
let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type);
|
|
|
|
let subrange = unsafe {
|
|
llvm::LLVMDIBuilderGetOrCreateSubrange(
|
|
DIB(cx),
|
|
0,
|
|
len as c_longlong)
|
|
};
|
|
|
|
let subscripts = create_DIArray(DIB(cx), [subrange]);
|
|
return unsafe {
|
|
llvm::LLVMDIBuilderCreateArrayType(
|
|
DIB(cx),
|
|
bytes_to_bits(element_type_size * (len as u64)),
|
|
bytes_to_bits(element_type_align),
|
|
element_type_metadata,
|
|
subscripts)
|
|
};
|
|
}
|
|
|
|
fn vec_metadata(cx: &CrateContext,
|
|
element_type: ty::t,
|
|
span: Span)
|
|
-> DICompositeType {
|
|
|
|
let element_type_metadata = type_metadata(cx, element_type, span);
|
|
let element_llvm_type = type_of::type_of(cx, element_type);
|
|
let (element_size, element_align) = size_and_align_of(cx, element_llvm_type);
|
|
|
|
let vec_llvm_type = Type::vec(cx, &element_llvm_type);
|
|
let vec_type_name: &str = format!("[{}]", ppaux::ty_to_str(cx.tcx(), element_type));
|
|
|
|
let member_llvm_types = vec_llvm_type.field_types();
|
|
|
|
let int_type_metadata = type_metadata(cx, ty::mk_int(), span);
|
|
let array_type_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateArrayType(
|
|
DIB(cx),
|
|
bytes_to_bits(element_size),
|
|
bytes_to_bits(element_align),
|
|
element_type_metadata,
|
|
create_DIArray(DIB(cx), [llvm::LLVMDIBuilderGetOrCreateSubrange(DIB(cx), 0, 0)]))
|
|
};
|
|
|
|
let member_descriptions = [
|
|
MemberDescription {
|
|
name: ~"fill",
|
|
llvm_type: *member_llvm_types.get(0),
|
|
type_metadata: int_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
MemberDescription {
|
|
name: ~"alloc",
|
|
llvm_type: *member_llvm_types.get(1),
|
|
type_metadata: int_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
MemberDescription {
|
|
name: ~"elements",
|
|
llvm_type: *member_llvm_types.get(2),
|
|
type_metadata: array_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
}
|
|
];
|
|
|
|
assert!(member_descriptions.len() == member_llvm_types.len());
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
|
|
composite_type_metadata(
|
|
cx,
|
|
vec_llvm_type,
|
|
vec_type_name,
|
|
member_descriptions,
|
|
file_metadata,
|
|
file_metadata,
|
|
span)
|
|
}
|
|
|
|
fn vec_slice_metadata(cx: &CrateContext,
|
|
vec_type: ty::t,
|
|
element_type: ty::t,
|
|
span: Span)
|
|
-> DICompositeType {
|
|
|
|
debug!("vec_slice_metadata: {:?}", ty::get(vec_type));
|
|
|
|
let slice_llvm_type = type_of::type_of(cx, vec_type);
|
|
let slice_type_name = ppaux::ty_to_str(cx.tcx(), vec_type);
|
|
|
|
let member_llvm_types = slice_llvm_type.field_types();
|
|
assert!(slice_layout_is_correct(cx,
|
|
member_llvm_types.as_slice(),
|
|
element_type));
|
|
|
|
let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt {
|
|
ty: element_type,
|
|
mutbl: ast::MutImmutable
|
|
});
|
|
|
|
let member_descriptions = [
|
|
MemberDescription {
|
|
name: ~"data_ptr",
|
|
llvm_type: *member_llvm_types.get(0),
|
|
type_metadata: type_metadata(cx, data_ptr_type, span),
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
MemberDescription {
|
|
name: ~"length",
|
|
llvm_type: *member_llvm_types.get(1),
|
|
type_metadata: type_metadata(cx, ty::mk_uint(), span),
|
|
offset: ComputedMemberOffset,
|
|
},
|
|
];
|
|
|
|
assert!(member_descriptions.len() == member_llvm_types.len());
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
|
|
return composite_type_metadata(
|
|
cx,
|
|
slice_llvm_type,
|
|
slice_type_name,
|
|
member_descriptions,
|
|
file_metadata,
|
|
file_metadata,
|
|
span);
|
|
|
|
fn slice_layout_is_correct(cx: &CrateContext,
|
|
member_llvm_types: &[Type],
|
|
element_type: ty::t)
|
|
-> bool {
|
|
member_llvm_types.len() == 2 &&
|
|
member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() &&
|
|
member_llvm_types[1] == cx.int_type
|
|
}
|
|
}
|
|
|
|
fn subroutine_type_metadata(cx: &CrateContext,
|
|
signature: &ty::FnSig,
|
|
span: Span)
|
|
-> DICompositeType {
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
|
|
let mut signature_metadata: Vec<DIType> =
|
|
Vec::with_capacity(signature.inputs.len() + 1);
|
|
|
|
// return type
|
|
signature_metadata.push(match ty::get(signature.output).sty {
|
|
ty::ty_nil => ptr::null(),
|
|
_ => type_metadata(cx, signature.output, span)
|
|
});
|
|
|
|
// regular arguments
|
|
for &argument_type in signature.inputs.iter() {
|
|
signature_metadata.push(type_metadata(cx, argument_type, span));
|
|
}
|
|
|
|
return unsafe {
|
|
llvm::LLVMDIBuilderCreateSubroutineType(
|
|
DIB(cx),
|
|
file_metadata,
|
|
create_DIArray(DIB(cx), signature_metadata.as_slice()))
|
|
};
|
|
}
|
|
|
|
fn trait_metadata(cx: &CrateContext,
|
|
def_id: ast::DefId,
|
|
trait_type: ty::t,
|
|
substs: &ty::substs,
|
|
trait_store: ty::TraitStore,
|
|
_: &ty::BuiltinBounds)
|
|
-> DIType {
|
|
// The implementation provided here is a stub. It makes sure that the trait type is
|
|
// assigned the correct name, size, namespace, and source location. But it does not describe
|
|
// the trait's methods.
|
|
let last = ty::with_path(cx.tcx(), def_id, |mut path| path.last().unwrap());
|
|
let ident_string = token::get_name(last.name());
|
|
let name = ppaux::trait_store_to_str(cx.tcx(), trait_store) +
|
|
ident_string.get();
|
|
// Add type and region parameters
|
|
let name = ppaux::parameterized(cx.tcx(), name, &substs.regions,
|
|
substs.tps.as_slice(), def_id, true);
|
|
|
|
let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, def_id);
|
|
|
|
let file_name = span_start(cx, definition_span).file.name.clone();
|
|
let file_metadata = file_metadata(cx, file_name);
|
|
|
|
let trait_llvm_type = type_of::type_of(cx, trait_type);
|
|
|
|
composite_type_metadata(cx,
|
|
trait_llvm_type,
|
|
name,
|
|
[],
|
|
containing_scope,
|
|
file_metadata,
|
|
definition_span)
|
|
}
|
|
|
|
fn type_metadata(cx: &CrateContext,
|
|
t: ty::t,
|
|
usage_site_span: Span)
|
|
-> DIType {
|
|
let cache_id = cache_id_for_type(t);
|
|
|
|
match debug_context(cx).created_types.borrow().find(&cache_id) {
|
|
Some(type_metadata) => return *type_metadata,
|
|
None => ()
|
|
}
|
|
|
|
fn create_pointer_to_box_metadata(cx: &CrateContext,
|
|
pointer_type: ty::t,
|
|
type_in_box: ty::t)
|
|
-> DIType {
|
|
let content_type_name: &str = ppaux::ty_to_str(cx.tcx(), type_in_box);
|
|
let content_llvm_type = type_of::type_of(cx, type_in_box);
|
|
let content_type_metadata = type_metadata(
|
|
cx,
|
|
type_in_box,
|
|
codemap::DUMMY_SP);
|
|
|
|
let box_metadata = boxed_type_metadata(
|
|
cx,
|
|
Some(content_type_name),
|
|
content_llvm_type,
|
|
content_type_metadata,
|
|
codemap::DUMMY_SP);
|
|
|
|
pointer_type_metadata(cx, pointer_type, box_metadata)
|
|
}
|
|
|
|
debug!("type_metadata: {:?}", ty::get(t));
|
|
|
|
let sty = &ty::get(t).sty;
|
|
let type_metadata = match *sty {
|
|
ty::ty_nil |
|
|
ty::ty_bot |
|
|
ty::ty_bool |
|
|
ty::ty_char |
|
|
ty::ty_int(_) |
|
|
ty::ty_uint(_) |
|
|
ty::ty_float(_) => {
|
|
basic_type_metadata(cx, t)
|
|
},
|
|
ty::ty_str(ref vstore) => {
|
|
let i8_t = ty::mk_i8();
|
|
match *vstore {
|
|
ty::VstoreFixed(len) => {
|
|
fixed_vec_metadata(cx, i8_t, len, usage_site_span)
|
|
},
|
|
ty::VstoreUniq => {
|
|
let vec_metadata = vec_metadata(cx, i8_t, usage_site_span);
|
|
pointer_type_metadata(cx, t, vec_metadata)
|
|
}
|
|
ty::VstoreSlice(..) => {
|
|
vec_slice_metadata(cx, t, i8_t, usage_site_span)
|
|
}
|
|
}
|
|
},
|
|
ty::ty_enum(def_id, _) => {
|
|
prepare_enum_metadata(cx, t, def_id, usage_site_span).finalize(cx)
|
|
},
|
|
ty::ty_box(typ) => {
|
|
create_pointer_to_box_metadata(cx, t, typ)
|
|
},
|
|
ty::ty_vec(ty, ref vstore) => {
|
|
match *vstore {
|
|
ty::VstoreFixed(len) => {
|
|
fixed_vec_metadata(cx, ty, len, usage_site_span)
|
|
}
|
|
ty::VstoreUniq => {
|
|
let vec_metadata = vec_metadata(cx, ty, usage_site_span);
|
|
pointer_type_metadata(cx, t, vec_metadata)
|
|
}
|
|
ty::VstoreSlice(..) => {
|
|
vec_slice_metadata(cx, t, ty, usage_site_span)
|
|
}
|
|
}
|
|
},
|
|
ty::ty_uniq(typ) => {
|
|
let pointee = type_metadata(cx, typ, usage_site_span);
|
|
pointer_type_metadata(cx, t, pointee)
|
|
}
|
|
ty::ty_ptr(ref mt) | ty::ty_rptr(_, ref mt) => {
|
|
let pointee = type_metadata(cx, mt.ty, usage_site_span);
|
|
pointer_type_metadata(cx, t, pointee)
|
|
},
|
|
ty::ty_bare_fn(ref barefnty) => {
|
|
subroutine_type_metadata(cx, &barefnty.sig, usage_site_span)
|
|
},
|
|
ty::ty_closure(ref closurety) => {
|
|
subroutine_type_metadata(cx, &closurety.sig, usage_site_span)
|
|
},
|
|
ty::ty_trait(~ty::TyTrait { def_id, ref substs, store, ref bounds }) => {
|
|
trait_metadata(cx, def_id, t, substs, store, bounds)
|
|
},
|
|
ty::ty_struct(def_id, ref substs) => {
|
|
if ty::type_is_simd(cx.tcx(), t) {
|
|
let element_type = ty::simd_type(cx.tcx(), t);
|
|
let len = ty::simd_size(cx.tcx(), t);
|
|
fixed_vec_metadata(cx, element_type, len, usage_site_span)
|
|
} else {
|
|
prepare_struct_metadata(cx, t, def_id, substs, usage_site_span).finalize(cx)
|
|
}
|
|
},
|
|
ty::ty_tup(ref elements) => {
|
|
prepare_tuple_metadata(cx,
|
|
t,
|
|
elements.as_slice(),
|
|
usage_site_span).finalize(cx)
|
|
}
|
|
_ => cx.sess().bug(format!("debuginfo: unexpected type in type_metadata: {:?}", sty))
|
|
};
|
|
|
|
debug_context(cx).created_types.borrow_mut().insert(cache_id, type_metadata);
|
|
type_metadata
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
enum DebugLocation {
|
|
KnownLocation { scope: DIScope, line: uint, col: uint },
|
|
UnknownLocation
|
|
}
|
|
|
|
impl DebugLocation {
|
|
fn new(scope: DIScope, line: uint, col: uint) -> DebugLocation {
|
|
KnownLocation {
|
|
scope: scope,
|
|
line: line,
|
|
col: col,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn set_debug_location(cx: &CrateContext, debug_location: DebugLocation) {
|
|
if debug_location == debug_context(cx).current_debug_location.get() {
|
|
return;
|
|
}
|
|
|
|
let metadata_node;
|
|
|
|
match debug_location {
|
|
KnownLocation { scope, line, .. } => {
|
|
let col = 0; // Always set the column to zero like Clang and GCC
|
|
debug!("setting debug location to {} {}", line, col);
|
|
let elements = [C_i32(cx, line as i32), C_i32(cx, col as i32), scope, ptr::null()];
|
|
unsafe {
|
|
metadata_node = llvm::LLVMMDNodeInContext(debug_context(cx).llcontext,
|
|
elements.as_ptr(),
|
|
elements.len() as c_uint);
|
|
}
|
|
}
|
|
UnknownLocation => {
|
|
debug!("clearing debug location ");
|
|
metadata_node = ptr::null();
|
|
}
|
|
};
|
|
|
|
unsafe {
|
|
llvm::LLVMSetCurrentDebugLocation(cx.builder.b, metadata_node);
|
|
}
|
|
|
|
debug_context(cx).current_debug_location.set(debug_location);
|
|
}
|
|
|
|
//=-------------------------------------------------------------------------------------------------
|
|
// Utility Functions
|
|
//=-------------------------------------------------------------------------------------------------
|
|
|
|
fn cache_id_for_type(t: ty::t) -> uint {
|
|
ty::type_id(t)
|
|
}
|
|
|
|
// Used to avoid LLVM metadata uniquing problems. See `create_struct_stub()` and
|
|
// `prepare_enum_metadata()`.
|
|
fn generate_unique_type_id(prefix: &'static str) -> ~str {
|
|
unsafe {
|
|
static mut unique_id_counter: atomics::AtomicUint = atomics::INIT_ATOMIC_UINT;
|
|
format!("{}{}", prefix, unique_id_counter.fetch_add(1, atomics::SeqCst))
|
|
}
|
|
}
|
|
|
|
/// Return codemap::Loc corresponding to the beginning of the span
|
|
fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc {
|
|
cx.sess().codemap().lookup_char_pos(span.lo)
|
|
}
|
|
|
|
fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) {
|
|
(machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type))
|
|
}
|
|
|
|
fn bytes_to_bits(bytes: u64) -> c_ulonglong {
|
|
(bytes * 8) as c_ulonglong
|
|
}
|
|
|
|
#[inline]
|
|
fn debug_context<'a>(cx: &'a CrateContext) -> &'a CrateDebugContext {
|
|
let debug_context: &'a CrateDebugContext = cx.dbg_cx.get_ref();
|
|
debug_context
|
|
}
|
|
|
|
#[inline]
|
|
fn DIB(cx: &CrateContext) -> DIBuilderRef {
|
|
cx.dbg_cx.get_ref().builder
|
|
}
|
|
|
|
fn fn_should_be_ignored(fcx: &FunctionContext) -> bool {
|
|
match fcx.debug_context.repr {
|
|
FunctionDebugContext(_) => false,
|
|
_ => true
|
|
}
|
|
}
|
|
|
|
fn assert_type_for_node_id(cx: &CrateContext, node_id: ast::NodeId, error_span: Span) {
|
|
if !cx.tcx.node_types.borrow().contains_key(&(node_id as uint)) {
|
|
cx.sess().span_bug(error_span, "debuginfo: Could not find type for node id!");
|
|
}
|
|
}
|
|
|
|
fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId)
|
|
-> (DIScope, Span) {
|
|
let containing_scope = namespace_for_item(cx, def_id).scope;
|
|
let definition_span = if def_id.krate == ast::LOCAL_CRATE {
|
|
cx.tcx.map.span(def_id.node)
|
|
} else {
|
|
// For external items there is no span information
|
|
codemap::DUMMY_SP
|
|
};
|
|
|
|
(containing_scope, definition_span)
|
|
}
|
|
|
|
// This procedure builds the *scope map* for a given function, which maps any given ast::NodeId in
|
|
// the function's AST to the correct DIScope metadata instance.
|
|
//
|
|
// This builder procedure walks the AST in execution order and keeps track of what belongs to which
|
|
// scope, creating DIScope DIEs along the way, and introducing *artificial* lexical scope
|
|
// descriptors where necessary. These artificial scopes allow GDB to correctly handle name
|
|
// shadowing.
|
|
fn populate_scope_map(cx: &CrateContext,
|
|
arg_pats: &[@ast::Pat],
|
|
fn_entry_block: &ast::Block,
|
|
fn_metadata: DISubprogram,
|
|
scope_map: &mut HashMap<ast::NodeId, DIScope>) {
|
|
let def_map = cx.tcx.def_map;
|
|
|
|
struct ScopeStackEntry {
|
|
scope_metadata: DIScope,
|
|
ident: Option<ast::Ident>
|
|
}
|
|
|
|
let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, ident: None });
|
|
|
|
// Push argument identifiers onto the stack so arguments integrate nicely with variable
|
|
// shadowing.
|
|
for &arg_pat in arg_pats.iter() {
|
|
pat_util::pat_bindings(def_map, arg_pat, |_, _, _, path_ref| {
|
|
let ident = ast_util::path_to_ident(path_ref);
|
|
scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata, ident: Some(ident) });
|
|
})
|
|
}
|
|
|
|
// Clang creates a separate scope for function bodies, so let's do this too
|
|
with_new_scope(cx,
|
|
fn_entry_block.span,
|
|
&mut scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, fn_entry_block, scope_stack, scope_map);
|
|
});
|
|
|
|
// local helper functions for walking the AST.
|
|
fn with_new_scope(cx: &CrateContext,
|
|
scope_span: Span,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut HashMap<ast::NodeId, DIScope>,
|
|
inner_walk: |&CrateContext,
|
|
&mut Vec<ScopeStackEntry> ,
|
|
&mut HashMap<ast::NodeId, DIScope>|) {
|
|
// Create a new lexical scope and push it onto the stack
|
|
let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
let parent_scope = scope_stack.last().unwrap().scope_metadata;
|
|
|
|
let scope_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateLexicalBlock(
|
|
DIB(cx),
|
|
parent_scope,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
loc.col.to_uint() as c_uint)
|
|
};
|
|
|
|
scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, ident: None });
|
|
|
|
inner_walk(cx, scope_stack, scope_map);
|
|
|
|
// pop artificial scopes
|
|
while scope_stack.last().unwrap().ident.is_some() {
|
|
scope_stack.pop();
|
|
}
|
|
|
|
if scope_stack.last().unwrap().scope_metadata != scope_metadata {
|
|
cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management.");
|
|
}
|
|
|
|
scope_stack.pop();
|
|
}
|
|
|
|
fn walk_block(cx: &CrateContext,
|
|
block: &ast::Block,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut HashMap<ast::NodeId, DIScope>) {
|
|
scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
// The interesting things here are statements and the concluding expression.
|
|
for statement in block.stmts.iter() {
|
|
scope_map.insert(ast_util::stmt_id(*statement),
|
|
scope_stack.last().unwrap().scope_metadata);
|
|
|
|
match statement.node {
|
|
ast::StmtDecl(decl, _) => walk_decl(cx, decl, scope_stack, scope_map),
|
|
ast::StmtExpr(exp, _) |
|
|
ast::StmtSemi(exp, _) => walk_expr(cx, exp, scope_stack, scope_map),
|
|
ast::StmtMac(..) => () // ignore macros (which should be expanded anyway)
|
|
}
|
|
}
|
|
|
|
for exp in block.expr.iter() {
|
|
walk_expr(cx, *exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
fn walk_decl(cx: &CrateContext,
|
|
decl: &ast::Decl,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut HashMap<ast::NodeId, DIScope>) {
|
|
match *decl {
|
|
codemap::Spanned { node: ast::DeclLocal(local), .. } => {
|
|
scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
walk_pattern(cx, local.pat, scope_stack, scope_map);
|
|
|
|
for exp in local.init.iter() {
|
|
walk_expr(cx, *exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
fn walk_pattern(cx: &CrateContext,
|
|
pat: @ast::Pat,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut HashMap<ast::NodeId, DIScope>) {
|
|
|
|
let def_map = cx.tcx.def_map;
|
|
|
|
// Unfortunately, we cannot just use pat_util::pat_bindings() or ast_util::walk_pat() here
|
|
// because we have to visit *all* nodes in order to put them into the scope map. The above
|
|
// functions don't do that.
|
|
match pat.node {
|
|
ast::PatIdent(_, ref path_ref, ref sub_pat_opt) => {
|
|
|
|
// Check if this is a binding. If so we need to put it on the scope stack and maybe
|
|
// introduce an articial scope
|
|
if pat_util::pat_is_binding(def_map, pat) {
|
|
|
|
let ident = ast_util::path_to_ident(path_ref);
|
|
|
|
// LLVM does not properly generate 'DW_AT_start_scope' fields for variable DIEs.
|
|
// For this reason we have to introduce an artificial scope at bindings whenever
|
|
// a variable with the same name is declared in *any* parent scope.
|
|
//
|
|
// Otherwise the following error occurs:
|
|
//
|
|
// let x = 10;
|
|
//
|
|
// do_something(); // 'gdb print x' correctly prints 10
|
|
//
|
|
// {
|
|
// do_something(); // 'gdb print x' prints 0, because it already reads the
|
|
// // uninitialized 'x' from the next line...
|
|
// let x = 100;
|
|
// do_something(); // 'gdb print x' correctly prints 100
|
|
// }
|
|
|
|
// Is there already a binding with that name?
|
|
// N.B.: this comparison must be UNhygienic... because
|
|
// gdb knows nothing about the context, so any two
|
|
// variables with the same name will cause the problem.
|
|
let need_new_scope = scope_stack
|
|
.iter()
|
|
.any(|entry| entry.ident.iter().any(|i| i.name == ident.name));
|
|
|
|
if need_new_scope {
|
|
// Create a new lexical scope and push it onto the stack
|
|
let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo);
|
|
let file_metadata = file_metadata(cx, loc.file.name);
|
|
let parent_scope = scope_stack.last().unwrap().scope_metadata;
|
|
|
|
let scope_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateLexicalBlock(
|
|
DIB(cx),
|
|
parent_scope,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
loc.col.to_uint() as c_uint)
|
|
};
|
|
|
|
scope_stack.push(ScopeStackEntry {
|
|
scope_metadata: scope_metadata,
|
|
ident: Some(ident)
|
|
});
|
|
|
|
} else {
|
|
// Push a new entry anyway so the name can be found
|
|
let prev_metadata = scope_stack.last().unwrap().scope_metadata;
|
|
scope_stack.push(ScopeStackEntry {
|
|
scope_metadata: prev_metadata,
|
|
ident: Some(ident)
|
|
});
|
|
}
|
|
}
|
|
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for &sub_pat in sub_pat_opt.iter() {
|
|
walk_pattern(cx, sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::PatWild | ast::PatWildMulti => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
}
|
|
|
|
ast::PatEnum(_, ref sub_pats_opt) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for ref sub_pats in sub_pats_opt.iter() {
|
|
for &p in sub_pats.iter() {
|
|
walk_pattern(cx, p, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::PatStruct(_, ref field_pats, _) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for &ast::FieldPat { pat: sub_pat, .. } in field_pats.iter() {
|
|
walk_pattern(cx, sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::PatTup(ref sub_pats) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for &sub_pat in sub_pats.iter() {
|
|
walk_pattern(cx, sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::PatUniq(sub_pat) | ast::PatRegion(sub_pat) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_pattern(cx, sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::PatLit(exp) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_expr(cx, exp, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::PatRange(exp1, exp2) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_expr(cx, exp1, scope_stack, scope_map);
|
|
walk_expr(cx, exp2, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for &sub_pat in front_sub_pats.iter() {
|
|
walk_pattern(cx, sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
for &sub_pat in middle_sub_pats.iter() {
|
|
walk_pattern(cx, sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
for &sub_pat in back_sub_pats.iter() {
|
|
walk_pattern(cx, sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walk_expr(cx: &CrateContext,
|
|
exp: &ast::Expr,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut HashMap<ast::NodeId, DIScope>) {
|
|
|
|
scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
match exp.node {
|
|
ast::ExprLit(_) |
|
|
ast::ExprBreak(_) |
|
|
ast::ExprAgain(_) |
|
|
ast::ExprPath(_) => {}
|
|
|
|
ast::ExprVstore(sub_exp, _) |
|
|
ast::ExprCast(sub_exp, _) |
|
|
ast::ExprAddrOf(_, sub_exp) |
|
|
ast::ExprField(sub_exp, _, _) |
|
|
ast::ExprParen(sub_exp) => walk_expr(cx, sub_exp, scope_stack, scope_map),
|
|
|
|
ast::ExprBox(place, sub_expr) => {
|
|
walk_expr(cx, place, scope_stack, scope_map);
|
|
walk_expr(cx, sub_expr, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprRet(exp_opt) => match exp_opt {
|
|
Some(sub_exp) => walk_expr(cx, sub_exp, scope_stack, scope_map),
|
|
None => ()
|
|
},
|
|
|
|
ast::ExprUnary(_, sub_exp) => {
|
|
walk_expr(cx, sub_exp, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprAssignOp(_, lhs, rhs) |
|
|
ast::ExprIndex(lhs, rhs) |
|
|
ast::ExprBinary(_, lhs, rhs) => {
|
|
walk_expr(cx, lhs, scope_stack, scope_map);
|
|
walk_expr(cx, rhs, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprVec(ref init_expressions) |
|
|
ast::ExprTup(ref init_expressions) => {
|
|
for ie in init_expressions.iter() {
|
|
walk_expr(cx, *ie, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::ExprAssign(sub_exp1, sub_exp2) |
|
|
ast::ExprRepeat(sub_exp1, sub_exp2) => {
|
|
walk_expr(cx, sub_exp1, scope_stack, scope_map);
|
|
walk_expr(cx, sub_exp2, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprIf(cond_exp, then_block, ref opt_else_exp) => {
|
|
walk_expr(cx, cond_exp, scope_stack, scope_map);
|
|
|
|
with_new_scope(cx,
|
|
then_block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, then_block, scope_stack, scope_map);
|
|
});
|
|
|
|
match *opt_else_exp {
|
|
Some(else_exp) => walk_expr(cx, else_exp, scope_stack, scope_map),
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
ast::ExprWhile(cond_exp, loop_body) => {
|
|
walk_expr(cx, cond_exp, scope_stack, scope_map);
|
|
|
|
with_new_scope(cx,
|
|
loop_body.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, loop_body, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
ast::ExprForLoop(_, _, _, _) => {
|
|
cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \
|
|
Found unexpanded for-loop.");
|
|
}
|
|
|
|
ast::ExprMac(_) => {
|
|
cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \
|
|
Found unexpanded macro.");
|
|
}
|
|
|
|
ast::ExprLoop(block, _) |
|
|
ast::ExprBlock(block) => {
|
|
with_new_scope(cx,
|
|
block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, block, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
ast::ExprFnBlock(decl, block) |
|
|
ast::ExprProc(decl, block) => {
|
|
with_new_scope(cx,
|
|
block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
for &ast::Arg { pat: pattern, .. } in decl.inputs.iter() {
|
|
walk_pattern(cx, pattern, scope_stack, scope_map);
|
|
}
|
|
|
|
walk_block(cx, block, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
ast::ExprCall(fn_exp, ref args) => {
|
|
walk_expr(cx, fn_exp, scope_stack, scope_map);
|
|
|
|
for arg_exp in args.iter() {
|
|
walk_expr(cx, *arg_exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::ExprMethodCall(_, _, ref args) => {
|
|
for arg_exp in args.iter() {
|
|
walk_expr(cx, *arg_exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::ExprMatch(discriminant_exp, ref arms) => {
|
|
walk_expr(cx, discriminant_exp, scope_stack, scope_map);
|
|
|
|
// for each arm we have to first walk the pattern as these might introduce new
|
|
// artificial scopes. It should be sufficient to walk only one pattern per arm, as
|
|
// they all must contain the same binding names
|
|
|
|
for arm_ref in arms.iter() {
|
|
let arm_span = arm_ref.pats.get(0).span;
|
|
|
|
with_new_scope(cx,
|
|
arm_span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
for &pat in arm_ref.pats.iter() {
|
|
walk_pattern(cx, pat, scope_stack, scope_map);
|
|
}
|
|
|
|
for guard_exp in arm_ref.guard.iter() {
|
|
walk_expr(cx, *guard_exp, scope_stack, scope_map)
|
|
}
|
|
|
|
walk_expr(cx, arm_ref.body, scope_stack, scope_map);
|
|
})
|
|
}
|
|
}
|
|
|
|
ast::ExprStruct(_, ref fields, ref base_exp) => {
|
|
for &ast::Field { expr: exp, .. } in fields.iter() {
|
|
walk_expr(cx, exp, scope_stack, scope_map);
|
|
}
|
|
|
|
match *base_exp {
|
|
Some(exp) => walk_expr(cx, exp, scope_stack, scope_map),
|
|
None => ()
|
|
}
|
|
}
|
|
|
|
ast::ExprInlineAsm(ast::InlineAsm { inputs: ref inputs,
|
|
outputs: ref outputs,
|
|
.. }) => {
|
|
// inputs, outputs: ~[(~str, @expr)]
|
|
for &(_, exp) in inputs.iter() {
|
|
walk_expr(cx, exp, scope_stack, scope_map);
|
|
}
|
|
|
|
for &(_, exp) in outputs.iter() {
|
|
walk_expr(cx, exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=-------------------------------------------------------------------------------------------------
|
|
// Namespace Handling
|
|
//=-------------------------------------------------------------------------------------------------
|
|
|
|
struct NamespaceTreeNode {
|
|
name: ast::Name,
|
|
scope: DIScope,
|
|
parent: Option<@NamespaceTreeNode>,
|
|
}
|
|
|
|
impl NamespaceTreeNode {
|
|
fn mangled_name_of_contained_item(&self, item_name: &str) -> ~str {
|
|
fn fill_nested(node: &NamespaceTreeNode, output: &mut StrBuf) {
|
|
match node.parent {
|
|
Some(parent) => fill_nested(parent, output),
|
|
None => {}
|
|
}
|
|
let string = token::get_name(node.name);
|
|
output.push_str(format!("{}", string.get().len()));
|
|
output.push_str(string.get());
|
|
}
|
|
|
|
let mut name = StrBuf::from_str("_ZN");
|
|
fill_nested(self, &mut name);
|
|
name.push_str(format!("{}", item_name.len()));
|
|
name.push_str(item_name);
|
|
name.push_char('E');
|
|
name.into_owned()
|
|
}
|
|
}
|
|
|
|
fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> @NamespaceTreeNode {
|
|
ty::with_path(cx.tcx(), def_id, |path| {
|
|
// prepend crate name if not already present
|
|
let krate = if def_id.krate == ast::LOCAL_CRATE {
|
|
let crate_namespace_ident = token::str_to_ident(cx.link_meta.crateid.name);
|
|
Some(ast_map::PathMod(crate_namespace_ident.name))
|
|
} else {
|
|
None
|
|
};
|
|
let mut path = krate.move_iter().chain(path).peekable();
|
|
|
|
let mut current_key = Vec::new();
|
|
let mut parent_node: Option<@NamespaceTreeNode> = None;
|
|
|
|
// Create/Lookup namespace for each element of the path.
|
|
loop {
|
|
// Emulate a for loop so we can use peek below.
|
|
let path_element = match path.next() {
|
|
Some(e) => e,
|
|
None => break
|
|
};
|
|
// Ignore the name of the item (the last path element).
|
|
if path.peek().is_none() {
|
|
break;
|
|
}
|
|
|
|
let name = path_element.name();
|
|
current_key.push(name);
|
|
|
|
let existing_node = debug_context(cx).namespace_map.borrow()
|
|
.find_copy(¤t_key);
|
|
let current_node = match existing_node {
|
|
Some(existing_node) => existing_node,
|
|
None => {
|
|
// create and insert
|
|
let parent_scope = match parent_node {
|
|
Some(node) => node.scope,
|
|
None => ptr::null()
|
|
};
|
|
let namespace_name = token::get_name(name);
|
|
let scope = namespace_name.get().with_c_str(|namespace_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateNameSpace(
|
|
DIB(cx),
|
|
parent_scope,
|
|
namespace_name,
|
|
// cannot reconstruct file ...
|
|
ptr::null(),
|
|
// ... or line information, but that's not so important.
|
|
0)
|
|
}
|
|
});
|
|
|
|
let node = @NamespaceTreeNode {
|
|
name: name,
|
|
scope: scope,
|
|
parent: parent_node,
|
|
};
|
|
|
|
debug_context(cx).namespace_map.borrow_mut()
|
|
.insert(current_key.clone(), node);
|
|
|
|
node
|
|
}
|
|
};
|
|
|
|
parent_node = Some(current_node);
|
|
}
|
|
|
|
match parent_node {
|
|
Some(node) => node,
|
|
None => {
|
|
cx.sess().bug(format!("debuginfo::namespace_for_item(): \
|
|
path too short for {:?}", def_id));
|
|
}
|
|
}
|
|
})
|
|
}
|