rust/src/rustc/middle/borrowck.rs
2012-05-25 14:37:30 -07:00

1867 lines
64 KiB
Rust

import syntax::ast;
import syntax::ast::{m_mutbl, m_imm, m_const};
import syntax::visit;
import syntax::ast_util;
import syntax::ast_map;
import syntax::codemap::span;
import util::ppaux::{ty_to_str, region_to_str};
import driver::session::session;
import std::map::{int_hash, hashmap, set};
import std::list;
import std::list::{list, cons, nil};
import result::{result, ok, err, extensions};
import syntax::print::pprust;
import util::common::indenter;
import ast_util::op_expr_callee_id;
export check_crate, root_map, mutbl_map;
fn check_crate(tcx: ty::ctxt,
method_map: typeck::method_map,
crate: @ast::crate) -> (root_map, mutbl_map) {
// big hack to keep this off except when I want it on
let msg_level = if tcx.sess.opts.borrowck != 0u {
tcx.sess.opts.borrowck
} else {
os::getenv("RUST_BORROWCK").map_default(0u) { |v|
option::get(uint::from_str(v))
}
};
let bccx = @{tcx: tcx,
method_map: method_map,
msg_level: msg_level,
root_map: root_map(),
mutbl_map: int_hash()};
let req_maps = if msg_level > 0u {
gather_loans(bccx, crate)
} else {
{req_loan_map: int_hash(),
pure_map: int_hash()}
};
check_loans(bccx, req_maps, crate);
ret (bccx.root_map, bccx.mutbl_map);
}
const TREAT_CONST_AS_IMM: bool = true;
// ----------------------------------------------------------------------
// Type definitions
type borrowck_ctxt = @{tcx: ty::ctxt,
method_map: typeck::method_map,
msg_level: uint,
root_map: root_map,
mutbl_map: mutbl_map};
// a map mapping id's of expressions of task-local type (@T, []/@, etc) where
// the box needs to be kept live to the id of the scope for which they must
// stay live.
type root_map = hashmap<root_map_key, ast::node_id>;
// the keys to the root map combine the `id` of the expression with
// the number of types that it is autodereferenced. So, for example,
// if you have an expression `x.f` and x has type ~@T, we could add an
// entry {id:x, derefs:0} to refer to `x` itself, `{id:x, derefs:1}`
// to refer to the deref of the unique pointer, and so on.
type root_map_key = {id: ast::node_id, derefs: uint};
// set of ids of local vars / formal arguments that are modified / moved.
// this is used in trans for optimization purposes.
type mutbl_map = std::map::hashmap<ast::node_id, ()>;
enum bckerr_code {
err_mut_uniq,
err_mut_variant,
err_preserve_gc,
err_mutbl(ast::mutability,
ast::mutability)
}
type bckerr = {cmt: cmt, code: bckerr_code};
type bckres<T> = result<T, bckerr>;
enum categorization {
cat_rvalue, // result of eval'ing some misc expr
cat_special(special_kind), //
cat_local(ast::node_id), // local variable
cat_arg(ast::node_id), // formal argument
cat_stack_upvar(cmt), // upvar in stack closure
cat_deref(cmt, uint, ptr_kind), // deref of a ptr
cat_comp(cmt, comp_kind), // adjust to locate an internal component
cat_discr(cmt, ast::node_id), // alt discriminant (see preserve())
}
// different kinds of pointers:
enum ptr_kind {uniq_ptr, gc_ptr, region_ptr, unsafe_ptr}
// I am coining the term "components" to mean "pieces of a data
// structure accessible without a dereference":
enum comp_kind {comp_tuple, comp_res, comp_variant,
comp_field(str), comp_index(ty::t)}
// We pun on *T to mean both actual deref of a ptr as well
// as accessing of components:
enum deref_kind {deref_ptr(ptr_kind), deref_comp(comp_kind)}
// different kinds of expressions we might evaluate
enum special_kind {
sk_method,
sk_static_item,
sk_self,
sk_heap_upvar
}
// a complete categorization of a value indicating where it originated
// and how it is located, as well as the mutability of the memory in
// which the value is stored.
type cmt = @{id: ast::node_id, // id of expr/pat producing this value
span: span, // span of same expr/pat
cat: categorization, // categorization of expr
lp: option<@loan_path>, // loan path for expr, if any
mutbl: ast::mutability, // mutability of expr as lvalue
ty: ty::t}; // type of the expr
// a loan path is like a category, but it exists only when the data is
// interior to the stack frame. loan paths are used as the key to a
// map indicating what is borrowed at any point in time.
enum loan_path {
lp_local(ast::node_id),
lp_arg(ast::node_id),
lp_deref(@loan_path, ptr_kind),
lp_comp(@loan_path, comp_kind)
}
// a complete record of a loan that was granted
type loan = {lp: @loan_path, cmt: cmt, mutbl: ast::mutability};
fn save_and_restore<T:copy,U>(&save_and_restore_t: T, f: fn() -> U) -> U {
let old_save_and_restore_t = save_and_restore_t;
let u <- f();
save_and_restore_t = old_save_and_restore_t;
ret u;
}
fn root_map() -> root_map {
ret hashmap(root_map_key_hash, root_map_key_eq);
fn root_map_key_eq(k1: root_map_key, k2: root_map_key) -> bool {
k1.id == k2.id && k1.derefs == k2.derefs
}
fn root_map_key_hash(k: root_map_key) -> uint {
(k.id << 4) as uint | k.derefs
}
}
// ----------------------------------------------------------------------
// Gathering loans
//
// The borrow check proceeds in two phases. In phase one, we gather the full
// set of loans that are required at any point. These are sorted according to
// their associated scopes. In phase two, checking loans, we will then make
// sure that all of these loans are honored.
type req_maps = {
req_loan_map: hashmap<ast::node_id, @mut [@const [loan]]>,
pure_map: hashmap<ast::node_id, bckerr>
};
enum gather_loan_ctxt = @{bccx: borrowck_ctxt, req_maps: req_maps};
fn gather_loans(bccx: borrowck_ctxt, crate: @ast::crate) -> req_maps {
let glcx = gather_loan_ctxt(@{bccx: bccx,
req_maps: {req_loan_map: int_hash(),
pure_map: int_hash()}});
let v = visit::mk_vt(@{visit_expr: req_loans_in_expr
with *visit::default_visitor()});
visit::visit_crate(*crate, glcx, v);
ret glcx.req_maps;
}
fn req_loans_in_expr(ex: @ast::expr,
&&self: gather_loan_ctxt,
vt: visit::vt<gather_loan_ctxt>) {
let bccx = self.bccx;
let tcx = bccx.tcx;
// If this expression is borrowed, have to ensure it remains valid:
for tcx.borrowings.find(ex.id).each { |scope_id|
let cmt = self.bccx.cat_borrow_of_expr(ex);
let scope_r = ty::re_scope(scope_id);
self.guarantee_valid(cmt, m_const, scope_r);
}
// Special checks for various kinds of expressions:
alt ex.node {
ast::expr_addr_of(mutbl, base) {
let base_cmt = self.bccx.cat_expr(base);
// make sure that the thing we are pointing out stays valid
// for the lifetime `scope_r` of the resulting ptr:
let scope_r =
alt check ty::get(tcx.ty(ex)).struct {
ty::ty_rptr(r, _) { r }
};
self.guarantee_valid(base_cmt, mutbl, scope_r);
}
ast::expr_call(f, args, _) {
let arg_tys = ty::ty_fn_args(ty::expr_ty(self.tcx(), f));
let scope_r = ty::re_scope(ex.id);
vec::iter2(args, arg_tys) { |arg, arg_ty|
alt ty::resolved_mode(self.tcx(), arg_ty.mode) {
ast::by_mutbl_ref {
let arg_cmt = self.bccx.cat_expr(arg);
self.guarantee_valid(arg_cmt, m_mutbl, scope_r);
}
ast::by_ref {
let arg_cmt = self.bccx.cat_expr(arg);
if TREAT_CONST_AS_IMM {
self.guarantee_valid(arg_cmt, m_imm, scope_r);
} else {
self.guarantee_valid(arg_cmt, m_const, scope_r);
}
}
ast::by_move | ast::by_copy | ast::by_val {}
}
}
}
ast::expr_alt(ex_v, arms, _) {
let cmt = self.bccx.cat_expr(ex_v);
for arms.each { |arm|
for arm.pats.each { |pat|
self.gather_pat(cmt, pat, arm.body.node.id, ex.id);
}
}
}
_ { /*ok*/ }
}
// Check any contained expressions:
visit::visit_expr(ex, self, vt);
}
impl methods for gather_loan_ctxt {
fn tcx() -> ty::ctxt { self.bccx.tcx }
// guarantees that addr_of(cmt) will be valid for the duration of
// `static_scope_r`, or reports an error. This may entail taking
// out loans, which will be added to the `req_loan_map`. This can
// also entail "rooting" GC'd pointers, which means ensuring
// dynamically that they are not freed.
fn guarantee_valid(cmt: cmt,
req_mutbl: ast::mutability,
scope_r: ty::region) {
#debug["guarantee_valid(cmt=%s, req_mutbl=%s, scope_r=%s)",
self.bccx.cmt_to_repr(cmt),
self.bccx.mut_to_str(req_mutbl),
region_to_str(self.tcx(), scope_r)];
let _i = indenter();
alt cmt.lp {
// If this expression is a loanable path, we MUST take out a loan.
// This is somewhat non-obvious. You might think, for example, that
// if we have an immutable local variable `x` whose value is being
// borrowed, we could rely on `x` not to change. This is not so,
// however, because even immutable locals can be moved. So we take
// out a loan on `x`, guaranteeing that it remains immutable for the
// duration of the reference: if there is an attempt to move it
// within that scope, the loan will be detected and an error will be
// reported.
some(_) {
alt scope_r {
ty::re_scope(scope_id) {
let loans = self.bccx.loan(cmt, req_mutbl);
self.add_loans(scope_id, loans);
}
_ {
self.bccx.span_err(
cmt.span,
#fmt["cannot guarantee the stability \
of this expression for the entirety of \
its lifetime, %s",
region_to_str(self.tcx(), scope_r)]);
}
}
}
// The path is not loanable: in that case, we must try and preserve
// it dynamically (or see that it is preserved by virtue of being
// rooted in some immutable path)
none {
let opt_scope_id = alt scope_r {
ty::re_scope(scope_id) { some(scope_id) }
_ { none }
};
let result = {
self.check_mutbl(req_mutbl, cmt).chain { |_ok|
self.bccx.preserve(cmt, opt_scope_id)
}
};
alt result {
ok(()) {
// we were able guarantee the validity of the ptr,
// perhaps by rooting or because it is immutably
// rooted. good.
}
err(e) {
// not able to guarantee the validity of the ptr.
// rather than report an error, presuming that the
// borrow is for a limited scope, we'll make one last
// ditch effort and require that the scope where the
// borrow occurs be pure.
alt opt_scope_id {
some(scope_id) {
self.req_maps.pure_map.insert(scope_id, e);
}
none {
// otherwise, fine, I give up.
self.bccx.report(e);
}
}
}
}
}
}
}
// Check that the pat `cmt` is compatible with the required
// mutability, presuming that it can be preserved to stay alive
// long enough.
//
// For example, if you have an expression like `&x.f` where `x`
// has type `@mut{f:int}`, this check might fail because `&x.f`
// reqires an immutable pointer, but `f` lives in (aliased)
// mutable memory.
fn check_mutbl(req_mutbl: ast::mutability,
cmt: cmt) -> bckres<()> {
alt (req_mutbl, cmt.mutbl) {
(m_const, _) |
(m_imm, m_imm) |
(m_mutbl, m_mutbl) {
ok(())
}
(_, m_const) |
(m_imm, m_mutbl) |
(m_mutbl, m_imm) {
err({cmt: cmt,
code: err_mutbl(req_mutbl, cmt.mutbl)})
}
}
}
fn add_loans(scope_id: ast::node_id, loans: @const [loan]) {
alt self.req_maps.req_loan_map.find(scope_id) {
some(l) {
*l += [loans];
}
none {
self.req_maps.req_loan_map.insert(scope_id, @mut [loans]);
}
}
}
fn gather_pat(cmt: cmt, pat: @ast::pat,
arm_id: ast::node_id, alt_id: ast::node_id) {
// Here, `cmt` is the categorization for the value being
// matched and pat is the pattern it is being matched against.
//
// In general, the way that this works is that we walk down
// the pattern, constructing a cmt that represents the path
// that will be taken to reach the value being matched.
//
// When we encounter named bindings, we take the cmt that has
// been built up and pass it off to guarantee_valid() so that
// we can be sure that the binding will remain valid for the
// duration of the arm.
//
// The correspondence between the id in the cmt and which
// pattern is being referred to is somewhat...subtle. In
// general, the id of the cmt is the id of the node that
// produces the value. For patterns, that's actually the
// *subpattern*, generally speaking.
//
// To see what I mean about ids etc, consider:
//
// let x = @@3;
// alt x {
// @@y { ... }
// }
//
// Here the cmt for `y` would be something like
//
// local(x)->@->@
//
// where the id of `local(x)` is the id of the `x` that appears
// in the alt, the id of `local(x)->@` is the `@y` pattern,
// and the id of `local(x)->@->@` is the id of the `y` pattern.
#debug["gather_pat: id=%d pat=%s cmt=%s arm_id=%d alt_id=%d",
pat.id, pprust::pat_to_str(pat),
self.bccx.cmt_to_repr(cmt), arm_id, alt_id];
let _i = indenter();
let tcx = self.tcx();
alt pat.node {
ast::pat_wild {
// _
}
ast::pat_enum(_, none) {
// variant(*)
}
ast::pat_enum(_, some(subpats)) {
// variant(x, y, z)
for subpats.each { |subpat|
let subcmt = self.bccx.cat_variant(subpat, cmt);
self.gather_pat(subcmt, subpat, arm_id, alt_id);
}
}
ast::pat_ident(_, none) if self.pat_is_variant(pat) {
// nullary variant
#debug["nullary variant"];
}
ast::pat_ident(id, o_pat) {
// x or x @ p --- `x` must remain valid for the scope of the alt
#debug["defines identifier %s", pprust::path_to_str(id)];
// Note: there is a discussion of the function of
// cat_discr in the method preserve():
let cmt1 = self.bccx.cat_discr(cmt, alt_id);
let arm_scope = ty::re_scope(arm_id);
self.guarantee_valid(cmt1, m_const, arm_scope);
for o_pat.each { |p|
self.gather_pat(cmt, p, arm_id, alt_id);
}
}
ast::pat_rec(field_pats, _) {
// {f1: p1, ..., fN: pN}
for field_pats.each { |fp|
let cmt_field = self.bccx.cat_field(fp.pat, cmt, fp.ident);
self.gather_pat(cmt_field, fp.pat, arm_id, alt_id);
}
}
ast::pat_tup(subpats) {
// (p1, ..., pN)
for subpats.each { |subpat|
let subcmt = self.bccx.cat_tuple_elt(subpat, cmt);
self.gather_pat(subcmt, subpat, arm_id, alt_id);
}
}
ast::pat_box(subpat) | ast::pat_uniq(subpat) {
// @p1, ~p1
alt self.bccx.cat_deref(subpat, cmt, 0u, true) {
some(subcmt) {
self.gather_pat(subcmt, subpat, arm_id, alt_id);
}
none {
tcx.sess.span_bug(pat.span, "Non derefable type");
}
}
}
ast::pat_lit(_) | ast::pat_range(_, _) { /*always ok*/ }
}
}
fn pat_is_variant(pat: @ast::pat) -> bool {
pat_util::pat_is_variant(self.bccx.tcx.def_map, pat)
}
}
// ----------------------------------------------------------------------
// Checking loans
//
// Phase 2 of check: we walk down the tree and check that:
// 1. assignments are always made to mutable locations;
// 2. loans made in overlapping scopes do not conflict
// 3. assignments do not affect things loaned out as immutable
// 4. moves to dnot affect things loaned out in any way
enum check_loan_ctxt = @{
bccx: borrowck_ctxt,
req_maps: req_maps,
reported: hashmap<ast::node_id, ()>,
// Keep track of whether we're inside a ctor, so as to
// allow mutating immutable fields in the same class if
// we are in a ctor, we track the self id
mut in_ctor: bool,
mut declared_purity: ast::purity
};
// if we are enforcing purity, why are we doing so?
enum purity_cause {
// enforcing purity because fn was declared pure:
pc_declaration,
// enforce purity because we need to guarantee the
// validity of some alias; `bckerr` describes the
// reason we needed to enforce purity.
pc_cmt(bckerr)
}
fn check_loans(bccx: borrowck_ctxt,
req_maps: req_maps,
crate: @ast::crate) {
let clcx = check_loan_ctxt(@{bccx: bccx,
req_maps: req_maps,
reported: int_hash(),
mut in_ctor: false,
mut declared_purity: ast::impure_fn});
let vt = visit::mk_vt(@{visit_expr: check_loans_in_expr,
visit_block: check_loans_in_block,
visit_fn: check_loans_in_fn
with *visit::default_visitor()});
visit::visit_crate(*crate, clcx, vt);
}
enum assignment_type {
at_straight_up,
at_swap,
at_mutbl_ref,
}
impl methods for assignment_type {
fn checked_by_liveness() -> bool {
// the liveness pass guarantees that immutable local variables
// are only assigned once; but it doesn't consider &mut
alt self {
at_straight_up {true}
at_swap {true}
at_mutbl_ref {false}
}
}
fn ing_form(desc: str) -> str {
alt self {
at_straight_up { "assigning to " + desc }
at_swap { "swapping to and from " + desc }
at_mutbl_ref { "taking mut reference to " + desc }
}
}
}
impl methods for check_loan_ctxt {
fn tcx() -> ty::ctxt { self.bccx.tcx }
fn purity(scope_id: ast::node_id) -> option<purity_cause> {
let default_purity = alt self.declared_purity {
// an unsafe declaration overrides all
ast::unsafe_fn { ret none; }
// otherwise, remember what was declared as the
// default, but we must scan for requirements
// imposed by the borrow check
ast::pure_fn { some(pc_declaration) }
ast::crust_fn | ast::impure_fn { none }
};
// scan to see if this scope or any enclosing scope requires
// purity. if so, that overrides the declaration.
let mut scope_id = scope_id;
let region_map = self.tcx().region_map;
let pure_map = self.req_maps.pure_map;
loop {
alt pure_map.find(scope_id) {
none {}
some(e) {ret some(pc_cmt(e));}
}
alt region_map.find(scope_id) {
none { ret default_purity; }
some(next_scope_id) { scope_id = next_scope_id; }
}
}
}
fn walk_loans(scope_id: ast::node_id,
f: fn(loan) -> bool) {
let mut scope_id = scope_id;
let region_map = self.tcx().region_map;
let req_loan_map = self.req_maps.req_loan_map;
loop {
for req_loan_map.find(scope_id).each { |loanss|
for (*loanss).each { |loans|
for (*loans).each { |loan|
if !f(loan) { ret; }
}
}
}
alt region_map.find(scope_id) {
none { ret; }
some(next_scope_id) { scope_id = next_scope_id; }
}
}
}
fn walk_loans_of(scope_id: ast::node_id,
lp: @loan_path,
f: fn(loan) -> bool) {
for self.walk_loans(scope_id) { |loan|
if loan.lp == lp {
if !f(loan) { ret; }
}
}
}
// when we are in a pure context, we check each call to ensure
// that the function which is invoked is itself pure.
fn check_pure(pc: purity_cause, expr: @ast::expr) {
let tcx = self.tcx();
alt ty::get(tcx.ty(expr)).struct {
ty::ty_fn(_) {
// Extract purity or unsafety based on what kind of callee
// we've got. This would be cleaner if we just admitted
// that we have an effect system and carried the purity
// etc around in the type.
// First, check the def_map---if expr.id is present then
// expr must be a path (at least I think that's the idea---NDM)
let callee_purity = alt tcx.def_map.find(expr.id) {
some(ast::def_fn(_, p)) { p }
some(ast::def_variant(_, _)) { ast::pure_fn }
_ {
// otherwise it may be a method call that we can trace
// to the def'n site:
alt self.bccx.method_map.find(expr.id) {
some(typeck::method_static(did)) {
if did.crate == ast::local_crate {
alt tcx.items.get(did.node) {
ast_map::node_method(m, _, _) { m.decl.purity }
_ { tcx.sess.span_bug(expr.span,
"Node not bound \
to a method") }
}
} else {
metadata::csearch::lookup_method_purity(
tcx.sess.cstore,
did)
}
}
some(typeck::method_param(iid, n_m, _, _)) |
some(typeck::method_iface(iid, n_m)) {
ty::iface_methods(tcx, iid)[n_m].purity
}
none {
// otherwise it's just some dang thing. We know
// it cannot be unsafe because we do not allow
// unsafe functions to be used as values (or,
// rather, we only allow that inside an unsafe
// block, and then it's up to the user to keep
// things confined).
ast::impure_fn
}
}
}
};
alt callee_purity {
ast::crust_fn | ast::pure_fn {
/*ok*/
}
ast::impure_fn | ast::unsafe_fn {
self.report_purity_error(
pc, expr.span,
"access to non-pure functions");
}
}
}
_ { /* not a fn, ok */ }
}
}
fn check_for_conflicting_loans(scope_id: ast::node_id) {
let new_loanss = alt self.req_maps.req_loan_map.find(scope_id) {
none { ret; }
some(loanss) { loanss }
};
let par_scope_id = self.tcx().region_map.get(scope_id);
for self.walk_loans(par_scope_id) { |old_loan|
for (*new_loanss).each { |new_loans|
for (*new_loans).each { |new_loan|
if old_loan.lp != new_loan.lp { cont; }
alt (old_loan.mutbl, new_loan.mutbl) {
(m_const, _) | (_, m_const) |
(m_mutbl, m_mutbl) | (m_imm, m_imm) {
/*ok*/
}
(m_mutbl, m_imm) | (m_imm, m_mutbl) {
self.bccx.span_err(
new_loan.cmt.span,
#fmt["loan of %s as %s \
conflicts with prior loan",
self.bccx.cmt_to_str(new_loan.cmt),
self.bccx.mut_to_str(new_loan.mutbl)]);
self.bccx.span_note(
old_loan.cmt.span,
#fmt["prior loan as %s granted here",
self.bccx.mut_to_str(old_loan.mutbl)]);
}
}
}
}
}
}
fn is_local_variable(cmt: cmt) -> bool {
alt cmt.cat {
cat_local(_) {true}
_ {false}
}
}
fn is_self_field(cmt: cmt) -> bool {
alt cmt.cat {
cat_comp(cmt_base, comp_field(_)) {
alt cmt_base.cat {
cat_special(sk_self) { true }
_ { false }
}
}
_ { false }
}
}
fn check_assignment(at: assignment_type, ex: @ast::expr) {
let cmt = self.bccx.cat_expr(ex);
#debug["check_assignment(cmt=%s)",
self.bccx.cmt_to_repr(cmt)];
if self.in_ctor && self.is_self_field(cmt)
&& at.checked_by_liveness() {
// assigning to self.foo in a ctor is always allowed.
} else if self.is_local_variable(cmt) && at.checked_by_liveness() {
// liveness guarantees that immutable local variables
// are only assigned once
} else {
alt cmt.mutbl {
m_mutbl { /*ok*/ }
m_const | m_imm {
self.bccx.span_err(
ex.span,
at.ing_form(self.bccx.cmt_to_str(cmt)));
ret;
}
}
}
// if this is a pure function, only loan-able state can be
// assigned, because it is uniquely tied to this function and
// is not visible from the outside
alt self.purity(ex.id) {
none {}
some(pc) {
if cmt.lp.is_none() {
self.report_purity_error(
pc, ex.span, at.ing_form(self.bccx.cmt_to_str(cmt)));
}
}
}
// check for a conflicting loan as well, except in the case of
// taking a mutable ref. that will create a loan of its own
// which will be checked for compat separately in
// check_for_conflicting_loans()
if at != at_mutbl_ref {
let lp = alt cmt.lp {
none { ret; }
some(lp) { lp }
};
for self.walk_loans_of(ex.id, lp) { |loan|
alt loan.mutbl {
m_mutbl | m_const { /*ok*/ }
m_imm {
self.bccx.span_err(
ex.span,
#fmt["%s prohibited due to outstanding loan",
at.ing_form(self.bccx.cmt_to_str(cmt))]);
self.bccx.span_note(
loan.cmt.span,
#fmt["loan of %s granted here",
self.bccx.cmt_to_str(loan.cmt)]);
ret;
}
}
}
}
self.bccx.add_to_mutbl_map(cmt);
}
fn report_purity_error(pc: purity_cause, sp: span, msg: str) {
alt pc {
pc_declaration {
self.tcx().sess.span_err(
sp,
#fmt["%s prohibited in pure context", msg]);
}
pc_cmt(e) {
if self.reported.insert(e.cmt.id, ()) {
self.tcx().sess.span_err(
e.cmt.span,
#fmt["illegal borrow unless pure: %s",
self.bccx.bckerr_code_to_str(e.code)]);
self.tcx().sess.span_note(
sp,
#fmt["impure due to %s", msg]);
}
}
}
}
fn check_move_out(ex: @ast::expr) {
let cmt = self.bccx.cat_expr(ex);
self.check_move_out_from_cmt(cmt);
}
fn check_move_out_from_cmt(cmt: cmt) {
#debug["check_move_out_from_cmt(cmt=%s)",
self.bccx.cmt_to_repr(cmt)];
alt cmt.cat {
// Rvalues and locals can be moved:
cat_rvalue | cat_local(_) { }
// Owned arguments can be moved:
cat_arg(_) if cmt.mutbl == m_mutbl { }
// We allow moving out of static items because the old code
// did. This seems consistent with permitting moves out of
// rvalues, I guess.
cat_special(sk_static_item) { }
// Nothing else.
_ {
self.bccx.span_err(
cmt.span,
#fmt["moving out of %s", self.bccx.cmt_to_str(cmt)]);
ret;
}
}
self.bccx.add_to_mutbl_map(cmt);
// check for a conflicting loan:
let lp = alt cmt.lp {
none { ret; }
some(lp) { lp }
};
for self.walk_loans_of(cmt.id, lp) { |loan|
self.bccx.span_err(
cmt.span,
#fmt["moving out of %s prohibited due to outstanding loan",
self.bccx.cmt_to_str(cmt)]);
self.bccx.span_note(
loan.cmt.span,
#fmt["loan of %s granted here",
self.bccx.cmt_to_str(loan.cmt)]);
ret;
}
}
}
fn check_loans_in_fn(fk: visit::fn_kind, decl: ast::fn_decl, body: ast::blk,
sp: span, id: ast::node_id, &&self: check_loan_ctxt,
visitor: visit::vt<check_loan_ctxt>) {
#debug["purity on entry=%?", self.declared_purity];
save_and_restore(self.in_ctor) {||
save_and_restore(self.declared_purity) {||
// In principle, we could consider fk_anon(*) or
// fk_fn_block(*) to be in a ctor, I suppose, but the
// purpose of the in_ctor flag is to allow modifications
// of otherwise immutable fields and typestate wouldn't be
// able to "see" into those functions anyway, so it
// wouldn't be very helpful.
alt fk {
visit::fk_ctor(*) { self.in_ctor = true; }
_ { self.in_ctor = false; }
};
// NDM this doesn't seem algother right, what about fn items
// nested in pure fns? etc?
self.declared_purity = decl.purity;
visit::visit_fn(fk, decl, body, sp, id, self, visitor);
}
}
#debug["purity on exit=%?", self.declared_purity];
}
fn check_loans_in_expr(expr: @ast::expr,
&&self: check_loan_ctxt,
vt: visit::vt<check_loan_ctxt>) {
self.check_for_conflicting_loans(expr.id);
alt expr.node {
ast::expr_swap(l, r) {
self.check_assignment(at_swap, l);
self.check_assignment(at_swap, r);
}
ast::expr_move(dest, src) {
self.check_assignment(at_straight_up, dest);
self.check_move_out(src);
}
ast::expr_assign(dest, _) |
ast::expr_assign_op(_, dest, _) {
self.check_assignment(at_straight_up, dest);
}
ast::expr_fn(_, _, _, cap_clause) |
ast::expr_fn_block(_, _, cap_clause) {
for (*cap_clause).each { |cap_item|
if cap_item.is_move {
let def = self.tcx().def_map.get(cap_item.id);
// Hack: the type that is used in the cmt doesn't actually
// matter here, so just subst nil instead of looking up
// the type of the def that is referred to
let cmt = self.bccx.cat_def(cap_item.id, cap_item.span,
ty::mk_nil(self.tcx()), def);
self.check_move_out_from_cmt(cmt);
}
}
}
ast::expr_addr_of(mutbl, base) {
alt mutbl {
m_const { /*all memory is const*/ }
m_mutbl {
// If we are taking an &mut ptr, make sure the memory
// being pointed at is assignable in the first place:
self.check_assignment(at_mutbl_ref, base);
}
m_imm {
// XXX explain why no check is req'd here
}
}
}
ast::expr_call(f, args, _) {
alt self.purity(expr.id) {
none {}
some(pc) {
self.check_pure(pc, f);
for args.each { |arg| self.check_pure(pc, arg) }
}
}
let arg_tys = ty::ty_fn_args(ty::expr_ty(self.tcx(), f));
vec::iter2(args, arg_tys) { |arg, arg_ty|
alt ty::resolved_mode(self.tcx(), arg_ty.mode) {
ast::by_move {
self.check_move_out(arg);
}
ast::by_mutbl_ref {
self.check_assignment(at_mutbl_ref, arg);
}
ast::by_ref | ast::by_copy | ast::by_val {
}
}
}
}
_ { }
}
visit::visit_expr(expr, self, vt);
}
fn check_loans_in_block(blk: ast::blk,
&&self: check_loan_ctxt,
vt: visit::vt<check_loan_ctxt>) {
save_and_restore(self.declared_purity) {||
self.check_for_conflicting_loans(blk.node.id);
alt blk.node.rules {
ast::default_blk {
}
ast::unchecked_blk {
self.declared_purity = ast::impure_fn;
}
ast::unsafe_blk {
self.declared_purity = ast::unsafe_fn;
}
}
visit::visit_block(blk, self, vt);
}
}
// ----------------------------------------------------------------------
// Categorization
//
// Imagine a routine ToAddr(Expr) that evaluates an expression and returns an
// address where the result is to be found. If Expr is an lvalue, then this
// is the address of the lvalue. If Expr is an rvalue, this is the address of
// some temporary spot in memory where the result is stored.
//
// Now, cat_expr() classies the expression Expr and the address A=ToAddr(Expr)
// as follows:
//
// - cat: what kind of expression was this? This is a subset of the
// full expression forms which only includes those that we care about
// for the purpose of the analysis.
// - mutbl: mutability of the address A
// - ty: the type of data found at the address A
//
// The resulting categorization tree differs somewhat from the expressions
// themselves. For example, auto-derefs are explicit. Also, an index a[b] is
// decomposed into two operations: a derefence to reach the array data and
// then an index to jump forward to the relevant item.
// Categorizes a derefable type. Note that we include vectors and strings as
// derefable (we model an index as the combination of a deref and then a
// pointer adjustment).
fn deref_kind(tcx: ty::ctxt, t: ty::t) -> deref_kind {
alt ty::get(t).struct {
ty::ty_uniq(*) | ty::ty_vec(*) | ty::ty_str |
ty::ty_evec(_, ty::vstore_uniq) |
ty::ty_estr(ty::vstore_uniq) {
deref_ptr(uniq_ptr)
}
ty::ty_rptr(*) |
ty::ty_evec(_, ty::vstore_slice(_)) |
ty::ty_estr(ty::vstore_slice(_)) {
deref_ptr(region_ptr)
}
ty::ty_box(*) |
ty::ty_evec(_, ty::vstore_box) |
ty::ty_estr(ty::vstore_box) {
deref_ptr(gc_ptr)
}
ty::ty_ptr(*) {
deref_ptr(unsafe_ptr)
}
ty::ty_enum(*) {
deref_comp(comp_variant)
}
ty::ty_res(*) {
deref_comp(comp_res)
}
_ {
tcx.sess.bug(
#fmt["deref_cat() invoked on non-derefable type %s",
ty_to_str(tcx, t)]);
}
}
}
iface ast_node {
fn id() -> ast::node_id;
fn span() -> span;
}
impl of ast_node for @ast::expr {
fn id() -> ast::node_id { self.id }
fn span() -> span { self.span }
}
impl of ast_node for @ast::pat {
fn id() -> ast::node_id { self.id }
fn span() -> span { self.span }
}
impl methods for ty::ctxt {
fn ty<N: ast_node>(node: N) -> ty::t {
ty::node_id_to_type(self, node.id())
}
}
impl categorize_methods for borrowck_ctxt {
fn cat_borrow_of_expr(expr: @ast::expr) -> cmt {
// a borrowed expression must be either an @, ~, or a vec/@, vec/~
let expr_ty = ty::expr_ty(self.tcx, expr);
alt ty::get(expr_ty).struct {
ty::ty_vec(*) | ty::ty_evec(*) |
ty::ty_str | ty::ty_estr(*) {
self.cat_index(expr, expr)
}
ty::ty_uniq(*) | ty::ty_box(*) | ty::ty_rptr(*) {
let cmt = self.cat_expr(expr);
self.cat_deref(expr, cmt, 0u, true).get()
}
_ {
self.tcx.sess.span_bug(
expr.span,
#fmt["Borrowing of non-derefable type `%s`",
ty_to_str(self.tcx, expr_ty)]);
}
}
}
fn cat_method_ref(expr: @ast::expr, expr_ty: ty::t) -> cmt {
@{id:expr.id, span:expr.span,
cat:cat_special(sk_method), lp:none,
mutbl:m_imm, ty:expr_ty}
}
fn cat_rvalue(expr: @ast::expr, expr_ty: ty::t) -> cmt {
@{id:expr.id, span:expr.span,
cat:cat_rvalue, lp:none,
mutbl:m_imm, ty:expr_ty}
}
fn cat_expr(expr: @ast::expr) -> cmt {
#debug["cat_expr: id=%d expr=%s",
expr.id, pprust::expr_to_str(expr)];
let tcx = self.tcx;
let expr_ty = tcx.ty(expr);
alt expr.node {
ast::expr_unary(ast::deref, e_base) {
if self.method_map.contains_key(expr.id) {
ret self.cat_rvalue(expr, expr_ty);
}
let base_cmt = self.cat_expr(e_base);
alt self.cat_deref(expr, base_cmt, 0u, true) {
some(cmt) { ret cmt; }
none {
tcx.sess.span_bug(
e_base.span,
#fmt["Explicit deref of non-derefable type `%s`",
ty_to_str(tcx, tcx.ty(e_base))]);
}
}
}
ast::expr_field(base, f_name, _) {
if self.method_map.contains_key(expr.id) {
ret self.cat_method_ref(expr, expr_ty);
}
let base_cmt = self.cat_autoderef(base);
self.cat_field(expr, base_cmt, f_name)
}
ast::expr_index(base, _) {
if self.method_map.contains_key(expr.id) {
ret self.cat_rvalue(expr, expr_ty);
}
self.cat_index(expr, base)
}
ast::expr_path(_) {
let def = self.tcx.def_map.get(expr.id);
self.cat_def(expr.id, expr.span, expr_ty, def)
}
ast::expr_addr_of(*) | ast::expr_call(*) | ast::expr_bind(*) |
ast::expr_swap(*) | ast::expr_move(*) | ast::expr_assign(*) |
ast::expr_assign_op(*) | ast::expr_fn(*) | ast::expr_fn_block(*) |
ast::expr_assert(*) | ast::expr_check(*) | ast::expr_ret(*) |
ast::expr_loop_body(*) | ast::expr_unary(*) |
ast::expr_copy(*) | ast::expr_cast(*) | ast::expr_fail(*) |
ast::expr_vstore(*) | ast::expr_vec(*) | ast::expr_tup(*) |
ast::expr_if_check(*) | ast::expr_if(*) | ast::expr_log(*) |
ast::expr_new(*) | ast::expr_binary(*) | ast::expr_while(*) |
ast::expr_block(*) | ast::expr_loop(*) | ast::expr_alt(*) |
ast::expr_lit(*) | ast::expr_break | ast::expr_mac(*) |
ast::expr_cont | ast::expr_rec(*) {
ret self.cat_rvalue(expr, expr_ty);
}
}
}
fn cat_discr(cmt: cmt, alt_id: ast::node_id) -> cmt {
ret @{cat:cat_discr(cmt, alt_id) with *cmt};
}
fn cat_field<N:ast_node>(node: N, base_cmt: cmt, f_name: str) -> cmt {
let f_mutbl = alt field_mutbl(self.tcx, base_cmt.ty, f_name) {
some(f_mutbl) { f_mutbl }
none {
self.tcx.sess.span_bug(
node.span(),
#fmt["Cannot find field `%s` in type `%s`",
f_name, ty_to_str(self.tcx, base_cmt.ty)]);
}
};
let m = alt f_mutbl {
m_imm { base_cmt.mutbl } // imm: as mutable as the container
m_mutbl | m_const { f_mutbl }
};
let lp = base_cmt.lp.map { |lp|
@lp_comp(lp, comp_field(f_name))
};
@{id: node.id(), span: node.span(),
cat: cat_comp(base_cmt, comp_field(f_name)), lp:lp,
mutbl: m, ty: self.tcx.ty(node)}
}
fn cat_deref<N:ast_node>(node: N, base_cmt: cmt, derefs: uint,
expl: bool) -> option<cmt> {
ty::deref(self.tcx, base_cmt.ty, expl).map { |mt|
alt deref_kind(self.tcx, base_cmt.ty) {
deref_ptr(ptr) {
let lp = base_cmt.lp.chain { |l|
// Given that the ptr itself is loanable, we can
// loan out deref'd uniq ptrs as the data they are
// the only way to reach the data they point at.
// Other ptr types admit aliases and are therefore
// not loanable.
alt ptr {
uniq_ptr {some(@lp_deref(l, ptr))}
gc_ptr | region_ptr | unsafe_ptr {none}
}
};
@{id:node.id(), span:node.span(),
cat:cat_deref(base_cmt, derefs, ptr), lp:lp,
mutbl:mt.mutbl, ty:mt.ty}
}
deref_comp(comp) {
let lp = base_cmt.lp.map { |l| @lp_comp(l, comp) };
@{id:node.id(), span:node.span(),
cat:cat_comp(base_cmt, comp), lp:lp,
mutbl:mt.mutbl, ty:mt.ty}
}
}
}
}
fn cat_autoderef(base: @ast::expr) -> cmt {
// Creates a string of implicit derefences so long as base is
// dereferencable. n.b., it is important that these dereferences are
// associated with the field/index that caused the autoderef (expr).
// This is used later to adjust ref counts and so forth in trans.
// Given something like base.f where base has type @m1 @m2 T, we want
// to yield the equivalent categories to (**base).f.
let mut cmt = self.cat_expr(base);
let mut ctr = 0u;
loop {
ctr += 1u;
alt self.cat_deref(base, cmt, ctr, false) {
none { ret cmt; }
some(cmt1) { cmt = cmt1; }
}
}
}
fn cat_index(expr: @ast::expr, base: @ast::expr) -> cmt {
let base_cmt = self.cat_autoderef(base);
let mt = alt ty::index(self.tcx, base_cmt.ty) {
some(mt) { mt }
none {
self.tcx.sess.span_bug(
expr.span,
#fmt["Explicit index of non-index type `%s`",
ty_to_str(self.tcx, base_cmt.ty)]);
}
};
let ptr = alt deref_kind(self.tcx, base_cmt.ty) {
deref_ptr(ptr) { ptr }
deref_comp(_) {
self.tcx.sess.span_bug(
expr.span,
"Deref of indexable type yielded comp kind");
}
};
// make deref of vectors explicit, as explained in the comment at
// the head of this section
let deref_lp = base_cmt.lp.map { |lp| @lp_deref(lp, ptr) };
let deref_cmt = @{id:expr.id, span:expr.span,
cat:cat_deref(base_cmt, 0u, ptr), lp:deref_lp,
mutbl:mt.mutbl, ty:mt.ty};
let comp = comp_index(base_cmt.ty);
let index_lp = deref_lp.map { |lp| @lp_comp(lp, comp) };
@{id:expr.id, span:expr.span,
cat:cat_comp(deref_cmt, comp), lp:index_lp,
mutbl:mt.mutbl, ty:mt.ty}
}
fn cat_variant<N: ast_node>(arg: N, cmt: cmt) -> cmt {
@{id: arg.id(), span: arg.span(),
cat: cat_comp(cmt, comp_variant),
lp: cmt.lp.map { |l| @lp_comp(l, comp_variant) },
mutbl: cmt.mutbl, // imm iff in an immutable context
ty: self.tcx.ty(arg)}
}
fn cat_tuple_elt<N: ast_node>(elt: N, cmt: cmt) -> cmt {
@{id: elt.id(), span: elt.span(),
cat: cat_comp(cmt, comp_tuple),
lp: cmt.lp.map { |l| @lp_comp(l, comp_tuple) },
mutbl: cmt.mutbl, // imm iff in an immutable context
ty: self.tcx.ty(elt)}
}
fn cat_def(id: ast::node_id,
span: span,
expr_ty: ty::t,
def: ast::def) -> cmt {
alt def {
ast::def_fn(_, _) | ast::def_mod(_) |
ast::def_native_mod(_) | ast::def_const(_) |
ast::def_use(_) | ast::def_variant(_, _) |
ast::def_ty(_) | ast::def_prim_ty(_) |
ast::def_ty_param(_, _) | ast::def_class(_) |
ast::def_region(_) {
@{id:id, span:span,
cat:cat_special(sk_static_item), lp:none,
mutbl:m_imm, ty:expr_ty}
}
ast::def_arg(vid, mode) {
// Idea: make this could be rewritten to model by-ref
// stuff as `&const` and `&mut`?
// m: mutability of the argument
// lp: loan path, must be none for aliasable things
let {m,lp} = alt ty::resolved_mode(self.tcx, mode) {
ast::by_mutbl_ref {
{m: m_mutbl,
lp: none}
}
ast::by_move | ast::by_copy {
{m: m_mutbl,
lp: some(@lp_arg(vid))}
}
ast::by_ref {
{m: if TREAT_CONST_AS_IMM {m_imm} else {m_const},
lp: none}
}
ast::by_val {
// by-value is this hybrid mode where we have a
// pointer but we do not own it. This is not
// considered loanable because, for example, a by-ref
// and and by-val argument might both actually contain
// the same unique ptr.
{m: m_imm,
lp: none}
}
};
@{id:id, span:span,
cat:cat_arg(vid), lp:lp,
mutbl:m, ty:expr_ty}
}
ast::def_self(_) {
@{id:id, span:span,
cat:cat_special(sk_self), lp:none,
mutbl:m_imm, ty:expr_ty}
}
ast::def_upvar(upvid, inner, fn_node_id) {
let ty = ty::node_id_to_type(self.tcx, fn_node_id);
let proto = ty::ty_fn_proto(ty);
alt proto {
ast::proto_any | ast::proto_block {
let upcmt = self.cat_def(id, span, expr_ty, *inner);
@{id:id, span:span,
cat:cat_stack_upvar(upcmt), lp:upcmt.lp,
mutbl:upcmt.mutbl, ty:upcmt.ty}
}
ast::proto_bare | ast::proto_uniq | ast::proto_box {
// FIXME #2152 allow mutation of moved upvars
@{id:id, span:span,
cat:cat_special(sk_heap_upvar), lp:none,
mutbl:m_imm, ty:expr_ty}
}
}
}
ast::def_local(vid, mutbl) {
let m = if mutbl {m_mutbl} else {m_imm};
@{id:id, span:span,
cat:cat_local(vid), lp:some(@lp_local(vid)),
mutbl:m, ty:expr_ty}
}
ast::def_binding(vid) {
// no difference between a binding and any other local variable
// from out point of view, except that they are always immutable
@{id:id, span:span,
cat:cat_local(vid), lp:some(@lp_local(vid)),
mutbl:m_imm, ty:expr_ty}
}
}
}
fn cat_to_repr(cat: categorization) -> str {
alt cat {
cat_special(sk_method) { "method" }
cat_special(sk_static_item) { "static_item" }
cat_special(sk_self) { "self" }
cat_special(sk_heap_upvar) { "heap-upvar" }
cat_stack_upvar(_) { "stack-upvar" }
cat_rvalue { "rvalue" }
cat_local(node_id) { #fmt["local(%d)", node_id] }
cat_arg(node_id) { #fmt["arg(%d)", node_id] }
cat_deref(cmt, derefs, ptr) {
#fmt["%s->(%s, %u)", self.cat_to_repr(cmt.cat),
self.ptr_sigil(ptr), derefs]
}
cat_comp(cmt, comp) {
#fmt["%s.%s", self.cat_to_repr(cmt.cat), self.comp_to_repr(comp)]
}
cat_discr(cmt, _) { self.cat_to_repr(cmt.cat) }
}
}
fn mut_to_str(mutbl: ast::mutability) -> str {
alt mutbl {
m_mutbl { "mutable" }
m_const { "const" }
m_imm { "immutable" }
}
}
fn ptr_sigil(ptr: ptr_kind) -> str {
alt ptr {
uniq_ptr { "~" }
gc_ptr { "@" }
region_ptr { "&" }
unsafe_ptr { "*" }
}
}
fn comp_to_repr(comp: comp_kind) -> str {
alt comp {
comp_field(fld) { fld }
comp_index(_) { "[]" }
comp_tuple { "()" }
comp_res { "<res>" }
comp_variant { "<enum>" }
}
}
fn lp_to_str(lp: @loan_path) -> str {
alt *lp {
lp_local(node_id) {
#fmt["local(%d)", node_id]
}
lp_arg(node_id) {
#fmt["arg(%d)", node_id]
}
lp_deref(lp, ptr) {
#fmt["%s->(%s)", self.lp_to_str(lp),
self.ptr_sigil(ptr)]
}
lp_comp(lp, comp) {
#fmt["%s.%s", self.lp_to_str(lp),
self.comp_to_repr(comp)]
}
}
}
fn cmt_to_repr(cmt: cmt) -> str {
#fmt["{%s id:%d m:%s lp:%s ty:%s}",
self.cat_to_repr(cmt.cat),
cmt.id,
self.mut_to_str(cmt.mutbl),
cmt.lp.map_default("none", { |p| self.lp_to_str(p) }),
ty_to_str(self.tcx, cmt.ty)]
}
fn pk_to_sigil(pk: ptr_kind) -> str {
alt pk {
uniq_ptr {"~"}
gc_ptr {"@"}
region_ptr {"&"}
unsafe_ptr {"*"}
}
}
fn cmt_to_str(cmt: cmt) -> str {
let mut_str = self.mut_to_str(cmt.mutbl);
alt cmt.cat {
cat_special(sk_method) { "method" }
cat_special(sk_static_item) { "static item" }
cat_special(sk_self) { "self reference" }
cat_special(sk_heap_upvar) { "upvar" }
cat_rvalue { "non-lvalue" }
cat_local(_) { mut_str + " local variable" }
cat_arg(_) { mut_str + " argument" }
cat_deref(_, _, pk) { #fmt["dereference of %s %s pointer",
mut_str, self.pk_to_sigil(pk)] }
cat_stack_upvar(_) { mut_str + " upvar" }
cat_comp(_, comp_field(_)) { mut_str + " field" }
cat_comp(_, comp_tuple) { "tuple content" }
cat_comp(_, comp_res) { "resource content" }
cat_comp(_, comp_variant) { "enum content" }
cat_comp(_, comp_index(t)) {
alt ty::get(t).struct {
ty::ty_vec(*) | ty::ty_evec(*) {
mut_str + " vec content"
}
ty::ty_str | ty::ty_estr(*) {
mut_str + " str content"
}
_ { mut_str + " indexed content" }
}
}
cat_discr(cmt, _) {
self.cmt_to_str(cmt)
}
}
}
fn bckerr_code_to_str(code: bckerr_code) -> str {
alt code {
err_mutbl(req, act) {
#fmt["creating %s alias to aliasable, %s memory",
self.mut_to_str(req), self.mut_to_str(act)]
}
err_mut_uniq {
"unique value in aliasable, mutable location"
}
err_mut_variant {
"enum variant in aliasable, mutable location"
}
err_preserve_gc {
"GC'd value would have to be preserved for longer \
than the scope of the function"
}
}
}
fn report_if_err(bres: bckres<()>) {
alt bres {
ok(()) { }
err(e) { self.report(e); }
}
}
fn report(err: bckerr) {
self.span_err(
err.cmt.span,
#fmt["illegal borrow: %s",
self.bckerr_code_to_str(err.code)]);
}
fn span_err(s: span, m: str) {
if self.msg_level == 1u {
self.tcx.sess.span_warn(s, m);
} else {
self.tcx.sess.span_err(s, m);
}
}
fn span_note(s: span, m: str) {
self.tcx.sess.span_note(s, m);
}
fn add_to_mutbl_map(cmt: cmt) {
alt cmt.cat {
cat_local(id) | cat_arg(id) {
self.mutbl_map.insert(id, ());
}
cat_stack_upvar(cmt) {
self.add_to_mutbl_map(cmt);
}
_ {}
}
}
}
fn field_mutbl(tcx: ty::ctxt,
base_ty: ty::t,
f_name: str) -> option<ast::mutability> {
// Need to refactor so that records/class fields can be treated uniformly.
alt ty::get(base_ty).struct {
ty::ty_rec(fields) {
for fields.each { |f|
if f.ident == f_name {
ret some(f.mt.mutbl);
}
}
}
ty::ty_class(did, substs) {
for ty::lookup_class_fields(tcx, did).each { |fld|
if fld.ident == f_name {
let m = alt fld.mutability {
ast::class_mutable { ast::m_mutbl }
ast::class_immutable { ast::m_imm }
};
ret some(m);
}
}
}
_ { }
}
ret none;
}
// ----------------------------------------------------------------------
// Preserve(Ex, S) holds if ToAddr(Ex) will remain valid for the entirety of
// the scope S.
impl preserve_methods for borrowck_ctxt {
fn preserve(cmt: cmt, opt_scope_id: option<ast::node_id>) -> bckres<()> {
#debug["preserve(%s)", self.cmt_to_repr(cmt)];
let _i = indenter();
alt cmt.cat {
cat_rvalue | cat_special(_) {
ok(())
}
cat_stack_upvar(cmt) {
self.preserve(cmt, opt_scope_id)
}
cat_local(_) {
// This should never happen. Local variables are always lendable,
// so either `loan()` should be called or there must be some
// intermediate @ or &---they are not lendable but do not recurse.
self.tcx.sess.span_bug(
cmt.span,
"preserve() called with local");
}
cat_arg(_) {
// This can happen as not all args are lendable (e.g., &&
// modes). In that case, the caller guarantees stability.
// This is basically a deref of a region ptr.
ok(())
}
cat_comp(cmt_base, comp_field(_)) |
cat_comp(cmt_base, comp_index(_)) |
cat_comp(cmt_base, comp_tuple) |
cat_comp(cmt_base, comp_res) {
// Most embedded components: if the base is stable, the
// type never changes.
self.preserve(cmt_base, opt_scope_id)
}
cat_comp(cmt1, comp_variant) {
self.require_imm(cmt, cmt1, opt_scope_id, err_mut_variant)
}
cat_deref(cmt1, _, uniq_ptr) {
self.require_imm(cmt, cmt1, opt_scope_id, err_mut_uniq)
}
cat_deref(_, _, region_ptr) {
// References are always "stable" by induction (when the
// reference of type &MT was created, the memory must have
// been stable)
ok(())
}
cat_deref(_, _, unsafe_ptr) {
// Unsafe pointers are the user's problem
ok(())
}
cat_deref(base, derefs, gc_ptr) {
// GC'd pointers of type @MT: always stable because we can
// inc the ref count or keep a GC root as necessary. We
// need to insert this id into the root_map, however.
alt opt_scope_id {
some(scope_id) {
#debug["Inserting root map entry for %s: \
node %d:%u -> scope %d",
self.cmt_to_repr(cmt), base.id,
derefs, scope_id];
let rk = {id: base.id, derefs: derefs};
self.root_map.insert(rk, scope_id);
ok(())
}
none {
err({cmt:cmt, code:err_preserve_gc})
}
}
}
cat_discr(base, alt_id) {
// Subtle: in an alt, we must ensure that each binding
// variable remains valid for the duration of the arm in
// which it appears, presuming that this arm is taken.
// But it is inconvenient in trans to root something just
// for one arm. Therefore, we insert a cat_discr(),
// basically a special kind of category that says "if this
// value must be dynamically rooted, root it for the scope
// `alt_id`.
//
// As an example, consider this scenario:
//
// let mut x = @some(3);
// alt *x { some(y) {...} none {...} }
//
// Technically, the value `x` need only be rooted
// in the `some` arm. However, we evaluate `x` in trans
// before we know what arm will be taken, so we just
// always root it for the duration of the alt.
//
// As a second example, consider *this* scenario:
//
// let x = @mut @some(3);
// alt x { @@some(y) {...} @@none {...} }
//
// Here again, `x` need only be rooted in the `some` arm.
// In this case, the value which needs to be rooted is
// found only when checking which pattern matches: but
// this check is done before entering the arm. Therefore,
// even in this case we just choose to keep the value
// rooted for the entire alt. This means the value will be
// rooted even if the none arm is taken. Oh well.
//
// At first, I tried to optimize the second case to only
// root in one arm, but the result was suboptimal: first,
// it interfered with the construction of phi nodes in the
// arm, as we were adding code to root values before the
// phi nodes were added. This could have been addressed
// with a second basic block. However, the naive approach
// also yielded suboptimal results for patterns like:
//
// let x = @mut @...;
// alt x { @@some_variant(y) | @@some_other_variant(y) {...} }
//
// The reason is that we would root the value once for
// each pattern and not once per arm. This is also easily
// fixed, but it's yet more code for what is really quite
// the corner case.
//
// Nonetheless, if you decide to optimize this case in the
// future, you need only adjust where the cat_discr()
// node appears to draw the line between what will be rooted
// in the *arm* vs the *alt*.
// current scope must be the arm, which is always a child of alt:
assert self.tcx.region_map.get(opt_scope_id.get()) == alt_id;
self.preserve(base, some(alt_id))
}
}
}
fn require_imm(cmt: cmt,
cmt1: cmt,
opt_scope_id: option<ast::node_id>,
code: bckerr_code) -> bckres<()> {
// Variant contents and unique pointers: must be immutably
// rooted to a preserved address.
alt cmt1.mutbl {
m_mutbl | m_const { err({cmt:cmt, code:code}) }
m_imm { self.preserve(cmt1, opt_scope_id) }
}
}
}
// ----------------------------------------------------------------------
// Loan(Ex, M, S) = Ls holds if ToAddr(Ex) will remain valid for the entirety
// of the scope S, presuming that the returned set of loans `Ls` are honored.
type loan_ctxt = @{
bccx: borrowck_ctxt,
loans: @mut [loan]
};
impl loan_methods for borrowck_ctxt {
fn loan(cmt: cmt, mutbl: ast::mutability) -> @const [loan] {
let lc = @{bccx: self, loans: @mut []};
lc.loan(cmt, mutbl);
ret lc.loans;
}
}
impl loan_methods for loan_ctxt {
fn ok_with_loan_of(cmt: cmt,
mutbl: ast::mutability) {
// Note: all cmt's that we deal with will have a non-none lp, because
// the entry point into this routine, `borrowck_ctxt::loan()`, rejects
// any cmt with a none-lp.
*self.loans += [{lp:option::get(cmt.lp),
cmt:cmt,
mutbl:mutbl}];
}
fn loan(cmt: cmt, req_mutbl: ast::mutability) {
#debug["loan(%s, %s)",
self.bccx.cmt_to_repr(cmt),
self.bccx.mut_to_str(req_mutbl)];
let _i = indenter();
// see stable() above; should only be called when `cmt` is lendable
if cmt.lp.is_none() {
self.bccx.tcx.sess.span_bug(
cmt.span,
"loan() called with non-lendable value");
}
alt cmt.cat {
cat_rvalue | cat_special(_) {
// should never be loanable
self.bccx.tcx.sess.span_bug(
cmt.span,
"rvalue with a non-none lp");
}
cat_local(_) | cat_arg(_) | cat_stack_upvar(_) {
self.ok_with_loan_of(cmt, req_mutbl)
}
cat_discr(base, _) {
self.loan(base, req_mutbl)
}
cat_comp(cmt_base, comp_field(_)) |
cat_comp(cmt_base, comp_index(_)) |
cat_comp(cmt_base, comp_tuple) |
cat_comp(cmt_base, comp_res) {
// For most components, the type of the embedded data is
// stable. Therefore, the base structure need only be
// const---unless the component must be immutable. In
// that case, it must also be embedded in an immutable
// location, or else the whole structure could be
// overwritten and the component along with it.
let base_mutbl = alt req_mutbl {
m_imm { m_imm }
m_const | m_mutbl { m_const }
};
self.loan(cmt_base, base_mutbl);
self.ok_with_loan_of(cmt, req_mutbl)
}
cat_comp(cmt1, comp_variant) |
cat_deref(cmt1, _, uniq_ptr) {
// Variant components: the base must be immutable, because
// if it is overwritten, the types of the embedded data
// could change.
//
// Unique pointers: the base must be immutable, because if
// it is overwritten, the unique content will be freed.
self.loan(cmt1, m_imm);
self.ok_with_loan_of(cmt, req_mutbl)
}
cat_deref(cmt1, _, unsafe_ptr) |
cat_deref(cmt1, _, gc_ptr) |
cat_deref(cmt1, _, region_ptr) {
// Aliased data is simply not lendable.
self.bccx.tcx.sess.span_bug(
cmt.span,
"aliased ptr with a non-none lp");
}
}
}
}