rust/src/libsyntax/ext/tt/macro_parser.rs
2017-08-30 01:38:54 +03:00

611 lines
24 KiB
Rust

// Copyright 2012-2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This is an NFA-based parser, which calls out to the main rust parser for named nonterminals
//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
//! fit for Macro-by-Example-style rules.
//!
//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
//! items, but it would also save overhead)
//!
//! We don't say this parser uses the Earley algorithm, because it's unnecessarily innacurate.
//! The macro parser restricts itself to the features of finite state automata. Earley parsers
//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
//!
//! Quick intro to how the parser works:
//!
//! A 'position' is a dot in the middle of a matcher, usually represented as a
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of threads consistent with the current position in the input string: `cur_items`.
//!
//! As it processes them, it fills up `eof_items` with threads that would be valid if
//! the macro invocation is now over, `bb_items` with threads that are waiting on
//! a Rust nonterminal like `$e:expr`, and `next_items` with threads that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. The rules for moving the · without
//! consuming any input are called epsilon transitions. It only advances or calls
//! out to the real Rust parser when no `cur_items` threads remain.
//!
//! Example:
//!
//! ```text, ignore
//! Start parsing a a a a b against [· a $( a )* a b].
//!
//! Remaining input: a a a a b
//! next: [· a $( a )* a b]
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a a b
//! cur: [a · $( a )* a b]
//! Descend/Skip (first item).
//! next: [a $( · a )* a b] [a $( a )* · a b].
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over a b. - - -
//!
//! Remaining input: ''
//! eof: [a $( a )* a b ·]
//! ```
pub use self::NamedMatch::*;
pub use self::ParseResult::*;
use self::TokenTreeOrTokenTreeVec::*;
use ast::Ident;
use syntax_pos::{self, BytePos, Span};
use codemap::Spanned;
use errors::FatalError;
use ext::tt::quoted::{self, TokenTree};
use parse::{Directory, ParseSess};
use parse::parser::{PathStyle, Parser};
use parse::token::{self, DocComment, Token, Nonterminal};
use print::pprust;
use symbol::keywords;
use tokenstream::TokenStream;
use util::small_vector::SmallVector;
use std::mem;
use std::rc::Rc;
use std::collections::HashMap;
use std::collections::hash_map::Entry::{Vacant, Occupied};
// To avoid costly uniqueness checks, we require that `MatchSeq` always has
// a nonempty body.
#[derive(Clone)]
enum TokenTreeOrTokenTreeVec {
Tt(TokenTree),
TtSeq(Vec<TokenTree>),
}
impl TokenTreeOrTokenTreeVec {
fn len(&self) -> usize {
match *self {
TtSeq(ref v) => v.len(),
Tt(ref tt) => tt.len(),
}
}
fn get_tt(&self, index: usize) -> TokenTree {
match *self {
TtSeq(ref v) => v[index].clone(),
Tt(ref tt) => tt.get_tt(index),
}
}
}
/// an unzipping of `TokenTree`s
#[derive(Clone)]
struct MatcherTtFrame {
elts: TokenTreeOrTokenTreeVec,
idx: usize,
}
#[derive(Clone)]
struct MatcherPos {
stack: Vec<MatcherTtFrame>,
top_elts: TokenTreeOrTokenTreeVec,
sep: Option<Token>,
idx: usize,
up: Option<Box<MatcherPos>>,
matches: Vec<Rc<Vec<NamedMatch>>>,
match_lo: usize,
match_cur: usize,
match_hi: usize,
sp_lo: BytePos,
}
impl MatcherPos {
fn push_match(&mut self, idx: usize, m: NamedMatch) {
let matches = Rc::make_mut(&mut self.matches[idx]);
matches.push(m);
}
}
pub type NamedParseResult = ParseResult<HashMap<Ident, Rc<NamedMatch>>>;
pub fn count_names(ms: &[TokenTree]) -> usize {
ms.iter().fold(0, |count, elt| {
count + match *elt {
TokenTree::Sequence(_, ref seq) => seq.num_captures,
TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
TokenTree::MetaVar(..) => 0,
TokenTree::MetaVarDecl(..) => 1,
TokenTree::Token(..) => 0,
}
})
}
fn initial_matcher_pos(ms: Vec<TokenTree>, lo: BytePos) -> Box<MatcherPos> {
let match_idx_hi = count_names(&ms[..]);
let matches = create_matches(match_idx_hi);
Box::new(MatcherPos {
stack: vec![],
top_elts: TtSeq(ms),
sep: None,
idx: 0,
up: None,
matches,
match_lo: 0,
match_cur: 0,
match_hi: match_idx_hi,
sp_lo: lo
})
}
/// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`:
/// so it is associated with a single ident in a parse, and all
/// `MatchedNonterminal`s in the `NamedMatch` have the same nonterminal type
/// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a
/// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it.
///
/// The in-memory structure of a particular `NamedMatch` represents the match
/// that occurred when a particular subset of a matcher was applied to a
/// particular token tree.
///
/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of
/// the `MatchedNonterminal`s, will depend on the token tree it was applied
/// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating
/// token tree. The depth of the `NamedMatch` structure will therefore depend
/// only on the nesting depth of `ast::TTSeq`s in the originating
/// token tree it was derived from.
#[derive(Debug, Clone)]
pub enum NamedMatch {
MatchedSeq(Rc<Vec<NamedMatch>>, syntax_pos::Span),
MatchedNonterminal(Rc<Nonterminal>)
}
fn nameize<I: Iterator<Item=NamedMatch>>(sess: &ParseSess, ms: &[TokenTree], mut res: I)
-> NamedParseResult {
fn n_rec<I: Iterator<Item=NamedMatch>>(sess: &ParseSess, m: &TokenTree, res: &mut I,
ret_val: &mut HashMap<Ident, Rc<NamedMatch>>)
-> Result<(), (syntax_pos::Span, String)> {
match *m {
TokenTree::Sequence(_, ref seq) => {
for next_m in &seq.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?
}
}
TokenTree::Delimited(_, ref delim) => {
for next_m in &delim.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?;
}
}
TokenTree::MetaVarDecl(span, _, id) if id.name == keywords::Invalid.name() => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
return Err((span, "missing fragment specifier".to_string()));
}
}
TokenTree::MetaVarDecl(sp, bind_name, _) => {
match ret_val.entry(bind_name) {
Vacant(spot) => {
// FIXME(simulacrum): Don't construct Rc here
spot.insert(Rc::new(res.next().unwrap()));
}
Occupied(..) => {
return Err((sp, format!("duplicated bind name: {}", bind_name)))
}
}
}
TokenTree::MetaVar(..) | TokenTree::Token(..) => (),
}
Ok(())
}
let mut ret_val = HashMap::new();
for m in ms {
match n_rec(sess, m, res.by_ref(), &mut ret_val) {
Ok(_) => {},
Err((sp, msg)) => return Error(sp, msg),
}
}
Success(ret_val)
}
pub enum ParseResult<T> {
Success(T),
/// Arm failed to match. If the second parameter is `token::Eof`, it
/// indicates an unexpected end of macro invocation. Otherwise, it
/// indicates that no rules expected the given token.
Failure(syntax_pos::Span, Token),
/// Fatal error (malformed macro?). Abort compilation.
Error(syntax_pos::Span, String)
}
pub fn parse_failure_msg(tok: Token) -> String {
match tok {
token::Eof => "unexpected end of macro invocation".to_string(),
_ => format!("no rules expected the token `{}`", pprust::token_to_string(&tok)),
}
}
/// Perform a token equality check, ignoring syntax context (that is, an unhygienic comparison)
fn token_name_eq(t1 : &Token, t2 : &Token) -> bool {
if let (Some(id1), Some(id2)) = (t1.ident(), t2.ident()) {
id1.name == id2.name
} else if let (&token::Lifetime(id1), &token::Lifetime(id2)) = (t1, t2) {
id1.name == id2.name
} else {
*t1 == *t2
}
}
fn create_matches(len: usize) -> Vec<Rc<Vec<NamedMatch>>> {
(0..len).into_iter().map(|_| Rc::new(Vec::new())).collect()
}
fn inner_parse_loop(sess: &ParseSess,
cur_items: &mut SmallVector<Box<MatcherPos>>,
next_items: &mut Vec<Box<MatcherPos>>,
eof_items: &mut SmallVector<Box<MatcherPos>>,
bb_items: &mut SmallVector<Box<MatcherPos>>,
token: &Token,
span: syntax_pos::Span)
-> ParseResult<()> {
while let Some(mut item) = cur_items.pop() {
// When unzipped trees end, remove them
while item.idx >= item.top_elts.len() {
match item.stack.pop() {
Some(MatcherTtFrame { elts, idx }) => {
item.top_elts = elts;
item.idx = idx + 1;
}
None => break
}
}
let idx = item.idx;
let len = item.top_elts.len();
// at end of sequence
if idx >= len {
// We are repeating iff there is a parent
if item.up.is_some() {
// Disregarding the separator, add the "up" case to the tokens that should be
// examined.
// (remove this condition to make trailing seps ok)
if idx == len {
let mut new_pos = item.up.clone().unwrap();
// update matches (the MBE "parse tree") by appending
// each tree as a subtree.
// Only touch the binders we have actually bound
for idx in item.match_lo..item.match_hi {
let sub = item.matches[idx].clone();
let span = span.with_lo(item.sp_lo);
new_pos.push_match(idx, MatchedSeq(sub, span));
}
new_pos.match_cur = item.match_hi;
new_pos.idx += 1;
cur_items.push(new_pos);
}
// Check if we need a separator
if idx == len && item.sep.is_some() {
// We have a separator, and it is the current token.
if item.sep.as_ref().map(|sep| token_name_eq(token, sep)).unwrap_or(false) {
item.idx += 1;
next_items.push(item);
}
} else { // we don't need a separator
item.match_cur = item.match_lo;
item.idx = 0;
cur_items.push(item);
}
} else {
// We aren't repeating, so we must be potentially at the end of the input.
eof_items.push(item);
}
} else {
match item.top_elts.get_tt(idx) {
/* need to descend into sequence */
TokenTree::Sequence(sp, seq) => {
if seq.op == quoted::KleeneOp::ZeroOrMore {
// Examine the case where there are 0 matches of this sequence
let mut new_item = item.clone();
new_item.match_cur += seq.num_captures;
new_item.idx += 1;
for idx in item.match_cur..item.match_cur + seq.num_captures {
new_item.push_match(idx, MatchedSeq(Rc::new(vec![]), sp));
}
cur_items.push(new_item);
}
// Examine the case where there is at least one match of this sequence
let matches = create_matches(item.matches.len());
cur_items.push(Box::new(MatcherPos {
stack: vec![],
sep: seq.separator.clone(),
idx: 0,
matches,
match_lo: item.match_cur,
match_cur: item.match_cur,
match_hi: item.match_cur + seq.num_captures,
up: Some(item),
sp_lo: sp.lo(),
top_elts: Tt(TokenTree::Sequence(sp, seq)),
}));
}
TokenTree::MetaVarDecl(span, _, id) if id.name == keywords::Invalid.name() => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
return Error(span, "missing fragment specifier".to_string());
}
}
TokenTree::MetaVarDecl(_, _, id) => {
// Built-in nonterminals never start with these tokens,
// so we can eliminate them from consideration.
if may_begin_with(&*id.name.as_str(), token) {
bb_items.push(item);
}
}
seq @ TokenTree::Delimited(..) | seq @ TokenTree::Token(_, DocComment(..)) => {
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
let idx = item.idx;
item.stack.push(MatcherTtFrame {
elts: lower_elts,
idx,
});
item.idx = 0;
cur_items.push(item);
}
TokenTree::Token(_, ref t) if token_name_eq(t, token) => {
item.idx += 1;
next_items.push(item);
}
TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
}
}
}
Success(())
}
pub fn parse(sess: &ParseSess,
tts: TokenStream,
ms: &[TokenTree],
directory: Option<Directory>,
recurse_into_modules: bool)
-> NamedParseResult {
let mut parser = Parser::new(sess, tts, directory, recurse_into_modules, true);
let mut cur_items = SmallVector::one(initial_matcher_pos(ms.to_owned(), parser.span.lo()));
let mut next_items = Vec::new(); // or proceed normally
loop {
let mut bb_items = SmallVector::new(); // black-box parsed by parser.rs
let mut eof_items = SmallVector::new();
assert!(next_items.is_empty());
match inner_parse_loop(sess, &mut cur_items, &mut next_items, &mut eof_items, &mut bb_items,
&parser.token, parser.span) {
Success(_) => {},
Failure(sp, tok) => return Failure(sp, tok),
Error(sp, msg) => return Error(sp, msg),
}
// inner parse loop handled all cur_items, so it's empty
assert!(cur_items.is_empty());
/* error messages here could be improved with links to orig. rules */
if token_name_eq(&parser.token, &token::Eof) {
if eof_items.len() == 1 {
let matches = eof_items[0].matches.iter_mut().map(|dv| {
Rc::make_mut(dv).pop().unwrap()
});
return nameize(sess, ms, matches);
} else if eof_items.len() > 1 {
return Error(parser.span, "ambiguity: multiple successful parses".to_string());
} else {
return Failure(parser.span, token::Eof);
}
} else if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
let nts = bb_items.iter().map(|item| match item.top_elts.get_tt(item.idx) {
TokenTree::MetaVarDecl(_, bind, name) => {
format!("{} ('{}')", name, bind)
}
_ => panic!()
}).collect::<Vec<String>>().join(" or ");
return Error(parser.span, format!(
"local ambiguity: multiple parsing options: {}",
match next_items.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
));
} else if bb_items.is_empty() && next_items.is_empty() {
return Failure(parser.span, parser.token);
} else if !next_items.is_empty() {
/* Now process the next token */
cur_items.extend(next_items.drain(..));
parser.bump();
} else /* bb_items.len() == 1 */ {
let mut item = bb_items.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, ident) = item.top_elts.get_tt(item.idx) {
let match_cur = item.match_cur;
item.push_match(match_cur,
MatchedNonterminal(Rc::new(parse_nt(&mut parser, span, &ident.name.as_str()))));
item.idx += 1;
item.match_cur += 1;
} else {
unreachable!()
}
cur_items.push(item);
}
assert!(!cur_items.is_empty());
}
}
/// Checks whether a non-terminal may begin with a particular token.
///
/// Returning `false` is a *stability guarantee* that such a matcher will *never* begin with that
/// token. Be conservative (return true) if not sure.
fn may_begin_with(name: &str, token: &Token) -> bool {
/// Checks whether the non-terminal may contain a single (non-keyword) identifier.
fn may_be_ident(nt: &token::Nonterminal) -> bool {
match *nt {
token::NtItem(_) | token::NtBlock(_) | token::NtVis(_) => false,
_ => true,
}
}
match name {
"expr" => token.can_begin_expr(),
"ty" => token.can_begin_type(),
"ident" => token.is_ident(),
"vis" => match *token { // The follow-set of :vis + "priv" keyword + interpolated
Token::Comma | Token::Ident(_) | Token::Interpolated(_) => true,
_ => token.can_begin_type(),
},
"block" => match *token {
Token::OpenDelim(token::Brace) => true,
Token::Interpolated(ref nt) => match nt.0 {
token::NtItem(_) |
token::NtPat(_) |
token::NtTy(_) |
token::NtIdent(_) |
token::NtMeta(_) |
token::NtPath(_) |
token::NtVis(_) => false, // none of these may start with '{'.
_ => true,
},
_ => false,
},
"path" | "meta" => match *token {
Token::ModSep | Token::Ident(_) => true,
Token::Interpolated(ref nt) => match nt.0 {
token::NtPath(_) | token::NtMeta(_) => true,
_ => may_be_ident(&nt.0),
},
_ => false,
},
"pat" => match *token {
Token::Ident(_) | // box, ref, mut, and other identifiers (can stricten)
Token::OpenDelim(token::Paren) | // tuple pattern
Token::OpenDelim(token::Bracket) | // slice pattern
Token::BinOp(token::And) | // reference
Token::BinOp(token::Minus) | // negative literal
Token::AndAnd | // double reference
Token::Literal(..) | // literal
Token::DotDot | // range pattern (future compat)
Token::DotDotDot | // range pattern (future compat)
Token::ModSep | // path
Token::Lt | // path (UFCS constant)
Token::BinOp(token::Shl) | // path (double UFCS)
Token::Underscore => true, // placeholder
Token::Interpolated(ref nt) => may_be_ident(&nt.0),
_ => false,
},
_ => match *token {
token::CloseDelim(_) => false,
_ => true,
},
}
}
fn parse_nt<'a>(p: &mut Parser<'a>, sp: Span, name: &str) -> Nonterminal {
if name == "tt" {
return token::NtTT(p.parse_token_tree());
}
// check at the beginning and the parser checks after each bump
p.process_potential_macro_variable();
match name {
"item" => match panictry!(p.parse_item()) {
Some(i) => token::NtItem(i),
None => {
p.fatal("expected an item keyword").emit();
panic!(FatalError);
}
},
"block" => token::NtBlock(panictry!(p.parse_block())),
"stmt" => match panictry!(p.parse_stmt()) {
Some(s) => token::NtStmt(s),
None => {
p.fatal("expected a statement").emit();
panic!(FatalError);
}
},
"pat" => token::NtPat(panictry!(p.parse_pat())),
"expr" => token::NtExpr(panictry!(p.parse_expr())),
"ty" => token::NtTy(panictry!(p.parse_ty())),
// this could be handled like a token, since it is one
"ident" => match p.token {
token::Ident(sn) => {
p.bump();
token::NtIdent(Spanned::<Ident>{node: sn, span: p.prev_span})
}
_ => {
let token_str = pprust::token_to_string(&p.token);
p.fatal(&format!("expected ident, found {}",
&token_str[..])).emit();
panic!(FatalError)
}
},
"path" => token::NtPath(panictry!(p.parse_path_common(PathStyle::Type, false))),
"meta" => token::NtMeta(panictry!(p.parse_meta_item())),
"vis" => token::NtVis(panictry!(p.parse_visibility(true))),
// this is not supposed to happen, since it has been checked
// when compiling the macro.
_ => p.span_bug(sp, "invalid fragment specifier")
}
}