rust/src/librustc/ty/relate.rs

696 lines
24 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generalized type relating mechanism. A type relation R relates a
//! pair of values (A, B). A and B are usually types or regions but
//! can be other things. Examples of type relations are subtyping,
//! type equality, etc.
use hir::def_id::DefId;
use ty::subst::{ParamSpace, Substs};
use ty::{self, Ty, TyCtxt, TypeFoldable};
use ty::error::{ExpectedFound, TypeError};
use std::rc::Rc;
use syntax::abi;
use hir as ast;
pub type RelateResult<'tcx, T> = Result<T, TypeError<'tcx>>;
#[derive(Clone, Debug)]
pub enum Cause {
ExistentialRegionBound, // relating an existential region bound
}
pub trait TypeRelation<'a,'tcx> : Sized {
fn tcx(&self) -> TyCtxt<'a, 'tcx>;
/// Returns a static string we can use for printouts.
fn tag(&self) -> &'static str;
/// Returns true if the value `a` is the "expected" type in the
/// relation. Just affects error messages.
fn a_is_expected(&self) -> bool;
fn with_cause<F,R>(&mut self, _cause: Cause, f: F) -> R
where F: FnOnce(&mut Self) -> R
{
f(self)
}
/// Generic relation routine suitable for most anything.
fn relate<T:Relate<'a,'tcx>>(&mut self, a: &T, b: &T) -> RelateResult<'tcx, T> {
Relate::relate(self, a, b)
}
/// Relete elements of two slices pairwise.
fn relate_zip<T:Relate<'a,'tcx>>(&mut self, a: &[T], b: &[T]) -> RelateResult<'tcx, Vec<T>> {
assert_eq!(a.len(), b.len());
a.iter().zip(b).map(|(a, b)| self.relate(a, b)).collect()
}
/// Switch variance for the purpose of relating `a` and `b`.
fn relate_with_variance<T:Relate<'a,'tcx>>(&mut self,
variance: ty::Variance,
a: &T,
b: &T)
-> RelateResult<'tcx, T>;
// Overrideable relations. You shouldn't typically call these
// directly, instead call `relate()`, which in turn calls
// these. This is both more uniform but also allows us to add
// additional hooks for other types in the future if needed
// without making older code, which called `relate`, obsolete.
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>;
fn regions(&mut self, a: ty::Region, b: ty::Region)
-> RelateResult<'tcx, ty::Region>;
fn binders<T>(&mut self, a: &ty::Binder<T>, b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where T: Relate<'a,'tcx>;
}
pub trait Relate<'a,'tcx>: TypeFoldable<'tcx> {
fn relate<R:TypeRelation<'a,'tcx>>(relation: &mut R,
a: &Self,
b: &Self)
-> RelateResult<'tcx, Self>;
}
///////////////////////////////////////////////////////////////////////////
// Relate impls
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::TypeAndMut<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::TypeAndMut<'tcx>,
b: &ty::TypeAndMut<'tcx>)
-> RelateResult<'tcx, ty::TypeAndMut<'tcx>>
where R: TypeRelation<'a,'tcx>
{
debug!("{}.mts({:?}, {:?})",
relation.tag(),
a,
b);
if a.mutbl != b.mutbl {
Err(TypeError::Mutability)
} else {
let mutbl = a.mutbl;
let variance = match mutbl {
ast::Mutability::MutImmutable => ty::Covariant,
ast::Mutability::MutMutable => ty::Invariant,
};
let ty = relation.relate_with_variance(variance, &a.ty, &b.ty)?;
Ok(ty::TypeAndMut {ty: ty, mutbl: mutbl})
}
}
}
// substitutions are not themselves relatable without more context,
// but they is an important subroutine for things that ARE relatable,
// like traits etc.
fn relate_item_substs<'a,'tcx:'a,R>(relation: &mut R,
item_def_id: DefId,
a_subst: &Substs<'tcx>,
b_subst: &Substs<'tcx>)
-> RelateResult<'tcx, Substs<'tcx>>
where R: TypeRelation<'a,'tcx>
{
debug!("substs: item_def_id={:?} a_subst={:?} b_subst={:?}",
item_def_id,
a_subst,
b_subst);
let variances;
let opt_variances = if relation.tcx().variance_computed.get() {
variances = relation.tcx().item_variances(item_def_id);
Some(&*variances)
} else {
None
};
relate_substs(relation, opt_variances, a_subst, b_subst)
}
pub fn relate_substs<'a,'tcx:'a,R>(relation: &mut R,
variances: Option<&ty::ItemVariances>,
a_subst: &Substs<'tcx>,
b_subst: &Substs<'tcx>)
-> RelateResult<'tcx, Substs<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let mut substs = Substs::empty();
for &space in &ParamSpace::all() {
let a_tps = a_subst.types.get_slice(space);
let b_tps = b_subst.types.get_slice(space);
let t_variances = variances.map(|v| v.types.get_slice(space));
let tps = relate_type_params(relation, t_variances, a_tps, b_tps)?;
substs.types.replace(space, tps);
}
for &space in &ParamSpace::all() {
let a_regions = a_subst.regions.get_slice(space);
let b_regions = b_subst.regions.get_slice(space);
let r_variances = variances.map(|v| v.regions.get_slice(space));
let regions = relate_region_params(relation,
r_variances,
a_regions,
b_regions)?;
substs.regions.replace(space, regions);
}
Ok(substs)
}
fn relate_type_params<'a,'tcx:'a,R>(relation: &mut R,
variances: Option<&[ty::Variance]>,
a_tys: &[Ty<'tcx>],
b_tys: &[Ty<'tcx>])
-> RelateResult<'tcx, Vec<Ty<'tcx>>>
where R: TypeRelation<'a,'tcx>
{
if a_tys.len() != b_tys.len() {
return Err(TypeError::TyParamSize(expected_found(relation,
&a_tys.len(),
&b_tys.len())));
}
(0 .. a_tys.len())
.map(|i| {
let a_ty = a_tys[i];
let b_ty = b_tys[i];
let v = variances.map_or(ty::Invariant, |v| v[i]);
relation.relate_with_variance(v, &a_ty, &b_ty)
})
.collect()
}
fn relate_region_params<'a,'tcx:'a,R>(relation: &mut R,
variances: Option<&[ty::Variance]>,
a_rs: &[ty::Region],
b_rs: &[ty::Region])
-> RelateResult<'tcx, Vec<ty::Region>>
where R: TypeRelation<'a,'tcx>
{
let num_region_params = a_rs.len();
debug!("relate_region_params(a_rs={:?}, \
b_rs={:?}, variances={:?})",
a_rs,
b_rs,
variances);
assert_eq!(num_region_params,
variances.map_or(num_region_params,
|v| v.len()));
assert_eq!(num_region_params, b_rs.len());
(0..a_rs.len())
.map(|i| {
let a_r = a_rs[i];
let b_r = b_rs[i];
let variance = variances.map_or(ty::Invariant, |v| v[i]);
relation.relate_with_variance(variance, &a_r, &b_r)
})
.collect()
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::BareFnTy<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::BareFnTy<'tcx>,
b: &ty::BareFnTy<'tcx>)
-> RelateResult<'tcx, ty::BareFnTy<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let unsafety = relation.relate(&a.unsafety, &b.unsafety)?;
let abi = relation.relate(&a.abi, &b.abi)?;
let sig = relation.relate(&a.sig, &b.sig)?;
Ok(ty::BareFnTy {unsafety: unsafety,
abi: abi,
sig: sig})
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::FnSig<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::FnSig<'tcx>,
b: &ty::FnSig<'tcx>)
-> RelateResult<'tcx, ty::FnSig<'tcx>>
where R: TypeRelation<'a,'tcx>
{
if a.variadic != b.variadic {
return Err(TypeError::VariadicMismatch(
expected_found(relation, &a.variadic, &b.variadic)));
}
let inputs = relate_arg_vecs(relation,
&a.inputs,
&b.inputs)?;
let output = match (a.output, b.output) {
(ty::FnConverging(a_ty), ty::FnConverging(b_ty)) =>
Ok(ty::FnConverging(relation.relate(&a_ty, &b_ty)?)),
(ty::FnDiverging, ty::FnDiverging) =>
Ok(ty::FnDiverging),
(a, b) =>
Err(TypeError::ConvergenceMismatch(
expected_found(relation, &(a != ty::FnDiverging), &(b != ty::FnDiverging)))),
}?;
return Ok(ty::FnSig {inputs: inputs,
output: output,
variadic: a.variadic});
}
}
fn relate_arg_vecs<'a,'tcx:'a,R>(relation: &mut R,
a_args: &[Ty<'tcx>],
b_args: &[Ty<'tcx>])
-> RelateResult<'tcx, Vec<Ty<'tcx>>>
where R: TypeRelation<'a,'tcx>
{
if a_args.len() != b_args.len() {
return Err(TypeError::ArgCount);
}
a_args.iter().zip(b_args)
.map(|(a, b)| relation.relate_with_variance(ty::Contravariant, a, b))
.collect()
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ast::Unsafety {
fn relate<R>(relation: &mut R,
a: &ast::Unsafety,
b: &ast::Unsafety)
-> RelateResult<'tcx, ast::Unsafety>
where R: TypeRelation<'a,'tcx>
{
if a != b {
Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b)))
} else {
Ok(*a)
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for abi::Abi {
fn relate<R>(relation: &mut R,
a: &abi::Abi,
b: &abi::Abi)
-> RelateResult<'tcx, abi::Abi>
where R: TypeRelation<'a,'tcx>
{
if a == b {
Ok(*a)
} else {
Err(TypeError::AbiMismatch(expected_found(relation, a, b)))
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ProjectionTy<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::ProjectionTy<'tcx>,
b: &ty::ProjectionTy<'tcx>)
-> RelateResult<'tcx, ty::ProjectionTy<'tcx>>
where R: TypeRelation<'a,'tcx>
{
if a.item_name != b.item_name {
Err(TypeError::ProjectionNameMismatched(
expected_found(relation, &a.item_name, &b.item_name)))
} else {
let trait_ref = relation.relate(&a.trait_ref, &b.trait_ref)?;
Ok(ty::ProjectionTy { trait_ref: trait_ref, item_name: a.item_name })
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ProjectionPredicate<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::ProjectionPredicate<'tcx>,
b: &ty::ProjectionPredicate<'tcx>)
-> RelateResult<'tcx, ty::ProjectionPredicate<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let projection_ty = relation.relate(&a.projection_ty, &b.projection_ty)?;
let ty = relation.relate(&a.ty, &b.ty)?;
Ok(ty::ProjectionPredicate { projection_ty: projection_ty, ty: ty })
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for Vec<ty::PolyProjectionPredicate<'tcx>> {
fn relate<R>(relation: &mut R,
a: &Vec<ty::PolyProjectionPredicate<'tcx>>,
b: &Vec<ty::PolyProjectionPredicate<'tcx>>)
-> RelateResult<'tcx, Vec<ty::PolyProjectionPredicate<'tcx>>>
where R: TypeRelation<'a,'tcx>
{
// To be compatible, `a` and `b` must be for precisely the
// same set of traits and item names. We always require that
// projection bounds lists are sorted by trait-def-id and item-name,
// so we can just iterate through the lists pairwise, so long as they are the
// same length.
if a.len() != b.len() {
Err(TypeError::ProjectionBoundsLength(expected_found(relation, &a.len(), &b.len())))
} else {
a.iter().zip(b)
.map(|(a, b)| relation.relate(a, b))
.collect()
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ExistentialBounds<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::ExistentialBounds<'tcx>,
b: &ty::ExistentialBounds<'tcx>)
-> RelateResult<'tcx, ty::ExistentialBounds<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let r =
relation.with_cause(
Cause::ExistentialRegionBound,
|relation| relation.relate_with_variance(ty::Contravariant,
&a.region_bound,
&b.region_bound))?;
let nb = relation.relate(&a.builtin_bounds, &b.builtin_bounds)?;
let pb = relation.relate(&a.projection_bounds, &b.projection_bounds)?;
Ok(ty::ExistentialBounds { region_bound: r,
builtin_bounds: nb,
projection_bounds: pb })
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::BuiltinBounds {
fn relate<R>(relation: &mut R,
a: &ty::BuiltinBounds,
b: &ty::BuiltinBounds)
-> RelateResult<'tcx, ty::BuiltinBounds>
where R: TypeRelation<'a,'tcx>
{
// Two sets of builtin bounds are only relatable if they are
// precisely the same (but see the coercion code).
if a != b {
Err(TypeError::BuiltinBoundsMismatch(expected_found(relation, a, b)))
} else {
Ok(*a)
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::TraitRef<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::TraitRef<'tcx>,
b: &ty::TraitRef<'tcx>)
-> RelateResult<'tcx, ty::TraitRef<'tcx>>
where R: TypeRelation<'a,'tcx>
{
// Different traits cannot be related
if a.def_id != b.def_id {
Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id)))
} else {
let substs = relate_item_substs(relation, a.def_id, a.substs, b.substs)?;
Ok(ty::TraitRef { def_id: a.def_id, substs: relation.tcx().mk_substs(substs) })
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for Ty<'tcx> {
fn relate<R>(relation: &mut R,
a: &Ty<'tcx>,
b: &Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>
where R: TypeRelation<'a,'tcx>
{
relation.tys(a, b)
}
}
/// The main "type relation" routine. Note that this does not handle
/// inference artifacts, so you should filter those out before calling
/// it.
pub fn super_relate_tys<'a,'tcx:'a,R>(relation: &mut R,
a: Ty<'tcx>,
b: Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let tcx = relation.tcx();
let a_sty = &a.sty;
let b_sty = &b.sty;
debug!("super_tys: a_sty={:?} b_sty={:?}", a_sty, b_sty);
match (a_sty, b_sty) {
(&ty::TyInfer(_), _) |
(_, &ty::TyInfer(_)) =>
{
// The caller should handle these cases!
bug!("var types encountered in super_relate_tys")
}
(&ty::TyError, _) | (_, &ty::TyError) =>
{
Ok(tcx.types.err)
}
(&ty::TyChar, _) |
(&ty::TyBool, _) |
(&ty::TyInt(_), _) |
(&ty::TyUint(_), _) |
(&ty::TyFloat(_), _) |
(&ty::TyStr, _)
if a == b =>
{
Ok(a)
}
(&ty::TyParam(ref a_p), &ty::TyParam(ref b_p))
if a_p.idx == b_p.idx && a_p.space == b_p.space =>
{
Ok(a)
}
(&ty::TyEnum(a_def, a_substs), &ty::TyEnum(b_def, b_substs))
if a_def == b_def =>
{
let substs = relate_item_substs(relation, a_def.did, a_substs, b_substs)?;
Ok(tcx.mk_enum(a_def, tcx.mk_substs(substs)))
}
(&ty::TyTrait(ref a_), &ty::TyTrait(ref b_)) =>
{
let principal = relation.relate(&a_.principal, &b_.principal)?;
let bounds = relation.relate(&a_.bounds, &b_.bounds)?;
Ok(tcx.mk_trait(principal, bounds))
}
(&ty::TyStruct(a_def, a_substs), &ty::TyStruct(b_def, b_substs))
if a_def == b_def =>
{
let substs = relate_item_substs(relation, a_def.did, a_substs, b_substs)?;
Ok(tcx.mk_struct(a_def, tcx.mk_substs(substs)))
}
(&ty::TyClosure(a_id, ref a_substs),
&ty::TyClosure(b_id, ref b_substs))
if a_id == b_id =>
{
// All TyClosure types with the same id represent
// the (anonymous) type of the same closure expression. So
// all of their regions should be equated.
let substs = relation.relate(a_substs, b_substs)?;
Ok(tcx.mk_closure_from_closure_substs(a_id, substs))
}
(&ty::TyBox(a_inner), &ty::TyBox(b_inner)) =>
{
let typ = relation.relate(&a_inner, &b_inner)?;
Ok(tcx.mk_box(typ))
}
(&ty::TyRawPtr(ref a_mt), &ty::TyRawPtr(ref b_mt)) =>
{
let mt = relation.relate(a_mt, b_mt)?;
Ok(tcx.mk_ptr(mt))
}
(&ty::TyRef(a_r, ref a_mt), &ty::TyRef(b_r, ref b_mt)) =>
{
let r = relation.relate_with_variance(ty::Contravariant, a_r, b_r)?;
let mt = relation.relate(a_mt, b_mt)?;
Ok(tcx.mk_ref(tcx.mk_region(r), mt))
}
(&ty::TyArray(a_t, sz_a), &ty::TyArray(b_t, sz_b)) =>
{
let t = relation.relate(&a_t, &b_t)?;
if sz_a == sz_b {
Ok(tcx.mk_array(t, sz_a))
} else {
Err(TypeError::FixedArraySize(expected_found(relation, &sz_a, &sz_b)))
}
}
(&ty::TySlice(a_t), &ty::TySlice(b_t)) =>
{
let t = relation.relate(&a_t, &b_t)?;
Ok(tcx.mk_slice(t))
}
(&ty::TyTuple(ref as_), &ty::TyTuple(ref bs)) =>
{
if as_.len() == bs.len() {
let ts = as_.iter().zip(bs)
.map(|(a, b)| relation.relate(a, b))
.collect::<Result<_, _>>()?;
Ok(tcx.mk_tup(ts))
} else if !(as_.is_empty() || bs.is_empty()) {
Err(TypeError::TupleSize(
expected_found(relation, &as_.len(), &bs.len())))
} else {
Err(TypeError::Sorts(expected_found(relation, &a, &b)))
}
}
(&ty::TyFnDef(a_def_id, a_substs, a_fty),
&ty::TyFnDef(b_def_id, b_substs, b_fty))
if a_def_id == b_def_id =>
{
let substs = relate_substs(relation, None, a_substs, b_substs)?;
let fty = relation.relate(a_fty, b_fty)?;
Ok(tcx.mk_fn_def(a_def_id, tcx.mk_substs(substs), fty))
}
(&ty::TyFnPtr(a_fty), &ty::TyFnPtr(b_fty)) =>
{
let fty = relation.relate(a_fty, b_fty)?;
Ok(tcx.mk_fn_ptr(fty))
}
(&ty::TyProjection(ref a_data), &ty::TyProjection(ref b_data)) =>
{
let projection_ty = relation.relate(a_data, b_data)?;
Ok(tcx.mk_projection(projection_ty.trait_ref, projection_ty.item_name))
}
_ =>
{
Err(TypeError::Sorts(expected_found(relation, &a, &b)))
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ClosureSubsts<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::ClosureSubsts<'tcx>,
b: &ty::ClosureSubsts<'tcx>)
-> RelateResult<'tcx, ty::ClosureSubsts<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let func_substs = relate_substs(relation, None, a.func_substs, b.func_substs)?;
let upvar_tys = relation.relate_zip(&a.upvar_tys, &b.upvar_tys)?;
Ok(ty::ClosureSubsts { func_substs: relation.tcx().mk_substs(func_substs),
upvar_tys: upvar_tys })
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for Substs<'tcx> {
fn relate<R>(relation: &mut R,
a: &Substs<'tcx>,
b: &Substs<'tcx>)
-> RelateResult<'tcx, Substs<'tcx>>
where R: TypeRelation<'a,'tcx>
{
relate_substs(relation, None, a, b)
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::Region {
fn relate<R>(relation: &mut R,
a: &ty::Region,
b: &ty::Region)
-> RelateResult<'tcx, ty::Region>
where R: TypeRelation<'a,'tcx>
{
relation.regions(*a, *b)
}
}
impl<'a,'tcx:'a,T> Relate<'a,'tcx> for ty::Binder<T>
where T: Relate<'a,'tcx>
{
fn relate<R>(relation: &mut R,
a: &ty::Binder<T>,
b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where R: TypeRelation<'a,'tcx>
{
relation.binders(a, b)
}
}
impl<'a,'tcx:'a,T> Relate<'a,'tcx> for Rc<T>
where T: Relate<'a,'tcx>
{
fn relate<R>(relation: &mut R,
a: &Rc<T>,
b: &Rc<T>)
-> RelateResult<'tcx, Rc<T>>
where R: TypeRelation<'a,'tcx>
{
let a: &T = a;
let b: &T = b;
Ok(Rc::new(relation.relate(a, b)?))
}
}
impl<'a,'tcx:'a,T> Relate<'a,'tcx> for Box<T>
where T: Relate<'a,'tcx>
{
fn relate<R>(relation: &mut R,
a: &Box<T>,
b: &Box<T>)
-> RelateResult<'tcx, Box<T>>
where R: TypeRelation<'a,'tcx>
{
let a: &T = a;
let b: &T = b;
Ok(Box::new(relation.relate(a, b)?))
}
}
///////////////////////////////////////////////////////////////////////////
// Error handling
pub fn expected_found<'a,'tcx:'a,R,T>(relation: &mut R,
a: &T,
b: &T)
-> ExpectedFound<T>
where R: TypeRelation<'a,'tcx>, T: Clone
{
expected_found_bool(relation.a_is_expected(), a, b)
}
pub fn expected_found_bool<T>(a_is_expected: bool,
a: &T,
b: &T)
-> ExpectedFound<T>
where T: Clone
{
let a = a.clone();
let b = b.clone();
if a_is_expected {
ExpectedFound {expected: a, found: b}
} else {
ExpectedFound {expected: b, found: a}
}
}