rust/src/comp/syntax/ast.rs

723 lines
17 KiB
Rust

// The Rust abstract syntax tree.
import std::ivec;
import std::option;
import std::str;
import codemap::span;
import codemap::filename;
type spanned[T] = {node: T, span: span};
fn respan[T](sp: &span, t: &T) -> spanned[T] { ret {node: t, span: sp}; }
type ident = str;
// Functions may or may not have names.
type fn_ident = option::t[ident];
// FIXME: with typestate constraint, could say
// idents and types are the same length, and are
// non-empty
type path_ = {global: bool, idents: ident[], types: (@ty)[]};
type path = spanned[path_];
fn path_name(p: &path) -> str { path_name_i(p.node.idents) }
fn path_name_i(idents: &ident[]) -> str { str::connect_ivec(idents, "::") }
type crate_num = int;
type node_id = int;
type def_id = {crate: crate_num, node: node_id};
const local_crate: crate_num = 0;
fn local_def(id: node_id) -> def_id { ret {crate: local_crate, node: id}; }
type ty_param = {ident: ident, kind: kind};
tag def {
def_fn(def_id, purity);
def_obj_field(def_id);
def_mod(def_id);
def_native_mod(def_id);
def_const(def_id);
def_arg(def_id);
def_local(def_id);
def_variant(def_id, /* tag */def_id);
/* variant */
def_ty(def_id);
def_ty_arg(uint, kind);
def_binding(def_id);
def_use(def_id);
def_native_ty(def_id);
def_native_fn(def_id);
/* A "fake" def for upvars. This never appears in the def_map, but
* freevars::def_lookup will return it for a def that is an upvar.
* It contains the actual def. */
def_upvar(def_id, @def);
}
fn variant_def_ids(d: &def) -> {tg: def_id, var: def_id} {
alt d { def_variant(tag_id, var_id) { ret {tg: tag_id, var: var_id}; } }
}
fn def_id_of_def(d: def) -> def_id {
alt d {
def_fn(id, _) { ret id; }
def_obj_field(id) { ret id; }
def_mod(id) { ret id; }
def_native_mod(id) { ret id; }
def_const(id) { ret id; }
def_arg(id) { ret id; }
def_local(id) { ret id; }
def_variant(_, id) { ret id; }
def_ty(id) { ret id; }
def_ty_arg(_,_) { fail; }
def_binding(id) { ret id; }
def_use(id) { ret id; }
def_native_ty(id) { ret id; }
def_native_fn(id) { ret id; }
def_upvar(id, _) { ret id; }
}
}
// The set of meta_items that define the compilation environment of the crate,
// used to drive conditional compilation
type crate_cfg = (@meta_item)[];
type crate = spanned[crate_];
type crate_ =
{directives: (@crate_directive)[],
module: _mod,
attrs: attribute[],
config: crate_cfg};
tag crate_directive_ {
cdir_src_mod(ident, option::t[filename], attribute[]);
cdir_dir_mod(ident,
option::t[filename],
(@crate_directive)[],
attribute[]);
cdir_view_item(@view_item);
cdir_syntax(path);
cdir_auth(path, _auth);
}
type crate_directive = spanned[crate_directive_];
type meta_item = spanned[meta_item_];
tag meta_item_ {
meta_word(ident);
meta_list(ident, (@meta_item)[]);
meta_name_value(ident, lit);
}
type blk = spanned[blk_];
type blk_ = {stmts: (@stmt)[], expr: option::t[@expr], id: node_id};
type pat = {id: node_id, node: pat_, span: span};
type field_pat = {ident: ident, pat: @pat};
tag pat_ {
pat_wild;
pat_bind(ident);
pat_lit(@lit);
pat_tag(path, (@pat)[]);
pat_rec(field_pat[], bool);
pat_box(@pat);
}
type pat_id_map = std::map::hashmap[str, ast::node_id];
// This is used because same-named variables in alternative patterns need to
// use the node_id of their namesake in the first pattern.
fn pat_id_map(pat: &@pat) -> pat_id_map {
let map = std::map::new_str_hash[node_id]();
fn walk(map: &pat_id_map, pat: &@pat) {
alt pat.node {
pat_bind(name) { map.insert(name, pat.id); }
pat_tag(_, sub) { for p: @pat in sub { walk(map, p); } }
pat_rec(fields, _) {
for f: field_pat in fields { walk(map, f.pat); }
}
pat_box(inner) { walk(map, inner); }
_ { }
}
}
walk(map, pat);
ret map;
}
iter pat_bindings(pat: &@pat) -> @pat {
alt pat.node {
pat_bind(_) { put pat; }
pat_tag(_, sub) {
for p in sub {
for each b in pat_bindings(p) { put b; }
}
}
pat_rec(fields, _) {
for f in fields {
for each b in pat_bindings(f.pat) { put b; }
}
}
pat_box(sub) {
for each b in pat_bindings(sub) { put b; }
}
pat_wild. | pat_lit(_) {}
}
}
fn pat_binding_ids(pat: &@pat) -> node_id[] {
let found = ~[];
for each b in pat_bindings(pat) { found += ~[b.id]; }
ret found;
}
tag mutability { mut; imm; maybe_mut; }
tag kind { kind_pinned; kind_shared; kind_unique; }
tag _auth { auth_unsafe; }
tag proto { proto_iter; proto_fn; proto_block; proto_closure; }
tag binop {
add;
sub;
mul;
div;
rem;
and;
or;
bitxor;
bitand;
bitor;
lsl;
lsr;
asr;
eq;
lt;
le;
ne;
ge;
gt;
}
fn binop_to_str(op: binop) -> str {
alt op {
add. { ret "+"; }
sub. { ret "-"; }
mul. { ret "*"; }
div. { ret "/"; }
rem. { ret "%"; }
and. { ret "&&"; }
or. { ret "||"; }
bitxor. { ret "^"; }
bitand. { ret "&"; }
bitor. { ret "|"; }
lsl. { ret "<<"; }
lsr. { ret ">>"; }
asr. { ret ">>>"; }
eq. { ret "=="; }
lt. { ret "<"; }
le. { ret "<="; }
ne. { ret "!="; }
ge. { ret ">="; }
gt. { ret ">"; }
}
}
pred lazy_binop(b: binop) -> bool {
alt b { and. { true } or. { true } _ { false } }
}
tag unop { box(mutability); deref; not; neg; }
fn unop_to_str(op: unop) -> str {
alt op {
box(mt) { if mt == mut { ret "@mutable "; } ret "@"; }
deref. { ret "*"; }
not. { ret "!"; }
neg. { ret "-"; }
}
}
tag mode { val; alias(bool); move; }
type stmt = spanned[stmt_];
tag stmt_ {
stmt_decl(@decl, node_id);
stmt_expr(@expr, node_id);
// These only exist in crate-level blocks.
stmt_crate_directive(@crate_directive);
}
tag init_op { init_assign; init_recv; init_move; }
type initializer = {op: init_op, expr: @expr};
type local_ = {ty: option::t[@ty],
pat: @pat,
init: option::t[initializer],
id: node_id};
type local = spanned[local_];
type decl = spanned[decl_];
tag decl_ { decl_local((@local)[]); decl_item(@item); }
type arm = {pats: (@pat)[], block: blk};
type elt = {mut: mutability, expr: @expr};
type field_ = {mut: mutability, ident: ident, expr: @expr};
type field = spanned[field_];
tag spawn_dom { dom_implicit; dom_thread; }
tag check_mode { checked; unchecked; }
// FIXME: temporary
tag seq_kind { sk_unique; sk_rc; }
type expr = {id: node_id, node: expr_, span: span};
tag expr_ {
expr_vec((@expr)[], mutability, seq_kind);
expr_rec(field[], option::t[@expr]);
expr_call(@expr, (@expr)[]);
expr_self_method(ident);
expr_bind(@expr, (option::t[@expr])[]);
expr_spawn(spawn_dom, option::t[str], @expr, (@expr)[]);
expr_binary(binop, @expr, @expr);
expr_unary(unop, @expr);
expr_lit(@lit);
expr_cast(@expr, @ty);
expr_if(@expr, blk, option::t[@expr]);
expr_ternary(@expr, @expr, @expr);
expr_while(@expr, blk);
expr_for(@local, @expr, blk);
expr_for_each(@local, @expr, blk);
expr_do_while(blk, @expr);
expr_alt(@expr, arm[]);
expr_fn(_fn);
expr_block(blk);
/*
* FIXME: many of these @exprs should be constrained with
* is_lval once we have constrained types working.
*/
expr_move(@expr, @expr);
expr_assign(@expr, @expr);
expr_swap(@expr, @expr);
expr_assign_op(binop, @expr, @expr);
expr_send(@expr, @expr);
expr_recv(@expr, @expr);
expr_field(@expr, ident);
expr_index(@expr, @expr);
expr_path(path);
expr_fail(option::t[@expr]);
expr_break;
expr_cont;
expr_ret(option::t[@expr]);
expr_put(option::t[@expr]);
expr_be(@expr);
expr_log(int, @expr);
/* just an assert, no significance to typestate */
expr_assert(@expr);
/* preds that typestate is aware of */
expr_check(check_mode, @expr);
/* FIXME Would be nice if expr_check desugared
to expr_if_check. */
expr_if_check(@expr, blk, option::t[@expr]);
expr_port(option::t[@ty]);
expr_chan(@expr);
expr_anon_obj(anon_obj);
expr_mac(mac);
}
type mac = spanned[mac_];
tag mac_ {
mac_invoc(path, @expr, option::t[str]);
mac_embed_type(@ty);
mac_embed_block(blk);
mac_ellipsis;
}
type lit = spanned[lit_];
tag lit_ {
lit_str(str, seq_kind);
lit_char(char);
lit_int(int);
lit_uint(uint);
lit_mach_int(ty_mach, int);
lit_float(str);
lit_mach_float(ty_mach, str);
lit_nil;
lit_bool(bool);
}
fn is_path(e: &@expr) -> bool {
ret alt e.node { expr_path(_) { true } _ { false } };
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
type mt = {ty: @ty, mut: mutability};
type ty_field_ = {ident: ident, mt: mt};
type ty_arg_ = {mode: mode, ty: @ty};
type ty_method_ =
{proto: proto,
ident: ident,
inputs: ty_arg[],
output: @ty,
cf: controlflow,
constrs: (@constr)[]};
type ty_field = spanned[ty_field_];
type ty_arg = spanned[ty_arg_];
type ty_method = spanned[ty_method_];
tag ty_mach {
ty_i8;
ty_i16;
ty_i32;
ty_i64;
ty_u8;
ty_u16;
ty_u32;
ty_u64;
ty_f32;
ty_f64;
}
fn ty_mach_to_str(tm: ty_mach) -> str {
alt tm {
ty_u8. { ret "u8"; }
ty_u16. { ret "u16"; }
ty_u32. { ret "u32"; }
ty_u64. { ret "u64"; }
ty_i8. { ret "i8"; }
ty_i16. { ret "i16"; }
ty_i32. { ret "i32"; }
ty_i64. { ret "i64"; }
ty_f32. { ret "f32"; }
ty_f64. { ret "f64"; }
}
}
type ty = spanned[ty_];
tag ty_ {
ty_nil;
ty_bot; /* return type of ! functions and type of
ret/fail/break/cont. there is no syntax
for this type. */
/* bot represents the value of functions that don't return a value
locally to their context. in contrast, things like log that do
return, but don't return a meaningful value, have result type nil. */
ty_bool;
ty_int;
ty_uint;
ty_float;
ty_machine(ty_mach);
ty_char;
ty_str;
ty_istr; // interior string
ty_box(mt);
ty_vec(mt);
ty_ivec(mt); // interior vector
ty_ptr(mt);
ty_task;
ty_port(@ty);
ty_chan(@ty);
ty_rec(ty_field[]);
ty_fn(proto, ty_arg[], @ty, controlflow, (@constr)[]);
ty_obj(ty_method[]);
ty_path(path, node_id);
ty_type;
ty_constr(@ty, (@ty_constr)[]);
ty_mac(mac);
}
/*
A constraint arg that's a function argument is referred to by its position
rather than name. This is so we could have higher-order functions that have
constraints (potentially -- right now there's no way to write that), and also
so that the typestate pass doesn't have to map a function name onto its decl.
So, the constr_arg type is parameterized: it's instantiated with uint for
declarations, and ident for uses.
*/
tag constr_arg_general_[T] { carg_base; carg_ident(T); carg_lit(@lit); }
type fn_constr_arg = constr_arg_general_[uint];
type sp_constr_arg[T] = spanned[constr_arg_general_[T]];
type ty_constr_arg = sp_constr_arg[path];
type constr_arg = spanned[fn_constr_arg];
// Constrained types' args are parameterized by paths, since
// we refer to paths directly and not by indices.
// The implicit root of such path, in the constraint-list for a
// constrained type, is * (referring to the base record)
type constr_general_[ARG, ID] =
{path: path, args: (@spanned[constr_arg_general_[ARG]])[], id: ID};
// In the front end, constraints have a node ID attached.
// Typeck turns this to a def_id, using the output of resolve.
type constr_general[ARG] = spanned[constr_general_[ARG, node_id]];
type constr_ = constr_general_[uint, node_id];
type constr = spanned[constr_general_[uint, node_id]];
type ty_constr_ = ast::constr_general_[ast::path, ast::node_id];
type ty_constr = spanned[ty_constr_];
/* The parser generates ast::constrs; resolve generates
a mapping from each function to a list of ty::constr_defs,
corresponding to these. */
type arg = {mode: mode, ty: @ty, ident: ident, id: node_id};
tag inlineness { il_normal; il_inline; }
type fn_decl =
{inputs: arg[],
output: @ty,
purity: purity,
il: inlineness,
cf: controlflow,
constraints: (@constr)[]};
tag purity {
pure_fn; // declared with "pred"
impure_fn; // declared with "fn"
}
tag controlflow {
noreturn; // functions with return type _|_ that always
// raise an error or exit (i.e. never return to the caller)
return; // everything else
}
type _fn = {decl: fn_decl, proto: proto, body: blk};
type method_ = {ident: ident, meth: _fn, id: node_id};
type method = spanned[method_];
type obj_field = {mut: mutability, ty: @ty, ident: ident, id: node_id};
type anon_obj_field =
{mut: mutability, ty: @ty, expr: @expr, ident: ident, id: node_id};
type _obj = {fields: obj_field[], methods: (@method)[]};
type anon_obj =
// New fields and methods, if they exist.
{fields: option::t[anon_obj_field[]],
methods: (@method)[],
// inner_obj: the original object being extended, if it exists.
inner_obj: option::t[@expr]};
type _mod = {view_items: (@view_item)[], items: (@item)[]};
tag native_abi {
native_abi_rust;
native_abi_cdecl;
native_abi_llvm;
native_abi_rust_intrinsic;
native_abi_x86stdcall;
}
type native_mod =
{native_name: str,
abi: native_abi,
view_items: (@view_item)[],
items: (@native_item)[]};
type variant_arg = {ty: @ty, id: node_id};
type variant_ = {name: str, args: variant_arg[], id: node_id};
type variant = spanned[variant_];
type view_item = spanned[view_item_];
tag view_item_ {
view_item_use(ident, (@meta_item)[], node_id);
view_item_import(ident, ident[], node_id);
view_item_import_glob(ident[], node_id);
view_item_export(ident, node_id);
}
type obj_def_ids = {ty: node_id, ctor: node_id};
// Meta-data associated with an item
type attribute = spanned[attribute_];
// Distinguishes between attributes that decorate items and attributes that
// are contained as statements within items. These two cases need to be
// distinguished for pretty-printing.
tag attr_style { attr_outer; attr_inner; }
type attribute_ = {style: attr_style, value: meta_item};
type item = // For objs and resources, this is the type def_id
{ident: ident, attrs: attribute[], id: node_id, node: item_, span: span};
tag item_ {
item_const(@ty, @expr);
item_fn(_fn, ty_param[]);
item_mod(_mod);
item_native_mod(native_mod);
item_ty(@ty, ty_param[]);
item_tag(variant[], ty_param[]);
item_obj(_obj, ty_param[], /* constructor id */node_id);
item_res(_fn, /* dtor */
node_id, /* dtor id */
ty_param[],
node_id /* ctor id */);
}
type native_item =
{ident: ident,
attrs: attribute[],
node: native_item_,
id: node_id,
span: span};
tag native_item_ {
native_item_ty;
native_item_fn(option::t[str], fn_decl, ty_param[]);
}
fn is_exported(i: ident, m: _mod) -> bool {
let nonlocal = true;
for it: @ast::item in m.items {
if it.ident == i { nonlocal = false; }
alt it.node {
item_tag(variants, _) {
for v: variant in variants {
if v.node.name == i { nonlocal = false; }
}
}
_ { }
}
if !nonlocal { break; }
}
let count = 0u;
for vi: @ast::view_item in m.view_items {
alt vi.node {
ast::view_item_export(id, _) {
if str::eq(i, id) {
// even if it's nonlocal (since it's explicit)
ret true;
}
count += 1u;
}
_ {/* fall through */ }
}
}
// If there are no declared exports then
// everything not imported is exported
ret count == 0u && !nonlocal;
}
fn is_call_expr(e: @expr) -> bool {
alt e.node { expr_call(_, _) { ret true; } _ { ret false; } }
}
fn is_constraint_arg(e: @expr) -> bool {
alt e.node {
expr_lit(_) { ret true; }
expr_path(_) { ret true; }
_ { ret false; }
}
}
fn eq_ty(a: &@ty, b: &@ty) -> bool { ret std::box::ptr_eq(a, b); }
fn hash_ty(t: &@ty) -> uint { ret t.span.lo << 16u + t.span.hi; }
fn block_from_expr(e: @expr) -> blk {
let blk_ = {stmts: ~[], expr: option::some[@expr](e), id: e.id};
ret {node: blk_, span: e.span};
}
fn obj_field_from_anon_obj_field(f: &anon_obj_field) -> obj_field {
ret {mut: f.mut, ty: f.ty, ident: f.ident, id: f.id};
}
// This is a convenience function to transfor ternary expressions to if
// expressions so that they can be treated the same
fn ternary_to_if(e: &@expr) -> @ast::expr {
alt e.node {
expr_ternary(cond, then, els) {
let then_blk = block_from_expr(then);
let els_blk = block_from_expr(els);
let els_expr =
@{id: els.id, node: expr_block(els_blk), span: els.span};
ret @{id: e.id,
node: expr_if(cond, then_blk, option::some(els_expr)),
span: e.span};
}
_ { fail; }
}
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//