rust/src/libcollections/linked_list.rs
2015-06-17 09:07:16 -07:00

1199 lines
33 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A doubly-linked list with owned nodes.
//!
//! The `LinkedList` allows pushing and popping elements at either end and is thus
//! efficiently usable as a double-ended queue.
// LinkedList is constructed like a singly-linked list over the field `next`.
// including the last link being None; each Node owns its `next` field.
//
// Backlinks over LinkedList::prev are raw pointers that form a full chain in
// the reverse direction.
#![stable(feature = "rust1", since = "1.0.0")]
use core::prelude::*;
use alloc::boxed::Box;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hasher, Hash};
use core::iter::{self, FromIterator};
use core::mem;
use core::ptr;
/// A doubly-linked list.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct LinkedList<T> {
length: usize,
list_head: Link<T>,
list_tail: Rawlink<Node<T>>,
}
type Link<T> = Option<Box<Node<T>>>;
struct Rawlink<T> {
p: *mut T,
}
impl<T> Copy for Rawlink<T> {}
unsafe impl<T:Send> Send for Rawlink<T> {}
unsafe impl<T:Sync> Sync for Rawlink<T> {}
struct Node<T> {
next: Link<T>,
prev: Rawlink<Node<T>>,
value: T,
}
/// An iterator over references to the items of a `LinkedList`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T:'a> {
head: &'a Link<T>,
tail: Rawlink<Node<T>>,
nelem: usize,
}
// FIXME #19839: deriving is too aggressive on the bounds (T doesn't need to be Clone).
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Iter<'a, T> {
Iter {
head: self.head.clone(),
tail: self.tail,
nelem: self.nelem,
}
}
}
/// An iterator over mutable references to the items of a `LinkedList`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IterMut<'a, T:'a> {
list: &'a mut LinkedList<T>,
head: Rawlink<Node<T>>,
tail: Rawlink<Node<T>>,
nelem: usize,
}
/// An iterator over mutable references to the items of a `LinkedList`.
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> {
list: LinkedList<T>
}
/// Rawlink is a type like Option<T> but for holding a raw pointer
impl<T> Rawlink<T> {
/// Like Option::None for Rawlink
fn none() -> Rawlink<T> {
Rawlink{p: ptr::null_mut()}
}
/// Like Option::Some for Rawlink
fn some(n: &mut T) -> Rawlink<T> {
Rawlink{p: n}
}
/// Convert the `Rawlink` into an Option value
///
/// **unsafe** because:
///
/// - Dereference of raw pointer.
/// - Returns reference of arbitrary lifetime.
unsafe fn resolve<'a>(&self) -> Option<&'a T> {
self.p.as_ref()
}
/// Convert the `Rawlink` into an Option value
///
/// **unsafe** because:
///
/// - Dereference of raw pointer.
/// - Returns reference of arbitrary lifetime.
unsafe fn resolve_mut<'a>(&mut self) -> Option<&'a mut T> {
self.p.as_mut()
}
/// Return the `Rawlink` and replace with `Rawlink::none()`
fn take(&mut self) -> Rawlink<T> {
mem::replace(self, Rawlink::none())
}
}
impl<'a, T> From<&'a mut Link<T>> for Rawlink<Node<T>> {
fn from(node: &'a mut Link<T>) -> Self {
match node.as_mut() {
None => Rawlink::none(),
Some(ptr) => Rawlink::some(ptr),
}
}
}
impl<T> Clone for Rawlink<T> {
#[inline]
fn clone(&self) -> Rawlink<T> {
Rawlink{p: self.p}
}
}
impl<T> Node<T> {
fn new(v: T) -> Node<T> {
Node{value: v, next: None, prev: Rawlink::none()}
}
/// Update the `prev` link on `next`, then set self's next pointer.
///
/// `self.next` should be `None` when you call this
/// (otherwise a Node is probably being dropped by mistake).
fn set_next(&mut self, mut next: Box<Node<T>>) {
debug_assert!(self.next.is_none());
next.prev = Rawlink::some(self);
self.next = Some(next);
}
}
/// Clear the .prev field on `next`, then return `Some(next)`
fn link_no_prev<T>(mut next: Box<Node<T>>) -> Link<T> {
next.prev = Rawlink::none();
Some(next)
}
// private methods
impl<T> LinkedList<T> {
/// Add a Node first in the list
#[inline]
fn push_front_node(&mut self, mut new_head: Box<Node<T>>) {
match self.list_head {
None => {
self.list_head = link_no_prev(new_head);
self.list_tail = Rawlink::from(&mut self.list_head);
}
Some(ref mut head) => {
new_head.prev = Rawlink::none();
head.prev = Rawlink::some(&mut *new_head);
mem::swap(head, &mut new_head);
head.next = Some(new_head);
}
}
self.length += 1;
}
/// Remove the first Node and return it, or None if the list is empty
#[inline]
fn pop_front_node(&mut self) -> Option<Box<Node<T>>> {
self.list_head.take().map(|mut front_node| {
self.length -= 1;
match front_node.next.take() {
Some(node) => self.list_head = link_no_prev(node),
None => self.list_tail = Rawlink::none()
}
front_node
})
}
/// Add a Node last in the list
#[inline]
fn push_back_node(&mut self, new_tail: Box<Node<T>>) {
match unsafe { self.list_tail.resolve_mut() } {
None => return self.push_front_node(new_tail),
Some(tail) => {
tail.set_next(new_tail);
self.list_tail = Rawlink::from(&mut tail.next);
}
}
self.length += 1;
}
/// Remove the last Node and return it, or None if the list is empty
#[inline]
fn pop_back_node(&mut self) -> Option<Box<Node<T>>> {
unsafe {
self.list_tail.resolve_mut().and_then(|tail| {
self.length -= 1;
self.list_tail = tail.prev;
match tail.prev.resolve_mut() {
None => self.list_head.take(),
Some(tail_prev) => tail_prev.next.take()
}
})
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for LinkedList<T> {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
fn default() -> LinkedList<T> { LinkedList::new() }
}
impl<T> LinkedList<T> {
/// Creates an empty `LinkedList`.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> LinkedList<T> {
LinkedList{list_head: None, list_tail: Rawlink::none(), length: 0}
}
/// Moves all elements from `other` to the end of the list.
///
/// This reuses all the nodes from `other` and moves them into `self`. After
/// this operation, `other` becomes empty.
///
/// This operation should compute in O(1) time and O(1) memory.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut a = LinkedList::new();
/// let mut b = LinkedList::new();
/// a.push_back(1);
/// a.push_back(2);
/// b.push_back(3);
/// b.push_back(4);
///
/// a.append(&mut b);
///
/// for e in &a {
/// println!("{}", e); // prints 1, then 2, then 3, then 4
/// }
/// println!("{}", b.len()); // prints 0
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn append(&mut self, other: &mut LinkedList<T>) {
match unsafe { self.list_tail.resolve_mut() } {
None => {
self.length = other.length;
self.list_head = other.list_head.take();
self.list_tail = other.list_tail.take();
},
Some(tail) => {
// Carefully empty `other`.
let o_tail = other.list_tail.take();
let o_length = other.length;
match other.list_head.take() {
None => return,
Some(node) => {
tail.set_next(node);
self.list_tail = o_tail;
self.length += o_length;
}
}
}
}
other.length = 0;
}
/// Provides a forward iterator.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter{nelem: self.len(), head: &self.list_head, tail: self.list_tail}
}
/// Provides a forward iterator with mutable references.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<T> {
IterMut {
nelem: self.len(),
head: Rawlink::from(&mut self.list_head),
tail: self.list_tail,
list: self
}
}
/// Returns `true` if the `LinkedList` is empty.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert!(dl.is_empty());
///
/// dl.push_front("foo");
/// assert!(!dl.is_empty());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
self.list_head.is_none()
}
/// Returns the length of the `LinkedList`.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
///
/// dl.push_front(2);
/// assert_eq!(dl.len(), 1);
///
/// dl.push_front(1);
/// assert_eq!(dl.len(), 2);
///
/// dl.push_back(3);
/// assert_eq!(dl.len(), 3);
///
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn len(&self) -> usize {
self.length
}
/// Removes all elements from the `LinkedList`.
///
/// This operation should compute in O(n) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
///
/// dl.push_front(2);
/// dl.push_front(1);
/// assert_eq!(dl.len(), 2);
/// assert_eq!(dl.front(), Some(&1));
///
/// dl.clear();
/// assert_eq!(dl.len(), 0);
/// assert_eq!(dl.front(), None);
///
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
*self = LinkedList::new()
}
/// Provides a reference to the front element, or `None` if the list is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.front(), None);
///
/// dl.push_front(1);
/// assert_eq!(dl.front(), Some(&1));
///
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front(&self) -> Option<&T> {
self.list_head.as_ref().map(|head| &head.value)
}
/// Provides a mutable reference to the front element, or `None` if the list
/// is empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.front(), None);
///
/// dl.push_front(1);
/// assert_eq!(dl.front(), Some(&1));
///
/// match dl.front_mut() {
/// None => {},
/// Some(x) => *x = 5,
/// }
/// assert_eq!(dl.front(), Some(&5));
///
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front_mut(&mut self) -> Option<&mut T> {
self.list_head.as_mut().map(|head| &mut head.value)
}
/// Provides a reference to the back element, or `None` if the list is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.back(), None);
///
/// dl.push_back(1);
/// assert_eq!(dl.back(), Some(&1));
///
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back(&self) -> Option<&T> {
unsafe {
self.list_tail.resolve().map(|tail| &tail.value)
}
}
/// Provides a mutable reference to the back element, or `None` if the list
/// is empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.back(), None);
///
/// dl.push_back(1);
/// assert_eq!(dl.back(), Some(&1));
///
/// match dl.back_mut() {
/// None => {},
/// Some(x) => *x = 5,
/// }
/// assert_eq!(dl.back(), Some(&5));
///
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back_mut(&mut self) -> Option<&mut T> {
unsafe {
self.list_tail.resolve_mut().map(|tail| &mut tail.value)
}
}
/// Adds an element first in the list.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
///
/// dl.push_front(2);
/// assert_eq!(dl.front().unwrap(), &2);
///
/// dl.push_front(1);
/// assert_eq!(dl.front().unwrap(), &1);
///
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_front(&mut self, elt: T) {
self.push_front_node(box Node::new(elt))
}
/// Removes the first element and returns it, or `None` if the list is
/// empty.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
/// assert_eq!(d.pop_front(), None);
///
/// d.push_front(1);
/// d.push_front(3);
/// assert_eq!(d.pop_front(), Some(3));
/// assert_eq!(d.pop_front(), Some(1));
/// assert_eq!(d.pop_front(), None);
///
/// ```
///
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_front(&mut self) -> Option<T> {
self.pop_front_node().map(|box Node{value, ..}| value)
}
/// Appends an element to the back of a list
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
/// d.push_back(1);
/// d.push_back(3);
/// assert_eq!(3, *d.back().unwrap());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_back(&mut self, elt: T) {
self.push_back_node(box Node::new(elt))
}
/// Removes the last element from a list and returns it, or `None` if
/// it is empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
/// assert_eq!(d.pop_back(), None);
/// d.push_back(1);
/// d.push_back(3);
/// assert_eq!(d.pop_back(), Some(3));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_back(&mut self) -> Option<T> {
self.pop_back_node().map(|box Node{value, ..}| value)
}
/// Splits the list into two at the given index. Returns everything after the given index,
/// including the index.
///
/// # Panics
///
/// Panics if `at > len`.
///
/// This operation should compute in O(n) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
///
/// d.push_front(1);
/// d.push_front(2);
/// d.push_front(3);
///
/// let mut splitted = d.split_off(2);
///
/// assert_eq!(splitted.pop_front(), Some(1));
/// assert_eq!(splitted.pop_front(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn split_off(&mut self, at: usize) -> LinkedList<T> {
let len = self.len();
assert!(at <= len, "Cannot split off at a nonexistent index");
if at == 0 {
return mem::replace(self, LinkedList::new());
} else if at == len {
return LinkedList::new();
}
// Below, we iterate towards the `i-1`th node, either from the start or the end,
// depending on which would be faster.
let mut split_node = if at - 1 <= len - 1 - (at - 1) {
let mut iter = self.iter_mut();
// instead of skipping using .skip() (which creates a new struct),
// we skip manually so we can access the head field without
// depending on implementation details of Skip
for _ in 0..at - 1 {
iter.next();
}
iter.head
} else {
// better off starting from the end
let mut iter = self.iter_mut();
for _ in 0..len - 1 - (at - 1) {
iter.next_back();
}
iter.tail
};
// The split node is the new tail node of the first part and owns
// the head of the second part.
let mut second_part_head;
unsafe {
second_part_head = split_node.resolve_mut().unwrap().next.take();
match second_part_head {
None => {}
Some(ref mut head) => head.prev = Rawlink::none(),
}
}
let second_part = LinkedList {
list_head: second_part_head,
list_tail: self.list_tail,
length: len - at
};
// Fix the tail ptr of the first part
self.list_tail = split_node;
self.length = at;
second_part
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for LinkedList<T> {
fn drop(&mut self) {
// Dissolve the linked_list in a loop.
// Just dropping the list_head can lead to stack exhaustion
// when length is >> 1_000_000
while let Some(mut head_) = self.list_head.take() {
self.list_head = head_.next.take();
}
self.length = 0;
self.list_tail = Rawlink::none();
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> Iterator for Iter<'a, A> {
type Item = &'a A;
#[inline]
fn next(&mut self) -> Option<&'a A> {
if self.nelem == 0 {
return None;
}
self.head.as_ref().map(|head| {
self.nelem -= 1;
self.head = &head.next;
&head.value
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.nelem, Some(self.nelem))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a A> {
if self.nelem == 0 {
return None;
}
unsafe {
self.tail.resolve().map(|prev| {
self.nelem -= 1;
self.tail = prev.prev;
&prev.value
})
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> ExactSizeIterator for Iter<'a, A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> Iterator for IterMut<'a, A> {
type Item = &'a mut A;
#[inline]
fn next(&mut self) -> Option<&'a mut A> {
if self.nelem == 0 {
return None;
}
unsafe {
self.head.resolve_mut().map(|next| {
self.nelem -= 1;
self.head = Rawlink::from(&mut next.next);
&mut next.value
})
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.nelem, Some(self.nelem))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut A> {
if self.nelem == 0 {
return None;
}
unsafe {
self.tail.resolve_mut().map(|prev| {
self.nelem -= 1;
self.tail = prev.prev;
&mut prev.value
})
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> ExactSizeIterator for IterMut<'a, A> {}
// private methods for IterMut
impl<'a, A> IterMut<'a, A> {
fn insert_next_node(&mut self, mut ins_node: Box<Node<A>>) {
// Insert before `self.head` so that it is between the
// previously yielded element and self.head.
//
// The inserted node will not appear in further iteration.
match unsafe { self.head.resolve_mut() } {
None => { self.list.push_back_node(ins_node); }
Some(node) => {
let prev_node = match unsafe { node.prev.resolve_mut() } {
None => return self.list.push_front_node(ins_node),
Some(prev) => prev,
};
let node_own = prev_node.next.take().unwrap();
ins_node.set_next(node_own);
prev_node.set_next(ins_node);
self.list.length += 1;
}
}
}
}
impl<'a, A> IterMut<'a, A> {
/// Inserts `elt` just after the element most recently returned by `.next()`.
/// The inserted element does not appear in the iteration.
///
/// # Examples
///
/// ```
/// # #![feature(linked_list_extras)]
/// use std::collections::LinkedList;
///
/// let mut list: LinkedList<_> = vec![1, 3, 4].into_iter().collect();
///
/// {
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// // insert `2` after `1`
/// it.insert_next(2);
/// }
/// {
/// let vec: Vec<_> = list.into_iter().collect();
/// assert_eq!(vec, [1, 2, 3, 4]);
/// }
/// ```
#[inline]
#[unstable(feature = "linked_list_extras",
reason = "this is probably better handled by a cursor type -- we'll see")]
pub fn insert_next(&mut self, elt: A) {
self.insert_next_node(box Node::new(elt))
}
/// Provides a reference to the next element, without changing the iterator.
///
/// # Examples
///
/// ```
/// # #![feature(linked_list_extras)]
/// use std::collections::LinkedList;
///
/// let mut list: LinkedList<_> = vec![1, 2, 3].into_iter().collect();
///
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// assert_eq!(it.peek_next().unwrap(), &2);
/// // We just peeked at 2, so it was not consumed from the iterator.
/// assert_eq!(it.next().unwrap(), &2);
/// ```
#[inline]
#[unstable(feature = "linked_list_extras",
reason = "this is probably better handled by a cursor type -- we'll see")]
pub fn peek_next(&mut self) -> Option<&mut A> {
if self.nelem == 0 {
return None
}
unsafe {
self.head.resolve_mut().map(|head| &mut head.value)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Iterator for IntoIter<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> { self.list.pop_front() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.list.length, Some(self.list.length))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> DoubleEndedIterator for IntoIter<A> {
#[inline]
fn next_back(&mut self) -> Option<A> { self.list.pop_back() }
}
impl<A> ExactSizeIterator for IntoIter<A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> FromIterator<A> for LinkedList<A> {
fn from_iter<T: IntoIterator<Item=A>>(iter: T) -> LinkedList<A> {
let mut ret = LinkedList::new();
ret.extend(iter);
ret
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for LinkedList<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Consumes the list into an iterator yielding elements by value.
#[inline]
fn into_iter(self) -> IntoIter<T> {
IntoIter{list: self}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a LinkedList<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut LinkedList<T> {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(mut self) -> IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Extend<A> for LinkedList<A> {
fn extend<T: IntoIterator<Item=A>>(&mut self, iter: T) {
for elt in iter { self.push_back(elt); }
}
}
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: 'a + Copy> Extend<&'a T> for LinkedList<T> {
fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialEq> PartialEq for LinkedList<A> {
fn eq(&self, other: &LinkedList<A>) -> bool {
self.len() == other.len() &&
iter::order::eq(self.iter(), other.iter())
}
fn ne(&self, other: &LinkedList<A>) -> bool {
self.len() != other.len() ||
iter::order::ne(self.iter(), other.iter())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Eq> Eq for LinkedList<A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialOrd> PartialOrd for LinkedList<A> {
fn partial_cmp(&self, other: &LinkedList<A>) -> Option<Ordering> {
iter::order::partial_cmp(self.iter(), other.iter())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Ord> Ord for LinkedList<A> {
#[inline]
fn cmp(&self, other: &LinkedList<A>) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Clone> Clone for LinkedList<A> {
fn clone(&self) -> LinkedList<A> {
self.iter().cloned().collect()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: fmt::Debug> fmt::Debug for LinkedList<A> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Hash> Hash for LinkedList<A> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for elt in self {
elt.hash(state);
}
}
}
#[cfg(test)]
mod tests {
use std::clone::Clone;
use std::iter::{Iterator, IntoIterator, Extend};
use std::option::Option::{Some, None, self};
use std::__rand::{thread_rng, Rng};
use std::thread;
use std::vec::Vec;
use super::{LinkedList, Node};
#[cfg(test)]
fn list_from<T: Clone>(v: &[T]) -> LinkedList<T> {
v.iter().cloned().collect()
}
pub fn check_links<T>(list: &LinkedList<T>) {
let mut len = 0;
let mut last_ptr: Option<&Node<T>> = None;
let mut node_ptr: &Node<T>;
match list.list_head {
None => { assert_eq!(0, list.length); return }
Some(ref node) => node_ptr = &**node,
}
loop {
match unsafe { (last_ptr, node_ptr.prev.resolve()) } {
(None , None ) => {}
(None , _ ) => panic!("prev link for list_head"),
(Some(p), Some(pptr)) => {
assert_eq!(p as *const Node<T>, pptr as *const Node<T>);
}
_ => panic!("prev link is none, not good"),
}
match node_ptr.next {
Some(ref next) => {
last_ptr = Some(node_ptr);
node_ptr = &**next;
len += 1;
}
None => {
len += 1;
break;
}
}
}
assert_eq!(len, list.length);
}
#[test]
fn test_append() {
// Empty to empty
{
let mut m = LinkedList::<i32>::new();
let mut n = LinkedList::new();
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 0);
assert_eq!(n.len(), 0);
}
// Non-empty to empty
{
let mut m = LinkedList::new();
let mut n = LinkedList::new();
n.push_back(2);
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
assert_eq!(n.len(), 0);
check_links(&m);
}
// Empty to non-empty
{
let mut m = LinkedList::new();
let mut n = LinkedList::new();
m.push_back(2);
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
// Non-empty to non-empty
let v = vec![1,2,3,4,5];
let u = vec![9,8,1,2,3,4,5];
let mut m = list_from(&v);
let mut n = list_from(&u);
m.append(&mut n);
check_links(&m);
let mut sum = v;
sum.push_all(&u);
assert_eq!(sum.len(), m.len());
for elt in sum {
assert_eq!(m.pop_front(), Some(elt))
}
assert_eq!(n.len(), 0);
// let's make sure it's working properly, since we
// did some direct changes to private members
n.push_back(3);
assert_eq!(n.len(), 1);
assert_eq!(n.pop_front(), Some(3));
check_links(&n);
}
#[test]
fn test_insert_prev() {
let mut m = list_from(&[0,2,4,6,8]);
let len = m.len();
{
let mut it = m.iter_mut();
it.insert_next(-2);
loop {
match it.next() {
None => break,
Some(elt) => {
it.insert_next(*elt + 1);
match it.peek_next() {
Some(x) => assert_eq!(*x, *elt + 2),
None => assert_eq!(8, *elt),
}
}
}
}
it.insert_next(0);
it.insert_next(1);
}
check_links(&m);
assert_eq!(m.len(), 3 + len * 2);
assert_eq!(m.into_iter().collect::<Vec<_>>(), [-2,0,1,2,3,4,5,6,7,8,9,0,1]);
}
#[test]
fn test_send() {
let n = list_from(&[1,2,3]);
thread::spawn(move || {
check_links(&n);
let a: &[_] = &[&1,&2,&3];
assert_eq!(a, &n.iter().collect::<Vec<_>>()[..]);
}).join().ok().unwrap();
}
#[test]
fn test_fuzz() {
for _ in 0..25 {
fuzz_test(3);
fuzz_test(16);
fuzz_test(189);
}
}
#[test]
fn test_26021() {
use std::iter::ExactSizeIterator;
// There was a bug in split_off that failed to null out the RHS's head's prev ptr.
// This caused the RHS's dtor to walk up into the LHS at drop and delete all of
// its nodes.
//
// https://github.com/rust-lang/rust/issues/26021
let mut v1 = LinkedList::new();
v1.push_front(1u8);
v1.push_front(1u8);
v1.push_front(1u8);
v1.push_front(1u8);
let _ = v1.split_off(3); // Dropping this now should not cause laundry consumption
assert_eq!(v1.len(), 3);
assert_eq!(v1.iter().len(), 3);
assert_eq!(v1.iter().collect::<Vec<_>>().len(), 3);
}
#[test]
fn test_split_off() {
let mut v1 = LinkedList::new();
v1.push_front(1u8);
v1.push_front(1u8);
v1.push_front(1u8);
v1.push_front(1u8);
// test all splits
for ix in 0..1 + v1.len() {
let mut a = v1.clone();
let b = a.split_off(ix);
check_links(&a);
check_links(&b);
a.extend(b);
assert_eq!(v1, a);
}
}
#[cfg(test)]
fn fuzz_test(sz: i32) {
let mut m: LinkedList<_> = LinkedList::new();
let mut v = vec![];
for i in 0..sz {
check_links(&m);
let r: u8 = thread_rng().next_u32() as u8;
match r % 6 {
0 => {
m.pop_back();
v.pop();
}
1 => {
if !v.is_empty() {
m.pop_front();
v.remove(0);
}
}
2 | 4 => {
m.push_front(-i);
v.insert(0, -i);
}
3 | 5 | _ => {
m.push_back(i);
v.push(i);
}
}
}
check_links(&m);
let mut i = 0;
for (a, &b) in m.into_iter().zip(&v) {
i += 1;
assert_eq!(a, b);
}
assert_eq!(i, v.len());
}
}