rust/compiler/rustc_mir_transform/src/dest_prop.rs
2024-02-24 18:50:09 +00:00

836 lines
34 KiB
Rust

//! Propagates assignment destinations backwards in the CFG to eliminate redundant assignments.
//!
//! # Motivation
//!
//! MIR building can insert a lot of redundant copies, and Rust code in general often tends to move
//! values around a lot. The result is a lot of assignments of the form `dest = {move} src;` in MIR.
//! MIR building for constants in particular tends to create additional locals that are only used
//! inside a single block to shuffle a value around unnecessarily.
//!
//! LLVM by itself is not good enough at eliminating these redundant copies (eg. see
//! <https://github.com/rust-lang/rust/issues/32966>), so this leaves some performance on the table
//! that we can regain by implementing an optimization for removing these assign statements in rustc
//! itself. When this optimization runs fast enough, it can also speed up the constant evaluation
//! and code generation phases of rustc due to the reduced number of statements and locals.
//!
//! # The Optimization
//!
//! Conceptually, this optimization is "destination propagation". It is similar to the Named Return
//! Value Optimization, or NRVO, known from the C++ world, except that it isn't limited to return
//! values or the return place `_0`. On a very high level, independent of the actual implementation
//! details, it does the following:
//!
//! 1) Identify `dest = src;` statements with values for `dest` and `src` whose storage can soundly
//! be merged.
//! 2) Replace all mentions of `src` with `dest` ("unifying" them and propagating the destination
//! backwards).
//! 3) Delete the `dest = src;` statement (by making it a `nop`).
//!
//! Step 1) is by far the hardest, so it is explained in more detail below.
//!
//! ## Soundness
//!
//! We have a pair of places `p` and `q`, whose memory we would like to merge. In order for this to
//! be sound, we need to check a number of conditions:
//!
//! * `p` and `q` must both be *constant* - it does not make much sense to talk about merging them
//! if they do not consistently refer to the same place in memory. This is satisfied if they do
//! not contain any indirection through a pointer or any indexing projections.
//!
//! * `p` and `q` must have the **same type**. If we replace a local with a subtype or supertype,
//! we may end up with a differnet vtable for that local. See the `subtyping-impacts-selection`
//! tests for an example where that causes issues.
//!
//! * We need to make sure that the goal of "merging the memory" is actually structurally possible
//! in MIR. For example, even if all the other conditions are satisfied, there is no way to
//! "merge" `_5.foo` and `_6.bar`. For now, we ensure this by requiring that both `p` and `q` are
//! locals with no further projections. Future iterations of this pass should improve on this.
//!
//! * Finally, we want `p` and `q` to use the same memory - however, we still need to make sure that
//! each of them has enough "ownership" of that memory to continue "doing its job." More
//! precisely, what we will check is that whenever the program performs a write to `p`, then it
//! does not currently care about what the value in `q` is (and vice versa). We formalize the
//! notion of "does not care what the value in `q` is" by checking the *liveness* of `q`.
//!
//! Because of the difficulty of computing liveness of places that have their address taken, we do
//! not even attempt to do it. Any places that are in a local that has its address taken is
//! excluded from the optimization.
//!
//! The first two conditions are simple structural requirements on the `Assign` statements that can
//! be trivially checked. The third requirement however is more difficult and costly to check.
//!
//! ## Future Improvements
//!
//! There are a number of ways in which this pass could be improved in the future:
//!
//! * Merging storage liveness ranges instead of removing storage statements completely. This may
//! improve stack usage.
//!
//! * Allow merging locals into places with projections, eg `_5` into `_6.foo`.
//!
//! * Liveness analysis with more precision than whole locals at a time. The smaller benefit of this
//! is that it would allow us to dest prop at "sub-local" levels in some cases. The bigger benefit
//! of this is that such liveness analysis can report more accurate results about whole locals at
//! a time. For example, consider:
//!
//! ```ignore (syntax-highlighting-only)
//! _1 = u;
//! // unrelated code
//! _1.f1 = v;
//! _2 = _1.f1;
//! ```
//!
//! Because the current analysis only thinks in terms of locals, it does not have enough
//! information to report that `_1` is dead in the "unrelated code" section.
//!
//! * Liveness analysis enabled by alias analysis. This would allow us to not just bail on locals
//! that ever have their address taken. Of course that requires actually having alias analysis
//! (and a model to build it on), so this might be a bit of a ways off.
//!
//! * Various perf improvements. There are a bunch of comments in here marked `PERF` with ideas for
//! how to do things more efficiently. However, the complexity of the pass as a whole should be
//! kept in mind.
//!
//! ## Previous Work
//!
//! A [previous attempt][attempt 1] at implementing an optimization like this turned out to be a
//! significant regression in compiler performance. Fixing the regressions introduced a lot of
//! undesirable complexity to the implementation.
//!
//! A [subsequent approach][attempt 2] tried to avoid the costly computation by limiting itself to
//! acyclic CFGs, but still turned out to be far too costly to run due to suboptimal performance
//! within individual basic blocks, requiring a walk across the entire block for every assignment
//! found within the block. For the `tuple-stress` benchmark, which has 458745 statements in a
//! single block, this proved to be far too costly.
//!
//! [Another approach after that][attempt 3] was much closer to correct, but had some soundness
//! issues - it was failing to consider stores outside live ranges, and failed to uphold some of the
//! requirements that MIR has for non-overlapping places within statements. However, it also had
//! performance issues caused by `O(l² * s)` runtime, where `l` is the number of locals and `s` is
//! the number of statements and terminators.
//!
//! Since the first attempt at this, the compiler has improved dramatically, and new analysis
//! frameworks have been added that should make this approach viable without requiring a limited
//! approach that only works for some classes of CFGs:
//! - rustc now has a powerful dataflow analysis framework that can handle forwards and backwards
//! analyses efficiently.
//! - Layout optimizations for coroutines have been added to improve code generation for
//! async/await, which are very similar in spirit to what this optimization does.
//!
//! Also, rustc now has a simple NRVO pass (see `nrvo.rs`), which handles a subset of the cases that
//! this destination propagation pass handles, proving that similar optimizations can be performed
//! on MIR.
//!
//! ## Pre/Post Optimization
//!
//! It is recommended to run `SimplifyCfg` and then `SimplifyLocals` some time after this pass, as
//! it replaces the eliminated assign statements with `nop`s and leaves unused locals behind.
//!
//! [liveness]: https://en.wikipedia.org/wiki/Live_variable_analysis
//! [attempt 1]: https://github.com/rust-lang/rust/pull/47954
//! [attempt 2]: https://github.com/rust-lang/rust/pull/71003
//! [attempt 3]: https://github.com/rust-lang/rust/pull/72632
use crate::MirPass;
use rustc_data_structures::fx::{FxIndexMap, IndexEntry, IndexOccupiedEntry};
use rustc_index::bit_set::BitSet;
use rustc_index::interval::SparseIntervalMatrix;
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::HasLocalDecls;
use rustc_middle::mir::{dump_mir, PassWhere};
use rustc_middle::mir::{
traversal, Body, InlineAsmOperand, Local, LocalKind, Location, Operand, Place, Rvalue,
Statement, StatementKind, TerminatorKind,
};
use rustc_middle::ty::TyCtxt;
use rustc_mir_dataflow::impls::MaybeLiveLocals;
use rustc_mir_dataflow::points::{save_as_intervals, DenseLocationMap, PointIndex};
use rustc_mir_dataflow::Analysis;
pub struct DestinationPropagation;
impl<'tcx> MirPass<'tcx> for DestinationPropagation {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
// For now, only run at MIR opt level 3. Two things need to be changed before this can be
// turned on by default:
// 1. Because of the overeager removal of storage statements, this can cause stack space
// regressions. This opt is not the place to fix this though, it's a more general
// problem in MIR.
// 2. Despite being an overall perf improvement, this still causes a 30% regression in
// keccak. We can temporarily fix this by bounding function size, but in the long term
// we should fix this by being smarter about invalidating analysis results.
sess.mir_opt_level() >= 3
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let def_id = body.source.def_id();
let mut allocations = Allocations::default();
trace!(func = ?tcx.def_path_str(def_id));
let borrowed = rustc_mir_dataflow::impls::borrowed_locals(body);
let live = MaybeLiveLocals
.into_engine(tcx, body)
.pass_name("MaybeLiveLocals-DestinationPropagation")
.iterate_to_fixpoint();
let points = DenseLocationMap::new(body);
let mut live = save_as_intervals(&points, body, live);
// In order to avoid having to collect data for every single pair of locals in the body, we
// do not allow doing more than one merge for places that are derived from the same local at
// once. To avoid missed opportunities, we instead iterate to a fixed point - we'll refer to
// each of these iterations as a "round."
//
// Reaching a fixed point could in theory take up to `min(l, s)` rounds - however, we do not
// expect to see MIR like that. To verify this, a test was run against `[rust-lang/regex]` -
// the average MIR body saw 1.32 full iterations of this loop. The most that was hit were 30
// for a single function. Only 80/2801 (2.9%) of functions saw at least 5.
//
// [rust-lang/regex]:
// https://github.com/rust-lang/regex/tree/b5372864e2df6a2f5e543a556a62197f50ca3650
let mut round_count = 0;
loop {
// PERF: Can we do something smarter than recalculating the candidates and liveness
// results?
let mut candidates = find_candidates(
body,
&borrowed,
&mut allocations.candidates,
&mut allocations.candidates_reverse,
);
trace!(?candidates);
dest_prop_mir_dump(tcx, body, &points, &live, round_count);
FilterInformation::filter_liveness(
&mut candidates,
&points,
&live,
&mut allocations.write_info,
body,
);
// Because we only filter once per round, it is unsound to use a local for more than
// one merge operation within a single round of optimizations. We store here which ones
// we have already used.
let mut merged_locals: BitSet<Local> = BitSet::new_empty(body.local_decls.len());
// This is the set of merges we will apply this round. It is a subset of the candidates.
let mut merges = FxIndexMap::default();
for (src, candidates) in candidates.c.iter() {
if merged_locals.contains(*src) {
continue;
}
let Some(dest) = candidates.iter().find(|dest| !merged_locals.contains(**dest))
else {
continue;
};
if !tcx.consider_optimizing(|| {
format!("{} round {}", tcx.def_path_str(def_id), round_count)
}) {
break;
}
// Replace `src` by `dest` everywhere.
merges.insert(*src, *dest);
merged_locals.insert(*src);
merged_locals.insert(*dest);
// Update liveness information based on the merge we just performed.
// Every location where `src` was live, `dest` will be live.
live.union_rows(*src, *dest);
}
trace!(merging = ?merges);
if merges.is_empty() {
break;
}
round_count += 1;
apply_merges(body, tcx, &merges, &merged_locals);
}
trace!(round_count);
}
}
/// Container for the various allocations that we need.
///
/// We store these here and hand out `&mut` access to them, instead of dropping and recreating them
/// frequently. Everything with a `&'alloc` lifetime points into here.
#[derive(Default)]
struct Allocations {
candidates: FxIndexMap<Local, Vec<Local>>,
candidates_reverse: FxIndexMap<Local, Vec<Local>>,
write_info: WriteInfo,
// PERF: Do this for `MaybeLiveLocals` allocations too.
}
#[derive(Debug)]
struct Candidates<'alloc> {
/// The set of candidates we are considering in this optimization.
///
/// We will always merge the key into at most one of its values.
///
/// Whether a place ends up in the key or the value does not correspond to whether it appears as
/// the lhs or rhs of any assignment. As a matter of fact, the places in here might never appear
/// in an assignment at all. This happens because if we see an assignment like this:
///
/// ```ignore (syntax-highlighting-only)
/// _1.0 = _2.0
/// ```
///
/// We will still report that we would like to merge `_1` and `_2` in an attempt to allow us to
/// remove that assignment.
c: &'alloc mut FxIndexMap<Local, Vec<Local>>,
/// A reverse index of the `c` set; if the `c` set contains `a => Place { local: b, proj }`,
/// then this contains `b => a`.
// PERF: Possibly these should be `SmallVec`s?
reverse: &'alloc mut FxIndexMap<Local, Vec<Local>>,
}
//////////////////////////////////////////////////////////
// Merging
//
// Applies the actual optimization
fn apply_merges<'tcx>(
body: &mut Body<'tcx>,
tcx: TyCtxt<'tcx>,
merges: &FxIndexMap<Local, Local>,
merged_locals: &BitSet<Local>,
) {
let mut merger = Merger { tcx, merges, merged_locals };
merger.visit_body_preserves_cfg(body);
}
struct Merger<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
merges: &'a FxIndexMap<Local, Local>,
merged_locals: &'a BitSet<Local>,
}
impl<'a, 'tcx> MutVisitor<'tcx> for Merger<'a, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _location: Location) {
if let Some(dest) = self.merges.get(local) {
*local = *dest;
}
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
match &statement.kind {
// FIXME: Don't delete storage statements, but "merge" the storage ranges instead.
StatementKind::StorageDead(local) | StatementKind::StorageLive(local)
if self.merged_locals.contains(*local) =>
{
statement.make_nop();
return;
}
_ => (),
};
self.super_statement(statement, location);
match &statement.kind {
StatementKind::Assign(box (dest, rvalue)) => {
match rvalue {
Rvalue::CopyForDeref(place)
| Rvalue::Use(Operand::Copy(place) | Operand::Move(place)) => {
// These might've been turned into self-assignments by the replacement
// (this includes the original statement we wanted to eliminate).
if dest == place {
debug!("{:?} turned into self-assignment, deleting", location);
statement.make_nop();
}
}
_ => {}
}
}
_ => {}
}
}
}
//////////////////////////////////////////////////////////
// Liveness filtering
//
// This section enforces bullet point 2
struct FilterInformation<'a, 'body, 'alloc, 'tcx> {
body: &'body Body<'tcx>,
points: &'a DenseLocationMap,
live: &'a SparseIntervalMatrix<Local, PointIndex>,
candidates: &'a mut Candidates<'alloc>,
write_info: &'alloc mut WriteInfo,
at: Location,
}
// We first implement some utility functions which we will expose removing candidates according to
// different needs. Throughout the liveness filtering, the `candidates` are only ever accessed
// through these methods, and not directly.
impl<'alloc> Candidates<'alloc> {
/// Just `Vec::retain`, but the condition is inverted and we add debugging output
fn vec_filter_candidates(
src: Local,
v: &mut Vec<Local>,
mut f: impl FnMut(Local) -> CandidateFilter,
at: Location,
) {
v.retain(|dest| {
let remove = f(*dest);
if remove == CandidateFilter::Remove {
trace!("eliminating {:?} => {:?} due to conflict at {:?}", src, dest, at);
}
remove == CandidateFilter::Keep
});
}
/// `vec_filter_candidates` but for an `Entry`
fn entry_filter_candidates(
mut entry: IndexOccupiedEntry<'_, Local, Vec<Local>>,
p: Local,
f: impl FnMut(Local) -> CandidateFilter,
at: Location,
) {
let candidates = entry.get_mut();
Self::vec_filter_candidates(p, candidates, f, at);
if candidates.len() == 0 {
// FIXME(#120456) - is `swap_remove` correct?
entry.swap_remove();
}
}
/// For all candidates `(p, q)` or `(q, p)` removes the candidate if `f(q)` says to do so
fn filter_candidates_by(
&mut self,
p: Local,
mut f: impl FnMut(Local) -> CandidateFilter,
at: Location,
) {
// Cover the cases where `p` appears as a `src`
if let IndexEntry::Occupied(entry) = self.c.entry(p) {
Self::entry_filter_candidates(entry, p, &mut f, at);
}
// And the cases where `p` appears as a `dest`
let Some(srcs) = self.reverse.get_mut(&p) else {
return;
};
// We use `retain` here to remove the elements from the reverse set if we've removed the
// matching candidate in the forward set.
srcs.retain(|src| {
if f(*src) == CandidateFilter::Keep {
return true;
}
let IndexEntry::Occupied(entry) = self.c.entry(*src) else {
return false;
};
Self::entry_filter_candidates(
entry,
*src,
|dest| {
if dest == p { CandidateFilter::Remove } else { CandidateFilter::Keep }
},
at,
);
false
});
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
enum CandidateFilter {
Keep,
Remove,
}
impl<'a, 'body, 'alloc, 'tcx> FilterInformation<'a, 'body, 'alloc, 'tcx> {
/// Filters the set of candidates to remove those that conflict.
///
/// The steps we take are exactly those that are outlined at the top of the file. For each
/// statement/terminator, we collect the set of locals that are written to in that
/// statement/terminator, and then we remove all pairs of candidates that contain one such local
/// and another one that is live.
///
/// We need to be careful about the ordering of operations within each statement/terminator
/// here. Many statements might write and read from more than one place, and we need to consider
/// them all. The strategy for doing this is as follows: We first gather all the places that are
/// written to within the statement/terminator via `WriteInfo`. Then, we use the liveness
/// analysis from *before* the statement/terminator (in the control flow sense) to eliminate
/// candidates - this is because we want to conservatively treat a pair of locals that is both
/// read and written in the statement/terminator to be conflicting, and the liveness analysis
/// before the statement/terminator will correctly report locals that are read in the
/// statement/terminator to be live. We are additionally conservative by treating all written to
/// locals as also being read from.
fn filter_liveness<'b>(
candidates: &mut Candidates<'alloc>,
points: &DenseLocationMap,
live: &SparseIntervalMatrix<Local, PointIndex>,
write_info_alloc: &'alloc mut WriteInfo,
body: &'b Body<'tcx>,
) {
let mut this = FilterInformation {
body,
points,
live,
candidates,
// We don't actually store anything at this scope, we just keep things here to be able
// to reuse the allocation.
write_info: write_info_alloc,
// Doesn't matter what we put here, will be overwritten before being used
at: Location::START,
};
this.internal_filter_liveness();
}
fn internal_filter_liveness(&mut self) {
for (block, data) in traversal::preorder(self.body) {
self.at = Location { block, statement_index: data.statements.len() };
self.write_info.for_terminator(&data.terminator().kind);
self.apply_conflicts();
for (i, statement) in data.statements.iter().enumerate().rev() {
self.at = Location { block, statement_index: i };
self.write_info.for_statement(&statement.kind, self.body);
self.apply_conflicts();
}
}
}
fn apply_conflicts(&mut self) {
let writes = &self.write_info.writes;
for p in writes {
let other_skip = self.write_info.skip_pair.and_then(|(a, b)| {
if a == *p {
Some(b)
} else if b == *p {
Some(a)
} else {
None
}
});
let at = self.points.point_from_location(self.at);
self.candidates.filter_candidates_by(
*p,
|q| {
if Some(q) == other_skip {
return CandidateFilter::Keep;
}
// It is possible that a local may be live for less than the
// duration of a statement This happens in the case of function
// calls or inline asm. Because of this, we also mark locals as
// conflicting when both of them are written to in the same
// statement.
if self.live.contains(q, at) || writes.contains(&q) {
CandidateFilter::Remove
} else {
CandidateFilter::Keep
}
},
self.at,
);
}
}
}
/// Describes where a statement/terminator writes to
#[derive(Default, Debug)]
struct WriteInfo {
writes: Vec<Local>,
/// If this pair of locals is a candidate pair, completely skip processing it during this
/// statement. All other candidates are unaffected.
skip_pair: Option<(Local, Local)>,
}
impl WriteInfo {
fn for_statement<'tcx>(&mut self, statement: &StatementKind<'tcx>, body: &Body<'tcx>) {
self.reset();
match statement {
StatementKind::Assign(box (lhs, rhs)) => {
self.add_place(*lhs);
match rhs {
Rvalue::Use(op) => {
self.add_operand(op);
self.consider_skipping_for_assign_use(*lhs, op, body);
}
Rvalue::Repeat(op, _) => {
self.add_operand(op);
}
Rvalue::Cast(_, op, _)
| Rvalue::UnaryOp(_, op)
| Rvalue::ShallowInitBox(op, _) => {
self.add_operand(op);
}
Rvalue::BinaryOp(_, ops) | Rvalue::CheckedBinaryOp(_, ops) => {
for op in [&ops.0, &ops.1] {
self.add_operand(op);
}
}
Rvalue::Aggregate(_, ops) => {
for op in ops {
self.add_operand(op);
}
}
Rvalue::ThreadLocalRef(_)
| Rvalue::NullaryOp(_, _)
| Rvalue::Ref(_, _, _)
| Rvalue::AddressOf(_, _)
| Rvalue::Len(_)
| Rvalue::Discriminant(_)
| Rvalue::CopyForDeref(_) => (),
}
}
// Retags are technically also reads, but reporting them as a write suffices
StatementKind::SetDiscriminant { place, .. }
| StatementKind::Deinit(place)
| StatementKind::Retag(_, place) => {
self.add_place(**place);
}
StatementKind::Intrinsic(_)
| StatementKind::ConstEvalCounter
| StatementKind::Nop
| StatementKind::Coverage(_)
| StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::PlaceMention(_) => (),
StatementKind::FakeRead(_) | StatementKind::AscribeUserType(_, _) => {
bug!("{:?} not found in this MIR phase", statement)
}
}
}
fn consider_skipping_for_assign_use<'tcx>(
&mut self,
lhs: Place<'tcx>,
rhs: &Operand<'tcx>,
body: &Body<'tcx>,
) {
let Some(rhs) = rhs.place() else { return };
if let Some(pair) = places_to_candidate_pair(lhs, rhs, body) {
self.skip_pair = Some(pair);
}
}
fn for_terminator<'tcx>(&mut self, terminator: &TerminatorKind<'tcx>) {
self.reset();
match terminator {
TerminatorKind::SwitchInt { discr: op, .. }
| TerminatorKind::Assert { cond: op, .. } => {
self.add_operand(op);
}
TerminatorKind::Call { destination, func, args, .. } => {
self.add_place(*destination);
self.add_operand(func);
for arg in args {
self.add_operand(&arg.node);
}
}
TerminatorKind::InlineAsm { operands, .. } => {
for asm_operand in operands {
match asm_operand {
InlineAsmOperand::In { value, .. } => {
self.add_operand(value);
}
InlineAsmOperand::Out { place, .. } => {
if let Some(place) = place {
self.add_place(*place);
}
}
// Note that the `late` field in `InOut` is about whether the registers used
// for these things overlap, and is of absolutely no interest to us.
InlineAsmOperand::InOut { in_value, out_place, .. } => {
if let Some(place) = out_place {
self.add_place(*place);
}
self.add_operand(in_value);
}
InlineAsmOperand::Const { .. }
| InlineAsmOperand::SymFn { .. }
| InlineAsmOperand::SymStatic { .. }
| InlineAsmOperand::Label { .. } => {}
}
}
}
TerminatorKind::Goto { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Unreachable { .. } => (),
TerminatorKind::Drop { .. } => {
// `Drop`s create a `&mut` and so are not considered
}
TerminatorKind::Yield { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {
bug!("{:?} not found in this MIR phase", terminator)
}
}
}
fn add_place(&mut self, place: Place<'_>) {
self.writes.push(place.local);
}
fn add_operand<'tcx>(&mut self, op: &Operand<'tcx>) {
match op {
// FIXME(JakobDegen): In a previous version, the `Move` case was incorrectly treated as
// being a read only. This was unsound, however we cannot add a regression test because
// it is not possible to set this off with current MIR. Once we have that ability, a
// regression test should be added.
Operand::Move(p) => self.add_place(*p),
Operand::Copy(_) | Operand::Constant(_) => (),
}
}
fn reset(&mut self) {
self.writes.clear();
self.skip_pair = None;
}
}
/////////////////////////////////////////////////////
// Candidate accumulation
/// If the pair of places is being considered for merging, returns the candidate which would be
/// merged in order to accomplish this.
///
/// The contract here is in one direction - there is a guarantee that merging the locals that are
/// outputted by this function would result in an assignment between the inputs becoming a
/// self-assignment. However, there is no guarantee that the returned pair is actually suitable for
/// merging - candidate collection must still check this independently.
///
/// This output is unique for each unordered pair of input places.
fn places_to_candidate_pair<'tcx>(
a: Place<'tcx>,
b: Place<'tcx>,
body: &Body<'tcx>,
) -> Option<(Local, Local)> {
let (mut a, mut b) = if a.projection.len() == 0 && b.projection.len() == 0 {
(a.local, b.local)
} else {
return None;
};
// By sorting, we make sure we're input order independent
if a > b {
std::mem::swap(&mut a, &mut b);
}
// We could now return `(a, b)`, but then we miss some candidates in the case where `a` can't be
// used as a `src`.
if is_local_required(a, body) {
std::mem::swap(&mut a, &mut b);
}
// We could check `is_local_required` again here, but there's no need - after all, we make no
// promise that the candidate pair is actually valid
Some((a, b))
}
/// Collects the candidates for merging
///
/// This is responsible for enforcing the first and third bullet point.
fn find_candidates<'alloc, 'tcx>(
body: &Body<'tcx>,
borrowed: &BitSet<Local>,
candidates: &'alloc mut FxIndexMap<Local, Vec<Local>>,
candidates_reverse: &'alloc mut FxIndexMap<Local, Vec<Local>>,
) -> Candidates<'alloc> {
candidates.clear();
candidates_reverse.clear();
let mut visitor = FindAssignments { body, candidates, borrowed };
visitor.visit_body(body);
// Deduplicate candidates
for (_, cands) in candidates.iter_mut() {
cands.sort();
cands.dedup();
}
// Generate the reverse map
for (src, cands) in candidates.iter() {
for dest in cands.iter().copied() {
candidates_reverse.entry(dest).or_default().push(*src);
}
}
Candidates { c: candidates, reverse: candidates_reverse }
}
struct FindAssignments<'a, 'alloc, 'tcx> {
body: &'a Body<'tcx>,
candidates: &'alloc mut FxIndexMap<Local, Vec<Local>>,
borrowed: &'a BitSet<Local>,
}
impl<'tcx> Visitor<'tcx> for FindAssignments<'_, '_, 'tcx> {
fn visit_statement(&mut self, statement: &Statement<'tcx>, _: Location) {
if let StatementKind::Assign(box (
lhs,
Rvalue::CopyForDeref(rhs) | Rvalue::Use(Operand::Copy(rhs) | Operand::Move(rhs)),
)) = &statement.kind
{
let Some((src, dest)) = places_to_candidate_pair(*lhs, *rhs, self.body) else {
return;
};
// As described at the top of the file, we do not go near things that have
// their address taken.
if self.borrowed.contains(src) || self.borrowed.contains(dest) {
return;
}
// As described at the top of this file, we do not touch locals which have
// different types.
let src_ty = self.body.local_decls()[src].ty;
let dest_ty = self.body.local_decls()[dest].ty;
if src_ty != dest_ty {
// FIXME(#112651): This can be removed afterwards. Also update the module description.
trace!("skipped `{src:?} = {dest:?}` due to subtyping: {src_ty} != {dest_ty}");
return;
}
// Also, we need to make sure that MIR actually allows the `src` to be removed
if is_local_required(src, self.body) {
return;
}
// We may insert duplicates here, but that's fine
self.candidates.entry(src).or_default().push(dest);
}
}
}
/// Some locals are part of the function's interface and can not be removed.
///
/// Note that these locals *can* still be merged with non-required locals by removing that other
/// local.
fn is_local_required(local: Local, body: &Body<'_>) -> bool {
match body.local_kind(local) {
LocalKind::Arg | LocalKind::ReturnPointer => true,
LocalKind::Temp => false,
}
}
/////////////////////////////////////////////////////////
// MIR Dump
fn dest_prop_mir_dump<'body, 'tcx>(
tcx: TyCtxt<'tcx>,
body: &'body Body<'tcx>,
points: &DenseLocationMap,
live: &SparseIntervalMatrix<Local, PointIndex>,
round: usize,
) {
let locals_live_at = |location| {
let location = points.point_from_location(location);
live.rows().filter(|&r| live.contains(r, location)).collect::<Vec<_>>()
};
dump_mir(tcx, false, "DestinationPropagation-dataflow", &round, body, |pass_where, w| {
if let PassWhere::BeforeLocation(loc) = pass_where {
writeln!(w, " // live: {:?}", locals_live_at(loc))?;
}
Ok(())
});
}