1141 lines
34 KiB
Rust
1141 lines
34 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Operations and constants for `f64`
|
|
|
|
use libc::c_int;
|
|
use num::{Zero, One, strconv};
|
|
use num::{FPCategory, FPNaN, FPInfinite , FPZero, FPSubnormal, FPNormal};
|
|
use prelude::*;
|
|
|
|
pub use cmath::c_double_targ_consts::*;
|
|
pub use cmp::{min, max};
|
|
|
|
// An inner module is required to get the #[inline(always)] attribute on the
|
|
// functions.
|
|
pub use self::delegated::*;
|
|
|
|
macro_rules! delegate(
|
|
(
|
|
$(
|
|
fn $name:ident(
|
|
$(
|
|
$arg:ident : $arg_ty:ty
|
|
),*
|
|
) -> $rv:ty = $bound_name:path
|
|
),*
|
|
) => (
|
|
mod delegated {
|
|
use cmath::c_double_utils;
|
|
use libc::{c_double, c_int};
|
|
use unstable::intrinsics;
|
|
|
|
$(
|
|
#[inline(always)]
|
|
pub fn $name($( $arg : $arg_ty ),*) -> $rv {
|
|
unsafe {
|
|
$bound_name($( $arg ),*)
|
|
}
|
|
}
|
|
)*
|
|
}
|
|
)
|
|
)
|
|
|
|
delegate!(
|
|
// intrinsics
|
|
fn abs(n: f64) -> f64 = intrinsics::fabsf64,
|
|
fn cos(n: f64) -> f64 = intrinsics::cosf64,
|
|
fn exp(n: f64) -> f64 = intrinsics::expf64,
|
|
fn exp2(n: f64) -> f64 = intrinsics::exp2f64,
|
|
fn floor(x: f64) -> f64 = intrinsics::floorf64,
|
|
fn ln(n: f64) -> f64 = intrinsics::logf64,
|
|
fn log10(n: f64) -> f64 = intrinsics::log10f64,
|
|
fn log2(n: f64) -> f64 = intrinsics::log2f64,
|
|
fn mul_add(a: f64, b: f64, c: f64) -> f64 = intrinsics::fmaf64,
|
|
fn pow(n: f64, e: f64) -> f64 = intrinsics::powf64,
|
|
fn powi(n: f64, e: c_int) -> f64 = intrinsics::powif64,
|
|
fn sin(n: f64) -> f64 = intrinsics::sinf64,
|
|
fn sqrt(n: f64) -> f64 = intrinsics::sqrtf64,
|
|
|
|
// LLVM 3.3 required to use intrinsics for these four
|
|
fn ceil(n: c_double) -> c_double = c_double_utils::ceil,
|
|
fn trunc(n: c_double) -> c_double = c_double_utils::trunc,
|
|
/*
|
|
fn ceil(n: f64) -> f64 = intrinsics::ceilf64,
|
|
fn trunc(n: f64) -> f64 = intrinsics::truncf64,
|
|
fn rint(n: c_double) -> c_double = intrinsics::rintf64,
|
|
fn nearbyint(n: c_double) -> c_double = intrinsics::nearbyintf64,
|
|
*/
|
|
|
|
// cmath
|
|
fn acos(n: c_double) -> c_double = c_double_utils::acos,
|
|
fn asin(n: c_double) -> c_double = c_double_utils::asin,
|
|
fn atan(n: c_double) -> c_double = c_double_utils::atan,
|
|
fn atan2(a: c_double, b: c_double) -> c_double = c_double_utils::atan2,
|
|
fn cbrt(n: c_double) -> c_double = c_double_utils::cbrt,
|
|
fn copysign(x: c_double, y: c_double) -> c_double = c_double_utils::copysign,
|
|
fn cosh(n: c_double) -> c_double = c_double_utils::cosh,
|
|
fn erf(n: c_double) -> c_double = c_double_utils::erf,
|
|
fn erfc(n: c_double) -> c_double = c_double_utils::erfc,
|
|
fn exp_m1(n: c_double) -> c_double = c_double_utils::exp_m1,
|
|
fn abs_sub(a: c_double, b: c_double) -> c_double = c_double_utils::abs_sub,
|
|
fn fmax(a: c_double, b: c_double) -> c_double = c_double_utils::fmax,
|
|
fn fmin(a: c_double, b: c_double) -> c_double = c_double_utils::fmin,
|
|
fn next_after(x: c_double, y: c_double) -> c_double = c_double_utils::next_after,
|
|
fn frexp(n: c_double, value: &mut c_int) -> c_double = c_double_utils::frexp,
|
|
fn hypot(x: c_double, y: c_double) -> c_double = c_double_utils::hypot,
|
|
fn ldexp(x: c_double, n: c_int) -> c_double = c_double_utils::ldexp,
|
|
fn lgamma(n: c_double, sign: &mut c_int) -> c_double = c_double_utils::lgamma,
|
|
fn log_radix(n: c_double) -> c_double = c_double_utils::log_radix,
|
|
fn ln_1p(n: c_double) -> c_double = c_double_utils::ln_1p,
|
|
fn ilog_radix(n: c_double) -> c_int = c_double_utils::ilog_radix,
|
|
fn modf(n: c_double, iptr: &mut c_double) -> c_double = c_double_utils::modf,
|
|
fn round(n: c_double) -> c_double = c_double_utils::round,
|
|
fn ldexp_radix(n: c_double, i: c_int) -> c_double = c_double_utils::ldexp_radix,
|
|
fn sinh(n: c_double) -> c_double = c_double_utils::sinh,
|
|
fn tan(n: c_double) -> c_double = c_double_utils::tan,
|
|
fn tanh(n: c_double) -> c_double = c_double_utils::tanh,
|
|
fn tgamma(n: c_double) -> c_double = c_double_utils::tgamma,
|
|
fn j0(n: c_double) -> c_double = c_double_utils::j0,
|
|
fn j1(n: c_double) -> c_double = c_double_utils::j1,
|
|
fn jn(i: c_int, n: c_double) -> c_double = c_double_utils::jn,
|
|
fn y0(n: c_double) -> c_double = c_double_utils::y0,
|
|
fn y1(n: c_double) -> c_double = c_double_utils::y1,
|
|
fn yn(i: c_int, n: c_double) -> c_double = c_double_utils::yn
|
|
)
|
|
|
|
// FIXME (#1433): obtain these in a different way
|
|
|
|
// These are not defined inside consts:: for consistency with
|
|
// the integer types
|
|
|
|
pub static radix: uint = 2u;
|
|
|
|
pub static mantissa_digits: uint = 53u;
|
|
pub static digits: uint = 15u;
|
|
|
|
pub static epsilon: f64 = 2.2204460492503131e-16_f64;
|
|
|
|
pub static min_value: f64 = 2.2250738585072014e-308_f64;
|
|
pub static max_value: f64 = 1.7976931348623157e+308_f64;
|
|
|
|
pub static min_exp: int = -1021;
|
|
pub static max_exp: int = 1024;
|
|
|
|
pub static min_10_exp: int = -307;
|
|
pub static max_10_exp: int = 308;
|
|
|
|
pub static NaN: f64 = 0.0_f64/0.0_f64;
|
|
|
|
pub static infinity: f64 = 1.0_f64/0.0_f64;
|
|
|
|
pub static neg_infinity: f64 = -1.0_f64/0.0_f64;
|
|
|
|
#[inline(always)]
|
|
pub fn add(x: f64, y: f64) -> f64 { return x + y; }
|
|
|
|
#[inline(always)]
|
|
pub fn sub(x: f64, y: f64) -> f64 { return x - y; }
|
|
|
|
#[inline(always)]
|
|
pub fn mul(x: f64, y: f64) -> f64 { return x * y; }
|
|
|
|
#[inline(always)]
|
|
pub fn div(x: f64, y: f64) -> f64 { return x / y; }
|
|
|
|
#[inline(always)]
|
|
pub fn rem(x: f64, y: f64) -> f64 { return x % y; }
|
|
|
|
#[inline(always)]
|
|
pub fn lt(x: f64, y: f64) -> bool { return x < y; }
|
|
|
|
#[inline(always)]
|
|
pub fn le(x: f64, y: f64) -> bool { return x <= y; }
|
|
|
|
#[inline(always)]
|
|
pub fn eq(x: f64, y: f64) -> bool { return x == y; }
|
|
|
|
#[inline(always)]
|
|
pub fn ne(x: f64, y: f64) -> bool { return x != y; }
|
|
|
|
#[inline(always)]
|
|
pub fn ge(x: f64, y: f64) -> bool { return x >= y; }
|
|
|
|
#[inline(always)]
|
|
pub fn gt(x: f64, y: f64) -> bool { return x > y; }
|
|
|
|
|
|
// FIXME (#1999): add is_normal, is_subnormal, and fpclassify
|
|
|
|
/* Module: consts */
|
|
pub mod consts {
|
|
// FIXME (requires Issue #1433 to fix): replace with mathematical
|
|
// constants from cmath.
|
|
/// Archimedes' constant
|
|
pub static pi: f64 = 3.14159265358979323846264338327950288_f64;
|
|
|
|
/// pi/2.0
|
|
pub static frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64;
|
|
|
|
/// pi/4.0
|
|
pub static frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64;
|
|
|
|
/// 1.0/pi
|
|
pub static frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64;
|
|
|
|
/// 2.0/pi
|
|
pub static frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64;
|
|
|
|
/// 2.0/sqrt(pi)
|
|
pub static frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64;
|
|
|
|
/// sqrt(2.0)
|
|
pub static sqrt2: f64 = 1.41421356237309504880168872420969808_f64;
|
|
|
|
/// 1.0/sqrt(2.0)
|
|
pub static frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64;
|
|
|
|
/// Euler's number
|
|
pub static e: f64 = 2.71828182845904523536028747135266250_f64;
|
|
|
|
/// log2(e)
|
|
pub static log2_e: f64 = 1.44269504088896340735992468100189214_f64;
|
|
|
|
/// log10(e)
|
|
pub static log10_e: f64 = 0.434294481903251827651128918916605082_f64;
|
|
|
|
/// ln(2.0)
|
|
pub static ln_2: f64 = 0.693147180559945309417232121458176568_f64;
|
|
|
|
/// ln(10.0)
|
|
pub static ln_10: f64 = 2.30258509299404568401799145468436421_f64;
|
|
}
|
|
|
|
impl Num for f64 {}
|
|
|
|
#[cfg(not(test))]
|
|
impl Eq for f64 {
|
|
#[inline(always)]
|
|
fn eq(&self, other: &f64) -> bool { (*self) == (*other) }
|
|
#[inline(always)]
|
|
fn ne(&self, other: &f64) -> bool { (*self) != (*other) }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl ApproxEq<f64> for f64 {
|
|
#[inline(always)]
|
|
fn approx_epsilon() -> f64 { 1.0e-6 }
|
|
|
|
#[inline(always)]
|
|
fn approx_eq(&self, other: &f64) -> bool {
|
|
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<f64, f64>())
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn approx_eq_eps(&self, other: &f64, approx_epsilon: &f64) -> bool {
|
|
(*self - *other).abs() < *approx_epsilon
|
|
}
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Ord for f64 {
|
|
#[inline(always)]
|
|
fn lt(&self, other: &f64) -> bool { (*self) < (*other) }
|
|
#[inline(always)]
|
|
fn le(&self, other: &f64) -> bool { (*self) <= (*other) }
|
|
#[inline(always)]
|
|
fn ge(&self, other: &f64) -> bool { (*self) >= (*other) }
|
|
#[inline(always)]
|
|
fn gt(&self, other: &f64) -> bool { (*self) > (*other) }
|
|
}
|
|
|
|
impl Orderable for f64 {
|
|
/// Returns `NaN` if either of the numbers are `NaN`.
|
|
#[inline(always)]
|
|
fn min(&self, other: &f64) -> f64 {
|
|
if self.is_NaN() || other.is_NaN() { Float::NaN() } else { fmin(*self, *other) }
|
|
}
|
|
|
|
/// Returns `NaN` if either of the numbers are `NaN`.
|
|
#[inline(always)]
|
|
fn max(&self, other: &f64) -> f64 {
|
|
if self.is_NaN() || other.is_NaN() { Float::NaN() } else { fmax(*self, *other) }
|
|
}
|
|
|
|
/// Returns the number constrained within the range `mn <= self <= mx`.
|
|
/// If any of the numbers are `NaN` then `NaN` is returned.
|
|
#[inline(always)]
|
|
fn clamp(&self, mn: &f64, mx: &f64) -> f64 {
|
|
if self.is_NaN() { *self }
|
|
else if !(*self <= *mx) { *mx }
|
|
else if !(*self >= *mn) { *mn }
|
|
else { *self }
|
|
}
|
|
}
|
|
|
|
impl Zero for f64 {
|
|
#[inline(always)]
|
|
fn zero() -> f64 { 0.0 }
|
|
|
|
/// Returns true if the number is equal to either `0.0` or `-0.0`
|
|
#[inline(always)]
|
|
fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 }
|
|
}
|
|
|
|
impl One for f64 {
|
|
#[inline(always)]
|
|
fn one() -> f64 { 1.0 }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Add<f64,f64> for f64 {
|
|
fn add(&self, other: &f64) -> f64 { *self + *other }
|
|
}
|
|
#[cfg(not(test))]
|
|
impl Sub<f64,f64> for f64 {
|
|
fn sub(&self, other: &f64) -> f64 { *self - *other }
|
|
}
|
|
#[cfg(not(test))]
|
|
impl Mul<f64,f64> for f64 {
|
|
fn mul(&self, other: &f64) -> f64 { *self * *other }
|
|
}
|
|
#[cfg(not(test))]
|
|
impl Div<f64,f64> for f64 {
|
|
fn div(&self, other: &f64) -> f64 { *self / *other }
|
|
}
|
|
#[cfg(not(test))]
|
|
impl Rem<f64,f64> for f64 {
|
|
#[inline(always)]
|
|
fn rem(&self, other: &f64) -> f64 { *self % *other }
|
|
}
|
|
#[cfg(not(test))]
|
|
impl Neg<f64> for f64 {
|
|
fn neg(&self) -> f64 { -*self }
|
|
}
|
|
|
|
impl Signed for f64 {
|
|
/// Computes the absolute value. Returns `NaN` if the number is `NaN`.
|
|
#[inline(always)]
|
|
fn abs(&self) -> f64 { abs(*self) }
|
|
|
|
///
|
|
/// The positive difference of two numbers. Returns `0.0` if the number is less than or
|
|
/// equal to `other`, otherwise the difference between`self` and `other` is returned.
|
|
///
|
|
#[inline(always)]
|
|
fn abs_sub(&self, other: &f64) -> f64 { abs_sub(*self, *other) }
|
|
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - `1.0` if the number is positive, `+0.0` or `infinity`
|
|
/// - `-1.0` if the number is negative, `-0.0` or `neg_infinity`
|
|
/// - `NaN` if the number is NaN
|
|
///
|
|
#[inline(always)]
|
|
fn signum(&self) -> f64 {
|
|
if self.is_NaN() { NaN } else { copysign(1.0, *self) }
|
|
}
|
|
|
|
/// Returns `true` if the number is positive, including `+0.0` and `infinity`
|
|
#[inline(always)]
|
|
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == infinity }
|
|
|
|
/// Returns `true` if the number is negative, including `-0.0` and `neg_infinity`
|
|
#[inline(always)]
|
|
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity }
|
|
}
|
|
|
|
impl Round for f64 {
|
|
/// Round half-way cases toward `neg_infinity`
|
|
#[inline(always)]
|
|
fn floor(&self) -> f64 { floor(*self) }
|
|
|
|
/// Round half-way cases toward `infinity`
|
|
#[inline(always)]
|
|
fn ceil(&self) -> f64 { ceil(*self) }
|
|
|
|
/// Round half-way cases away from `0.0`
|
|
#[inline(always)]
|
|
fn round(&self) -> f64 { round(*self) }
|
|
|
|
/// The integer part of the number (rounds towards `0.0`)
|
|
#[inline(always)]
|
|
fn trunc(&self) -> f64 { trunc(*self) }
|
|
|
|
///
|
|
/// The fractional part of the number, satisfying:
|
|
///
|
|
/// ~~~
|
|
/// assert!(x == trunc(x) + fract(x))
|
|
/// ~~~
|
|
///
|
|
#[inline(always)]
|
|
fn fract(&self) -> f64 { *self - self.trunc() }
|
|
}
|
|
|
|
impl Fractional for f64 {
|
|
/// The reciprocal (multiplicative inverse) of the number
|
|
#[inline(always)]
|
|
fn recip(&self) -> f64 { 1.0 / *self }
|
|
}
|
|
|
|
impl Algebraic for f64 {
|
|
#[inline(always)]
|
|
fn pow(&self, n: f64) -> f64 { pow(*self, n) }
|
|
|
|
#[inline(always)]
|
|
fn sqrt(&self) -> f64 { sqrt(*self) }
|
|
|
|
#[inline(always)]
|
|
fn rsqrt(&self) -> f64 { self.sqrt().recip() }
|
|
|
|
#[inline(always)]
|
|
fn cbrt(&self) -> f64 { cbrt(*self) }
|
|
|
|
#[inline(always)]
|
|
fn hypot(&self, other: f64) -> f64 { hypot(*self, other) }
|
|
}
|
|
|
|
impl Trigonometric for f64 {
|
|
#[inline(always)]
|
|
fn sin(&self) -> f64 { sin(*self) }
|
|
|
|
#[inline(always)]
|
|
fn cos(&self) -> f64 { cos(*self) }
|
|
|
|
#[inline(always)]
|
|
fn tan(&self) -> f64 { tan(*self) }
|
|
|
|
#[inline(always)]
|
|
fn asin(&self) -> f64 { asin(*self) }
|
|
|
|
#[inline(always)]
|
|
fn acos(&self) -> f64 { acos(*self) }
|
|
|
|
#[inline(always)]
|
|
fn atan(&self) -> f64 { atan(*self) }
|
|
|
|
#[inline(always)]
|
|
fn atan2(&self, other: f64) -> f64 { atan2(*self, other) }
|
|
}
|
|
|
|
impl Exponential for f64 {
|
|
/// Returns the exponential of the number
|
|
#[inline(always)]
|
|
fn exp(&self) -> f64 { exp(*self) }
|
|
|
|
/// Returns 2 raised to the power of the number
|
|
#[inline(always)]
|
|
fn exp2(&self) -> f64 { exp2(*self) }
|
|
|
|
/// Returns the natural logarithm of the number
|
|
#[inline(always)]
|
|
fn ln(&self) -> f64 { ln(*self) }
|
|
|
|
/// Returns the logarithm of the number with respect to an arbitrary base
|
|
#[inline(always)]
|
|
fn log(&self, base: f64) -> f64 { self.ln() / base.ln() }
|
|
|
|
/// Returns the base 2 logarithm of the number
|
|
#[inline(always)]
|
|
fn log2(&self) -> f64 { log2(*self) }
|
|
|
|
/// Returns the base 10 logarithm of the number
|
|
#[inline(always)]
|
|
fn log10(&self) -> f64 { log10(*self) }
|
|
}
|
|
|
|
impl Hyperbolic for f64 {
|
|
#[inline(always)]
|
|
fn sinh(&self) -> f64 { sinh(*self) }
|
|
|
|
#[inline(always)]
|
|
fn cosh(&self) -> f64 { cosh(*self) }
|
|
|
|
#[inline(always)]
|
|
fn tanh(&self) -> f64 { tanh(*self) }
|
|
}
|
|
|
|
impl Real for f64 {
|
|
/// Archimedes' constant
|
|
#[inline(always)]
|
|
fn pi() -> f64 { 3.14159265358979323846264338327950288 }
|
|
|
|
/// 2.0 * pi
|
|
#[inline(always)]
|
|
fn two_pi() -> f64 { 6.28318530717958647692528676655900576 }
|
|
|
|
/// pi / 2.0
|
|
#[inline(always)]
|
|
fn frac_pi_2() -> f64 { 1.57079632679489661923132169163975144 }
|
|
|
|
/// pi / 3.0
|
|
#[inline(always)]
|
|
fn frac_pi_3() -> f64 { 1.04719755119659774615421446109316763 }
|
|
|
|
/// pi / 4.0
|
|
#[inline(always)]
|
|
fn frac_pi_4() -> f64 { 0.785398163397448309615660845819875721 }
|
|
|
|
/// pi / 6.0
|
|
#[inline(always)]
|
|
fn frac_pi_6() -> f64 { 0.52359877559829887307710723054658381 }
|
|
|
|
/// pi / 8.0
|
|
#[inline(always)]
|
|
fn frac_pi_8() -> f64 { 0.39269908169872415480783042290993786 }
|
|
|
|
/// 1.0 / pi
|
|
#[inline(always)]
|
|
fn frac_1_pi() -> f64 { 0.318309886183790671537767526745028724 }
|
|
|
|
/// 2.0 / pi
|
|
#[inline(always)]
|
|
fn frac_2_pi() -> f64 { 0.636619772367581343075535053490057448 }
|
|
|
|
/// 2.0 / sqrt(pi)
|
|
#[inline(always)]
|
|
fn frac_2_sqrtpi() -> f64 { 1.12837916709551257389615890312154517 }
|
|
|
|
/// sqrt(2.0)
|
|
#[inline(always)]
|
|
fn sqrt2() -> f64 { 1.41421356237309504880168872420969808 }
|
|
|
|
/// 1.0 / sqrt(2.0)
|
|
#[inline(always)]
|
|
fn frac_1_sqrt2() -> f64 { 0.707106781186547524400844362104849039 }
|
|
|
|
/// Euler's number
|
|
#[inline(always)]
|
|
fn e() -> f64 { 2.71828182845904523536028747135266250 }
|
|
|
|
/// log2(e)
|
|
#[inline(always)]
|
|
fn log2_e() -> f64 { 1.44269504088896340735992468100189214 }
|
|
|
|
/// log10(e)
|
|
#[inline(always)]
|
|
fn log10_e() -> f64 { 0.434294481903251827651128918916605082 }
|
|
|
|
/// ln(2.0)
|
|
#[inline(always)]
|
|
fn ln_2() -> f64 { 0.693147180559945309417232121458176568 }
|
|
|
|
/// ln(10.0)
|
|
#[inline(always)]
|
|
fn ln_10() -> f64 { 2.30258509299404568401799145468436421 }
|
|
|
|
/// Converts to degrees, assuming the number is in radians
|
|
#[inline(always)]
|
|
fn to_degrees(&self) -> f64 { *self * (180.0 / Real::pi::<f64>()) }
|
|
|
|
/// Converts to radians, assuming the number is in degrees
|
|
#[inline(always)]
|
|
fn to_radians(&self) -> f64 { *self * (Real::pi::<f64>() / 180.0) }
|
|
}
|
|
|
|
impl RealExt for f64 {
|
|
#[inline(always)]
|
|
fn lgamma(&self) -> (int, f64) {
|
|
let mut sign = 0;
|
|
let result = lgamma(*self, &mut sign);
|
|
(sign as int, result)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn tgamma(&self) -> f64 { tgamma(*self) }
|
|
|
|
#[inline(always)]
|
|
fn j0(&self) -> f64 { j0(*self) }
|
|
|
|
#[inline(always)]
|
|
fn j1(&self) -> f64 { j1(*self) }
|
|
|
|
#[inline(always)]
|
|
fn jn(&self, n: int) -> f64 { jn(n as c_int, *self) }
|
|
|
|
#[inline(always)]
|
|
fn y0(&self) -> f64 { y0(*self) }
|
|
|
|
#[inline(always)]
|
|
fn y1(&self) -> f64 { y1(*self) }
|
|
|
|
#[inline(always)]
|
|
fn yn(&self, n: int) -> f64 { yn(n as c_int, *self) }
|
|
}
|
|
|
|
impl Bounded for f64 {
|
|
#[inline(always)]
|
|
fn min_value() -> f64 { 2.2250738585072014e-308 }
|
|
|
|
#[inline(always)]
|
|
fn max_value() -> f64 { 1.7976931348623157e+308 }
|
|
}
|
|
|
|
impl Primitive for f64 {
|
|
#[inline(always)]
|
|
fn bits() -> uint { 64 }
|
|
|
|
#[inline(always)]
|
|
fn bytes() -> uint { Primitive::bits::<f64>() / 8 }
|
|
}
|
|
|
|
impl Float for f64 {
|
|
#[inline(always)]
|
|
fn NaN() -> f64 { 0.0 / 0.0 }
|
|
|
|
#[inline(always)]
|
|
fn infinity() -> f64 { 1.0 / 0.0 }
|
|
|
|
#[inline(always)]
|
|
fn neg_infinity() -> f64 { -1.0 / 0.0 }
|
|
|
|
#[inline(always)]
|
|
fn neg_zero() -> f64 { -0.0 }
|
|
|
|
/// Returns `true` if the number is NaN
|
|
#[inline(always)]
|
|
fn is_NaN(&self) -> bool { *self != *self }
|
|
|
|
/// Returns `true` if the number is infinite
|
|
#[inline(always)]
|
|
fn is_infinite(&self) -> bool {
|
|
*self == Float::infinity() || *self == Float::neg_infinity()
|
|
}
|
|
|
|
/// Returns `true` if the number is neither infinite or NaN
|
|
#[inline(always)]
|
|
fn is_finite(&self) -> bool {
|
|
!(self.is_NaN() || self.is_infinite())
|
|
}
|
|
|
|
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN
|
|
#[inline(always)]
|
|
fn is_normal(&self) -> bool {
|
|
self.classify() == FPNormal
|
|
}
|
|
|
|
/// Returns the floating point category of the number. If only one property is going to
|
|
/// be tested, it is generally faster to use the specific predicate instead.
|
|
fn classify(&self) -> FPCategory {
|
|
static EXP_MASK: u64 = 0x7ff0000000000000;
|
|
static MAN_MASK: u64 = 0x000fffffffffffff;
|
|
|
|
match (
|
|
unsafe { ::cast::transmute::<f64,u64>(*self) } & MAN_MASK,
|
|
unsafe { ::cast::transmute::<f64,u64>(*self) } & EXP_MASK,
|
|
) {
|
|
(0, 0) => FPZero,
|
|
(_, 0) => FPSubnormal,
|
|
(0, EXP_MASK) => FPInfinite,
|
|
(_, EXP_MASK) => FPNaN,
|
|
_ => FPNormal,
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn mantissa_digits() -> uint { 53 }
|
|
|
|
#[inline(always)]
|
|
fn digits() -> uint { 15 }
|
|
|
|
#[inline(always)]
|
|
fn epsilon() -> f64 { 2.2204460492503131e-16 }
|
|
|
|
#[inline(always)]
|
|
fn min_exp() -> int { -1021 }
|
|
|
|
#[inline(always)]
|
|
fn max_exp() -> int { 1024 }
|
|
|
|
#[inline(always)]
|
|
fn min_10_exp() -> int { -307 }
|
|
|
|
#[inline(always)]
|
|
fn max_10_exp() -> int { 308 }
|
|
|
|
///
|
|
/// Returns the exponential of the number, minus `1`, in a way that is accurate
|
|
/// even if the number is close to zero
|
|
///
|
|
#[inline(always)]
|
|
fn exp_m1(&self) -> f64 { exp_m1(*self) }
|
|
|
|
///
|
|
/// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately
|
|
/// than if the operations were performed separately
|
|
///
|
|
#[inline(always)]
|
|
fn ln_1p(&self) -> f64 { ln_1p(*self) }
|
|
|
|
///
|
|
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This
|
|
/// produces a more accurate result with better performance than a separate multiplication
|
|
/// operation followed by an add.
|
|
///
|
|
#[inline(always)]
|
|
fn mul_add(&self, a: f64, b: f64) -> f64 {
|
|
mul_add(*self, a, b)
|
|
}
|
|
|
|
/// Returns the next representable floating-point value in the direction of `other`
|
|
#[inline(always)]
|
|
fn next_after(&self, other: f64) -> f64 {
|
|
next_after(*self, other)
|
|
}
|
|
}
|
|
|
|
//
|
|
// Section: String Conversions
|
|
//
|
|
|
|
///
|
|
/// Converts a float to a string
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
///
|
|
#[inline(always)]
|
|
pub fn to_str(num: f64) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 10u, true, strconv::SignNeg, strconv::DigAll);
|
|
r
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string in hexadecimal format
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
///
|
|
#[inline(always)]
|
|
pub fn to_str_hex(num: f64) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 16u, true, strconv::SignNeg, strconv::DigAll);
|
|
r
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string in a given radix
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * radix - The base to use
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Fails if called on a special value like `inf`, `-inf` or `NaN` due to
|
|
/// possible misinterpretation of the result at higher bases. If those values
|
|
/// are expected, use `to_str_radix_special()` instead.
|
|
///
|
|
#[inline(always)]
|
|
pub fn to_str_radix(num: f64, rdx: uint) -> ~str {
|
|
let (r, special) = strconv::to_str_common(
|
|
&num, rdx, true, strconv::SignNeg, strconv::DigAll);
|
|
if special { fail!(~"number has a special value, \
|
|
try to_str_radix_special() if those are expected") }
|
|
r
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string in a given radix, and a flag indicating
|
|
/// whether it's a special value
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * radix - The base to use
|
|
///
|
|
#[inline(always)]
|
|
pub fn to_str_radix_special(num: f64, rdx: uint) -> (~str, bool) {
|
|
strconv::to_str_common(&num, rdx, true,
|
|
strconv::SignNeg, strconv::DigAll)
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string with exactly the number of
|
|
/// provided significant digits
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of significant digits
|
|
///
|
|
#[inline(always)]
|
|
pub fn to_str_exact(num: f64, dig: uint) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 10u, true, strconv::SignNeg, strconv::DigExact(dig));
|
|
r
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string with a maximum number of
|
|
/// significant digits
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of significant digits
|
|
///
|
|
#[inline(always)]
|
|
pub fn to_str_digits(num: f64, dig: uint) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 10u, true, strconv::SignNeg, strconv::DigMax(dig));
|
|
r
|
|
}
|
|
|
|
impl to_str::ToStr for f64 {
|
|
#[inline(always)]
|
|
fn to_str(&self) -> ~str { to_str_digits(*self, 8) }
|
|
}
|
|
|
|
impl num::ToStrRadix for f64 {
|
|
#[inline(always)]
|
|
fn to_str_radix(&self, rdx: uint) -> ~str {
|
|
to_str_radix(*self, rdx)
|
|
}
|
|
}
|
|
|
|
///
|
|
/// Convert a string in base 10 to a float.
|
|
/// Accepts a optional decimal exponent.
|
|
///
|
|
/// This function accepts strings such as
|
|
///
|
|
/// * '3.14'
|
|
/// * '+3.14', equivalent to '3.14'
|
|
/// * '-3.14'
|
|
/// * '2.5E10', or equivalently, '2.5e10'
|
|
/// * '2.5E-10'
|
|
/// * '.' (understood as 0)
|
|
/// * '5.'
|
|
/// * '.5', or, equivalently, '0.5'
|
|
/// * '+inf', 'inf', '-inf', 'NaN'
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `none` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
///
|
|
#[inline(always)]
|
|
pub fn from_str(num: &str) -> Option<f64> {
|
|
strconv::from_str_common(num, 10u, true, true, true,
|
|
strconv::ExpDec, false, false)
|
|
}
|
|
|
|
///
|
|
/// Convert a string in base 16 to a float.
|
|
/// Accepts a optional binary exponent.
|
|
///
|
|
/// This function accepts strings such as
|
|
///
|
|
/// * 'a4.fe'
|
|
/// * '+a4.fe', equivalent to 'a4.fe'
|
|
/// * '-a4.fe'
|
|
/// * '2b.aP128', or equivalently, '2b.ap128'
|
|
/// * '2b.aP-128'
|
|
/// * '.' (understood as 0)
|
|
/// * 'c.'
|
|
/// * '.c', or, equivalently, '0.c'
|
|
/// * '+inf', 'inf', '-inf', 'NaN'
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `none` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `[num]`.
|
|
///
|
|
#[inline(always)]
|
|
pub fn from_str_hex(num: &str) -> Option<f64> {
|
|
strconv::from_str_common(num, 16u, true, true, true,
|
|
strconv::ExpBin, false, false)
|
|
}
|
|
|
|
///
|
|
/// Convert a string in an given base to a float.
|
|
///
|
|
/// Due to possible conflicts, this function does **not** accept
|
|
/// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
|
|
/// does it recognize exponents of any kind.
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
/// * radix - The base to use. Must lie in the range [2 .. 36]
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `none` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
///
|
|
#[inline(always)]
|
|
pub fn from_str_radix(num: &str, rdx: uint) -> Option<f64> {
|
|
strconv::from_str_common(num, rdx, true, true, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
impl FromStr for f64 {
|
|
#[inline(always)]
|
|
fn from_str(val: &str) -> Option<f64> { from_str(val) }
|
|
}
|
|
|
|
impl num::FromStrRadix for f64 {
|
|
#[inline(always)]
|
|
fn from_str_radix(val: &str, rdx: uint) -> Option<f64> {
|
|
from_str_radix(val, rdx)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use f64::*;
|
|
use num::*;
|
|
use super::*;
|
|
use prelude::*;
|
|
|
|
#[test]
|
|
fn test_num() {
|
|
num::test_num(10f64, 2f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_min() {
|
|
assert_eq!(1f64.min(&2f64), 1f64);
|
|
assert_eq!(2f64.min(&1f64), 1f64);
|
|
assert!(1f64.min(&Float::NaN::<f64>()).is_NaN());
|
|
assert!(Float::NaN::<f64>().min(&1f64).is_NaN());
|
|
}
|
|
|
|
#[test]
|
|
fn test_max() {
|
|
assert_eq!(1f64.max(&2f64), 2f64);
|
|
assert_eq!(2f64.max(&1f64), 2f64);
|
|
assert!(1f64.max(&Float::NaN::<f64>()).is_NaN());
|
|
assert!(Float::NaN::<f64>().max(&1f64).is_NaN());
|
|
}
|
|
|
|
#[test]
|
|
fn test_clamp() {
|
|
assert_eq!(1f64.clamp(&2f64, &4f64), 2f64);
|
|
assert_eq!(8f64.clamp(&2f64, &4f64), 4f64);
|
|
assert_eq!(3f64.clamp(&2f64, &4f64), 3f64);
|
|
assert!(3f64.clamp(&Float::NaN::<f64>(), &4f64).is_NaN());
|
|
assert!(3f64.clamp(&2f64, &Float::NaN::<f64>()).is_NaN());
|
|
assert!(Float::NaN::<f64>().clamp(&2f64, &4f64).is_NaN());
|
|
}
|
|
|
|
#[test]
|
|
fn test_floor() {
|
|
assert_approx_eq!(1.0f64.floor(), 1.0f64);
|
|
assert_approx_eq!(1.3f64.floor(), 1.0f64);
|
|
assert_approx_eq!(1.5f64.floor(), 1.0f64);
|
|
assert_approx_eq!(1.7f64.floor(), 1.0f64);
|
|
assert_approx_eq!(0.0f64.floor(), 0.0f64);
|
|
assert_approx_eq!((-0.0f64).floor(), -0.0f64);
|
|
assert_approx_eq!((-1.0f64).floor(), -1.0f64);
|
|
assert_approx_eq!((-1.3f64).floor(), -2.0f64);
|
|
assert_approx_eq!((-1.5f64).floor(), -2.0f64);
|
|
assert_approx_eq!((-1.7f64).floor(), -2.0f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_ceil() {
|
|
assert_approx_eq!(1.0f64.ceil(), 1.0f64);
|
|
assert_approx_eq!(1.3f64.ceil(), 2.0f64);
|
|
assert_approx_eq!(1.5f64.ceil(), 2.0f64);
|
|
assert_approx_eq!(1.7f64.ceil(), 2.0f64);
|
|
assert_approx_eq!(0.0f64.ceil(), 0.0f64);
|
|
assert_approx_eq!((-0.0f64).ceil(), -0.0f64);
|
|
assert_approx_eq!((-1.0f64).ceil(), -1.0f64);
|
|
assert_approx_eq!((-1.3f64).ceil(), -1.0f64);
|
|
assert_approx_eq!((-1.5f64).ceil(), -1.0f64);
|
|
assert_approx_eq!((-1.7f64).ceil(), -1.0f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_round() {
|
|
assert_approx_eq!(1.0f64.round(), 1.0f64);
|
|
assert_approx_eq!(1.3f64.round(), 1.0f64);
|
|
assert_approx_eq!(1.5f64.round(), 2.0f64);
|
|
assert_approx_eq!(1.7f64.round(), 2.0f64);
|
|
assert_approx_eq!(0.0f64.round(), 0.0f64);
|
|
assert_approx_eq!((-0.0f64).round(), -0.0f64);
|
|
assert_approx_eq!((-1.0f64).round(), -1.0f64);
|
|
assert_approx_eq!((-1.3f64).round(), -1.0f64);
|
|
assert_approx_eq!((-1.5f64).round(), -2.0f64);
|
|
assert_approx_eq!((-1.7f64).round(), -2.0f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_trunc() {
|
|
assert_approx_eq!(1.0f64.trunc(), 1.0f64);
|
|
assert_approx_eq!(1.3f64.trunc(), 1.0f64);
|
|
assert_approx_eq!(1.5f64.trunc(), 1.0f64);
|
|
assert_approx_eq!(1.7f64.trunc(), 1.0f64);
|
|
assert_approx_eq!(0.0f64.trunc(), 0.0f64);
|
|
assert_approx_eq!((-0.0f64).trunc(), -0.0f64);
|
|
assert_approx_eq!((-1.0f64).trunc(), -1.0f64);
|
|
assert_approx_eq!((-1.3f64).trunc(), -1.0f64);
|
|
assert_approx_eq!((-1.5f64).trunc(), -1.0f64);
|
|
assert_approx_eq!((-1.7f64).trunc(), -1.0f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_fract() {
|
|
assert_approx_eq!(1.0f64.fract(), 0.0f64);
|
|
assert_approx_eq!(1.3f64.fract(), 0.3f64);
|
|
assert_approx_eq!(1.5f64.fract(), 0.5f64);
|
|
assert_approx_eq!(1.7f64.fract(), 0.7f64);
|
|
assert_approx_eq!(0.0f64.fract(), 0.0f64);
|
|
assert_approx_eq!((-0.0f64).fract(), -0.0f64);
|
|
assert_approx_eq!((-1.0f64).fract(), -0.0f64);
|
|
assert_approx_eq!((-1.3f64).fract(), -0.3f64);
|
|
assert_approx_eq!((-1.5f64).fract(), -0.5f64);
|
|
assert_approx_eq!((-1.7f64).fract(), -0.7f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_real_consts() {
|
|
assert_approx_eq!(Real::two_pi::<f64>(), 2.0 * Real::pi::<f64>());
|
|
assert_approx_eq!(Real::frac_pi_2::<f64>(), Real::pi::<f64>() / 2f64);
|
|
assert_approx_eq!(Real::frac_pi_3::<f64>(), Real::pi::<f64>() / 3f64);
|
|
assert_approx_eq!(Real::frac_pi_4::<f64>(), Real::pi::<f64>() / 4f64);
|
|
assert_approx_eq!(Real::frac_pi_6::<f64>(), Real::pi::<f64>() / 6f64);
|
|
assert_approx_eq!(Real::frac_pi_8::<f64>(), Real::pi::<f64>() / 8f64);
|
|
assert_approx_eq!(Real::frac_1_pi::<f64>(), 1f64 / Real::pi::<f64>());
|
|
assert_approx_eq!(Real::frac_2_pi::<f64>(), 2f64 / Real::pi::<f64>());
|
|
assert_approx_eq!(Real::frac_2_sqrtpi::<f64>(), 2f64 / Real::pi::<f64>().sqrt());
|
|
assert_approx_eq!(Real::sqrt2::<f64>(), 2f64.sqrt());
|
|
assert_approx_eq!(Real::frac_1_sqrt2::<f64>(), 1f64 / 2f64.sqrt());
|
|
assert_approx_eq!(Real::log2_e::<f64>(), Real::e::<f64>().log2());
|
|
assert_approx_eq!(Real::log10_e::<f64>(), Real::e::<f64>().log10());
|
|
assert_approx_eq!(Real::ln_2::<f64>(), 2f64.ln());
|
|
assert_approx_eq!(Real::ln_10::<f64>(), 10f64.ln());
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_abs() {
|
|
assert_eq!(infinity.abs(), infinity);
|
|
assert_eq!(1f64.abs(), 1f64);
|
|
assert_eq!(0f64.abs(), 0f64);
|
|
assert_eq!((-0f64).abs(), 0f64);
|
|
assert_eq!((-1f64).abs(), 1f64);
|
|
assert_eq!(neg_infinity.abs(), infinity);
|
|
assert_eq!((1f64/neg_infinity).abs(), 0f64);
|
|
assert!(NaN.abs().is_NaN());
|
|
}
|
|
|
|
#[test]
|
|
fn test_abs_sub() {
|
|
assert_eq!((-1f64).abs_sub(&1f64), 0f64);
|
|
assert_eq!(1f64.abs_sub(&1f64), 0f64);
|
|
assert_eq!(1f64.abs_sub(&0f64), 1f64);
|
|
assert_eq!(1f64.abs_sub(&-1f64), 2f64);
|
|
assert_eq!(neg_infinity.abs_sub(&0f64), 0f64);
|
|
assert_eq!(infinity.abs_sub(&1f64), infinity);
|
|
assert_eq!(0f64.abs_sub(&neg_infinity), infinity);
|
|
assert_eq!(0f64.abs_sub(&infinity), 0f64);
|
|
assert!(NaN.abs_sub(&-1f64).is_NaN());
|
|
assert!(1f64.abs_sub(&NaN).is_NaN());
|
|
}
|
|
|
|
#[test]
|
|
fn test_signum() {
|
|
assert_eq!(infinity.signum(), 1f64);
|
|
assert_eq!(1f64.signum(), 1f64);
|
|
assert_eq!(0f64.signum(), 1f64);
|
|
assert_eq!((-0f64).signum(), -1f64);
|
|
assert_eq!((-1f64).signum(), -1f64);
|
|
assert_eq!(neg_infinity.signum(), -1f64);
|
|
assert_eq!((1f64/neg_infinity).signum(), -1f64);
|
|
assert!(NaN.signum().is_NaN());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_positive() {
|
|
assert!(infinity.is_positive());
|
|
assert!(1f64.is_positive());
|
|
assert!(0f64.is_positive());
|
|
assert!(!(-0f64).is_positive());
|
|
assert!(!(-1f64).is_positive());
|
|
assert!(!neg_infinity.is_positive());
|
|
assert!(!(1f64/neg_infinity).is_positive());
|
|
assert!(!NaN.is_positive());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_negative() {
|
|
assert!(!infinity.is_negative());
|
|
assert!(!1f64.is_negative());
|
|
assert!(!0f64.is_negative());
|
|
assert!((-0f64).is_negative());
|
|
assert!((-1f64).is_negative());
|
|
assert!(neg_infinity.is_negative());
|
|
assert!((1f64/neg_infinity).is_negative());
|
|
assert!(!NaN.is_negative());
|
|
}
|
|
|
|
#[test]
|
|
fn test_approx_eq() {
|
|
assert!(1.0f64.approx_eq(&1f64));
|
|
assert!(0.9999999f64.approx_eq(&1f64));
|
|
assert!(1.000001f64.approx_eq_eps(&1f64, &1.0e-5));
|
|
assert!(1.0000001f64.approx_eq_eps(&1f64, &1.0e-6));
|
|
assert!(!1.0000001f64.approx_eq_eps(&1f64, &1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn test_primitive() {
|
|
assert_eq!(Primitive::bits::<f64>(), sys::size_of::<f64>() * 8);
|
|
assert_eq!(Primitive::bytes::<f64>(), sys::size_of::<f64>());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_normal() {
|
|
assert!(!Float::NaN::<f64>().is_normal());
|
|
assert!(!Float::infinity::<f64>().is_normal());
|
|
assert!(!Float::neg_infinity::<f64>().is_normal());
|
|
assert!(!Zero::zero::<f64>().is_normal());
|
|
assert!(!Float::neg_zero::<f64>().is_normal());
|
|
assert!(1f64.is_normal());
|
|
assert!(1e-307f64.is_normal());
|
|
assert!(!1e-308f64.is_normal());
|
|
}
|
|
|
|
#[test]
|
|
fn test_classify() {
|
|
assert_eq!(Float::NaN::<f64>().classify(), FPNaN);
|
|
assert_eq!(Float::infinity::<f64>().classify(), FPInfinite);
|
|
assert_eq!(Float::neg_infinity::<f64>().classify(), FPInfinite);
|
|
assert_eq!(Zero::zero::<f64>().classify(), FPZero);
|
|
assert_eq!(Float::neg_zero::<f64>().classify(), FPZero);
|
|
assert_eq!(1e-307f64.classify(), FPNormal);
|
|
assert_eq!(1e-308f64.classify(), FPSubnormal);
|
|
}
|
|
}
|