e7d4a9c7f2
Edge iterator used the length of the nodes vector, must be a mistake.
411 lines
13 KiB
Rust
411 lines
13 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
|
|
A graph module for use in dataflow, region resolution, and elsewhere.
|
|
|
|
# Interface details
|
|
|
|
You customize the graph by specifying a "node data" type `N` and an
|
|
"edge data" type `E`. You can then later gain access (mutable or
|
|
immutable) to these "user-data" bits. Currently, you can only add
|
|
nodes or edges to the graph. You cannot remove or modify them once
|
|
added. This could be changed if we have a need.
|
|
|
|
# Implementation details
|
|
|
|
The main tricky thing about this code is the way that edges are
|
|
stored. The edges are stored in a central array, but they are also
|
|
threaded onto two linked lists for each node, one for incoming edges
|
|
and one for outgoing edges. Note that every edge is a member of some
|
|
incoming list and some outgoing list. Basically you can load the
|
|
first index of the linked list from the node data structures (the
|
|
field `first_edge`) and then, for each edge, load the next index from
|
|
the field `next_edge`). Each of those fields is an array that should
|
|
be indexed by the direction (see the type `Direction`).
|
|
|
|
*/
|
|
|
|
use std::uint;
|
|
use std::vec;
|
|
|
|
pub struct Graph<N,E> {
|
|
priv nodes: ~[Node<N>],
|
|
priv edges: ~[Edge<E>],
|
|
}
|
|
|
|
pub struct Node<N> {
|
|
priv first_edge: [EdgeIndex, ..2], // see module comment
|
|
data: N,
|
|
}
|
|
|
|
pub struct Edge<E> {
|
|
priv next_edge: [EdgeIndex, ..2], // see module comment
|
|
priv source: NodeIndex,
|
|
priv target: NodeIndex,
|
|
data: E,
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
pub struct NodeIndex(uint);
|
|
pub static InvalidNodeIndex: NodeIndex = NodeIndex(uint::max_value);
|
|
|
|
#[deriving(Eq)]
|
|
pub struct EdgeIndex(uint);
|
|
pub static InvalidEdgeIndex: EdgeIndex = EdgeIndex(uint::max_value);
|
|
|
|
// Use a private field here to guarantee no more instances are created:
|
|
pub struct Direction { priv repr: uint }
|
|
pub static Outgoing: Direction = Direction { repr: 0 };
|
|
pub static Incoming: Direction = Direction { repr: 1 };
|
|
|
|
impl<N,E> Graph<N,E> {
|
|
pub fn new() -> Graph<N,E> {
|
|
Graph {nodes: ~[], edges: ~[]}
|
|
}
|
|
|
|
pub fn with_capacity(num_nodes: uint,
|
|
num_edges: uint) -> Graph<N,E> {
|
|
Graph {nodes: vec::with_capacity(num_nodes),
|
|
edges: vec::with_capacity(num_edges)}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Simple accessors
|
|
|
|
#[inline]
|
|
pub fn all_nodes<'a>(&'a self) -> &'a [Node<N>] {
|
|
let nodes: &'a [Node<N>] = self.nodes;
|
|
nodes
|
|
}
|
|
|
|
#[inline]
|
|
pub fn all_edges<'a>(&'a self) -> &'a [Edge<E>] {
|
|
let edges: &'a [Edge<E>] = self.edges;
|
|
edges
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Node construction
|
|
|
|
pub fn next_node_index(&self) -> NodeIndex {
|
|
NodeIndex(self.nodes.len())
|
|
}
|
|
|
|
pub fn add_node(&mut self, data: N) -> NodeIndex {
|
|
let idx = self.next_node_index();
|
|
self.nodes.push(Node {
|
|
first_edge: [InvalidEdgeIndex, InvalidEdgeIndex],
|
|
data: data
|
|
});
|
|
idx
|
|
}
|
|
|
|
pub fn mut_node_data<'a>(&'a mut self, idx: NodeIndex) -> &'a mut N {
|
|
&mut self.nodes[*idx].data
|
|
}
|
|
|
|
pub fn node_data<'a>(&'a self, idx: NodeIndex) -> &'a N {
|
|
&self.nodes[*idx].data
|
|
}
|
|
|
|
pub fn node<'a>(&'a self, idx: NodeIndex) -> &'a Node<N> {
|
|
&self.nodes[*idx]
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Edge construction and queries
|
|
|
|
pub fn next_edge_index(&self) -> EdgeIndex {
|
|
EdgeIndex(self.edges.len())
|
|
}
|
|
|
|
pub fn add_edge(&mut self,
|
|
source: NodeIndex,
|
|
target: NodeIndex,
|
|
data: E) -> EdgeIndex {
|
|
let idx = self.next_edge_index();
|
|
|
|
// read current first of the list of edges from each node
|
|
let source_first = self.nodes[*source].first_edge[Outgoing.repr];
|
|
let target_first = self.nodes[*target].first_edge[Incoming.repr];
|
|
|
|
// create the new edge, with the previous firsts from each node
|
|
// as the next pointers
|
|
self.edges.push(Edge {
|
|
next_edge: [source_first, target_first],
|
|
source: source,
|
|
target: target,
|
|
data: data
|
|
});
|
|
|
|
// adjust the firsts for each node target be the next object.
|
|
self.nodes[*source].first_edge[Outgoing.repr] = idx;
|
|
self.nodes[*target].first_edge[Incoming.repr] = idx;
|
|
|
|
return idx;
|
|
}
|
|
|
|
pub fn mut_edge_data<'a>(&'a mut self, idx: EdgeIndex) -> &'a mut E {
|
|
&mut self.edges[*idx].data
|
|
}
|
|
|
|
pub fn edge_data<'a>(&'a self, idx: EdgeIndex) -> &'a E {
|
|
&self.edges[*idx].data
|
|
}
|
|
|
|
pub fn edge<'a>(&'a self, idx: EdgeIndex) -> &'a Edge<E> {
|
|
&self.edges[*idx]
|
|
}
|
|
|
|
pub fn first_adjacent(&self, node: NodeIndex, dir: Direction) -> EdgeIndex {
|
|
//! Accesses the index of the first edge adjacent to `node`.
|
|
//! This is useful if you wish to modify the graph while walking
|
|
//! the linked list of edges.
|
|
|
|
self.nodes[*node].first_edge[dir.repr]
|
|
}
|
|
|
|
pub fn next_adjacent(&self, edge: EdgeIndex, dir: Direction) -> EdgeIndex {
|
|
//! Accesses the next edge in a given direction.
|
|
//! This is useful if you wish to modify the graph while walking
|
|
//! the linked list of edges.
|
|
|
|
self.edges[*edge].next_edge[dir.repr]
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Iterating over nodes, edges
|
|
|
|
pub fn each_node(&self, f: &fn(NodeIndex, &Node<N>) -> bool) -> bool {
|
|
//! Iterates over all edges defined in the graph.
|
|
self.nodes.iter().enumerate().advance(|(i, node)| f(NodeIndex(i), node))
|
|
}
|
|
|
|
pub fn each_edge(&self, f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
|
|
//! Iterates over all edges defined in the graph
|
|
self.edges.iter().enumerate().advance(|(i, edge)| f(EdgeIndex(i), edge))
|
|
}
|
|
|
|
pub fn each_outgoing_edge(&self,
|
|
source: NodeIndex,
|
|
f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
|
|
//! Iterates over all outgoing edges from the node `from`
|
|
|
|
self.each_adjacent_edge(source, Outgoing, f)
|
|
}
|
|
|
|
pub fn each_incoming_edge(&self,
|
|
target: NodeIndex,
|
|
f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
|
|
//! Iterates over all incoming edges to the node `target`
|
|
|
|
self.each_adjacent_edge(target, Incoming, f)
|
|
}
|
|
|
|
pub fn each_adjacent_edge(&self,
|
|
node: NodeIndex,
|
|
dir: Direction,
|
|
f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
|
|
//! Iterates over all edges adjacent to the node `node`
|
|
//! in the direction `dir` (either `Outgoing` or `Incoming)
|
|
|
|
let mut edge_idx = self.first_adjacent(node, dir);
|
|
while edge_idx != InvalidEdgeIndex {
|
|
let edge = &self.edges[*edge_idx];
|
|
if !f(edge_idx, edge) {
|
|
return false;
|
|
}
|
|
edge_idx = edge.next_edge[dir.repr];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Fixed-point iteration
|
|
//
|
|
// A common use for graphs in our compiler is to perform
|
|
// fixed-point iteration. In this case, each edge represents a
|
|
// constaint, and the nodes themselves are associated with
|
|
// variables or other bitsets. This method facilitates such a
|
|
// computation.
|
|
|
|
pub fn iterate_until_fixed_point(&self,
|
|
op: &fn(iter_index: uint,
|
|
edge_index: EdgeIndex,
|
|
edge: &Edge<E>) -> bool) {
|
|
let mut iteration = 0;
|
|
let mut changed = true;
|
|
while changed {
|
|
changed = false;
|
|
iteration += 1;
|
|
for (i, edge) in self.edges.iter().enumerate() {
|
|
changed |= op(iteration, EdgeIndex(i), edge);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn each_edge_index(max_edge_index: EdgeIndex, f: &fn(EdgeIndex) -> bool) {
|
|
let mut i = 0;
|
|
let n = *max_edge_index;
|
|
while i < n {
|
|
if !f(EdgeIndex(i)) {
|
|
return;
|
|
}
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
impl<E> Edge<E> {
|
|
pub fn source(&self) -> NodeIndex {
|
|
self.source
|
|
}
|
|
|
|
pub fn target(&self) -> NodeIndex {
|
|
self.target
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use middle::graph::*;
|
|
|
|
type TestNode = Node<&'static str>;
|
|
type TestEdge = Edge<&'static str>;
|
|
type TestGraph = Graph<&'static str, &'static str>;
|
|
|
|
fn create_graph() -> TestGraph {
|
|
let mut graph = Graph::new();
|
|
|
|
// Create a simple graph
|
|
//
|
|
// A -+> B --> C
|
|
// | | ^
|
|
// | v |
|
|
// F D --> E
|
|
|
|
let a = graph.add_node("A");
|
|
let b = graph.add_node("B");
|
|
let c = graph.add_node("C");
|
|
let d = graph.add_node("D");
|
|
let e = graph.add_node("E");
|
|
let f = graph.add_node("F");
|
|
|
|
graph.add_edge(a, b, "AB");
|
|
graph.add_edge(b, c, "BC");
|
|
graph.add_edge(b, d, "BD");
|
|
graph.add_edge(d, e, "DE");
|
|
graph.add_edge(e, c, "EC");
|
|
graph.add_edge(f, b, "FB");
|
|
|
|
return graph;
|
|
}
|
|
|
|
#[test]
|
|
fn each_node() {
|
|
let graph = create_graph();
|
|
let expected = ["A", "B", "C", "D", "E", "F"];
|
|
do graph.each_node |idx, node| {
|
|
assert_eq!(&expected[*idx], graph.node_data(idx));
|
|
assert_eq!(expected[*idx], node.data);
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
fn each_edge() {
|
|
let graph = create_graph();
|
|
let expected = ["AB", "BC", "BD", "DE", "EC", "FB"];
|
|
do graph.each_edge |idx, edge| {
|
|
assert_eq!(&expected[*idx], graph.edge_data(idx));
|
|
assert_eq!(expected[*idx], edge.data);
|
|
true
|
|
};
|
|
}
|
|
|
|
fn test_adjacent_edges<N:Eq,E:Eq>(graph: &Graph<N,E>,
|
|
start_index: NodeIndex,
|
|
start_data: N,
|
|
expected_incoming: &[(E,N)],
|
|
expected_outgoing: &[(E,N)]) {
|
|
assert_eq!(graph.node_data(start_index), &start_data);
|
|
|
|
let mut counter = 0;
|
|
do graph.each_incoming_edge(start_index) |edge_index, edge| {
|
|
assert_eq!(graph.edge_data(edge_index), &edge.data);
|
|
assert!(counter < expected_incoming.len());
|
|
debug!("counter=%? expected=%? edge_index=%? edge=%?",
|
|
counter, expected_incoming[counter], edge_index, edge);
|
|
match expected_incoming[counter] {
|
|
(ref e, ref n) => {
|
|
assert_eq!(e, &edge.data);
|
|
assert_eq!(n, graph.node_data(edge.source));
|
|
assert_eq!(start_index, edge.target);
|
|
}
|
|
}
|
|
counter += 1;
|
|
true
|
|
};
|
|
assert_eq!(counter, expected_incoming.len());
|
|
|
|
let mut counter = 0;
|
|
do graph.each_outgoing_edge(start_index) |edge_index, edge| {
|
|
assert_eq!(graph.edge_data(edge_index), &edge.data);
|
|
assert!(counter < expected_outgoing.len());
|
|
debug!("counter=%? expected=%? edge_index=%? edge=%?",
|
|
counter, expected_outgoing[counter], edge_index, edge);
|
|
match expected_outgoing[counter] {
|
|
(ref e, ref n) => {
|
|
assert_eq!(e, &edge.data);
|
|
assert_eq!(start_index, edge.source);
|
|
assert_eq!(n, graph.node_data(edge.target));
|
|
}
|
|
}
|
|
counter += 1;
|
|
true
|
|
};
|
|
assert_eq!(counter, expected_outgoing.len());
|
|
}
|
|
|
|
#[test]
|
|
fn each_adjacent_from_a() {
|
|
let graph = create_graph();
|
|
test_adjacent_edges(&graph, NodeIndex(0), "A",
|
|
[],
|
|
[("AB", "B")]);
|
|
}
|
|
|
|
#[test]
|
|
fn each_adjacent_from_b() {
|
|
let graph = create_graph();
|
|
test_adjacent_edges(&graph, NodeIndex(1), "B",
|
|
[("FB", "F"), ("AB", "A"),],
|
|
[("BD", "D"), ("BC", "C"),]);
|
|
}
|
|
|
|
#[test]
|
|
fn each_adjacent_from_c() {
|
|
let graph = create_graph();
|
|
test_adjacent_edges(&graph, NodeIndex(2), "C",
|
|
[("EC", "E"), ("BC", "B")],
|
|
[]);
|
|
}
|
|
|
|
#[test]
|
|
fn each_adjacent_from_d() {
|
|
let graph = create_graph();
|
|
test_adjacent_edges(&graph, NodeIndex(3), "D",
|
|
[("BD", "B")],
|
|
[("DE", "E")]);
|
|
}
|
|
}
|