rust/src/librustc/middle/resolve.rs
2013-09-11 14:49:09 -04:00

5572 lines
220 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use driver::session::Session;
use metadata::csearch::get_trait_method_def_ids;
use metadata::csearch::get_method_name_and_explicit_self;
use metadata::csearch::get_static_methods_if_impl;
use metadata::csearch::{get_type_name_if_impl, get_struct_fields};
use metadata::csearch;
use metadata::cstore::find_extern_mod_stmt_cnum;
use metadata::decoder::{DefLike, DlDef, DlField, DlImpl};
use middle::lang_items::LanguageItems;
use middle::lint::{unnecessary_qualification, unused_imports};
use middle::pat_util::pat_bindings;
use syntax::ast::*;
use syntax::ast;
use syntax::ast_util::{def_id_of_def, local_def, mtwt_resolve};
use syntax::ast_util::{path_to_ident, walk_pat, trait_method_to_ty_method};
use syntax::ast_util::{Privacy, Public, Private};
use syntax::ast_util::{variant_visibility_to_privacy, visibility_to_privacy};
use syntax::attr;
use syntax::parse::token;
use syntax::parse::token::{ident_interner, interner_get};
use syntax::parse::token::special_idents;
use syntax::print::pprust::path_to_str;
use syntax::codemap::{Span, dummy_sp, BytePos};
use syntax::opt_vec::OptVec;
use syntax::visit;
use syntax::visit::Visitor;
use std::str;
use std::uint;
use std::hashmap::{HashMap, HashSet};
use std::util;
// Definition mapping
pub type DefMap = @mut HashMap<NodeId,Def>;
pub struct binding_info {
span: Span,
binding_mode: BindingMode,
}
// Map from the name in a pattern to its binding mode.
pub type BindingMap = HashMap<Name,binding_info>;
// Trait method resolution
pub type TraitMap = HashMap<NodeId,@mut ~[DefId]>;
// A summary of the generics on a trait.
struct TraitGenerics {
has_lifetime: bool,
type_parameter_count: uint,
}
// This is the replacement export map. It maps a module to all of the exports
// within.
pub type ExportMap2 = @mut HashMap<NodeId, ~[Export2]>;
pub struct Export2 {
name: @str, // The name of the target.
def_id: DefId, // The definition of the target.
reexport: bool, // Whether this is a reexport.
}
#[deriving(Eq)]
pub enum PatternBindingMode {
RefutableMode,
LocalIrrefutableMode,
ArgumentIrrefutableMode,
}
#[deriving(Eq)]
pub enum Namespace {
TypeNS,
ValueNS
}
#[deriving(Eq)]
pub enum NamespaceError {
NoError,
ModuleError,
TypeError,
ValueError
}
/// A NamespaceResult represents the result of resolving an import in
/// a particular namespace. The result is either definitely-resolved,
/// definitely- unresolved, or unknown.
pub enum NamespaceResult {
/// Means that resolve hasn't gathered enough information yet to determine
/// whether the name is bound in this namespace. (That is, it hasn't
/// resolved all `use` directives yet.)
UnknownResult,
/// Means that resolve has determined that the name is definitely
/// not bound in the namespace.
UnboundResult,
/// Means that resolve has determined that the name is bound in the Module
/// argument, and specified by the NameBindings argument.
BoundResult(@mut Module, @mut NameBindings)
}
impl NamespaceResult {
pub fn is_unknown(&self) -> bool {
match *self {
UnknownResult => true,
_ => false
}
}
}
pub enum NameDefinition {
NoNameDefinition, //< The name was unbound.
ChildNameDefinition(Def), //< The name identifies an immediate child.
ImportNameDefinition(Def) //< The name identifies an import.
}
#[deriving(Eq)]
pub enum Mutability {
Mutable,
Immutable
}
pub enum SelfBinding {
NoSelfBinding,
HasSelfBinding(NodeId)
}
struct ResolveVisitor {
resolver: @mut Resolver,
}
impl Visitor<()> for ResolveVisitor {
fn visit_item(&mut self, item:@item, _:()) {
self.resolver.resolve_item(item, self);
}
fn visit_arm(&mut self, arm:&Arm, _:()) {
self.resolver.resolve_arm(arm, self);
}
fn visit_block(&mut self, block:&Block, _:()) {
self.resolver.resolve_block(block, self);
}
fn visit_expr(&mut self, expr:@Expr, _:()) {
self.resolver.resolve_expr(expr, self);
}
fn visit_local(&mut self, local:@Local, _:()) {
self.resolver.resolve_local(local, self);
}
fn visit_ty(&mut self, ty:&Ty, _:()) {
self.resolver.resolve_type(ty, self);
}
}
/// Contains data for specific types of import directives.
pub enum ImportDirectiveSubclass {
SingleImport(Ident /* target */, Ident /* source */),
GlobImport
}
/// The context that we thread through while building the reduced graph.
#[deriving(Clone)]
pub enum ReducedGraphParent {
ModuleReducedGraphParent(@mut Module)
}
pub enum ResolveResult<T> {
Failed, // Failed to resolve the name.
Indeterminate, // Couldn't determine due to unresolved globs.
Success(T) // Successfully resolved the import.
}
impl<T> ResolveResult<T> {
pub fn failed(&self) -> bool {
match *self { Failed => true, _ => false }
}
pub fn indeterminate(&self) -> bool {
match *self { Indeterminate => true, _ => false }
}
}
pub enum TypeParameters<'self> {
NoTypeParameters, //< No type parameters.
HasTypeParameters(&'self Generics, //< Type parameters.
NodeId, //< ID of the enclosing item
// The index to start numbering the type parameters at.
// This is zero if this is the outermost set of type
// parameters, or equal to the number of outer type
// parameters. For example, if we have:
//
// impl I<T> {
// fn method<U>() { ... }
// }
//
// The index at the method site will be 1, because the
// outer T had index 0.
uint,
// The kind of the rib used for type parameters.
RibKind)
}
// The rib kind controls the translation of argument or local definitions
// (`def_arg` or `def_local`) to upvars (`def_upvar`).
pub enum RibKind {
// No translation needs to be applied.
NormalRibKind,
// We passed through a function scope at the given node ID. Translate
// upvars as appropriate.
FunctionRibKind(NodeId /* func id */, NodeId /* body id */),
// We passed through an impl or trait and are now in one of its
// methods. Allow references to ty params that impl or trait
// binds. Disallow any other upvars (including other ty params that are
// upvars).
// parent; method itself
MethodRibKind(NodeId, MethodSort),
// We passed through a function *item* scope. Disallow upvars.
OpaqueFunctionRibKind,
// We're in a constant item. Can't refer to dynamic stuff.
ConstantItemRibKind
}
// Methods can be required or provided. Required methods only occur in traits.
pub enum MethodSort {
Required,
Provided(NodeId)
}
// The X-ray flag indicates that a context has the X-ray privilege, which
// allows it to reference private names. Currently, this is used for the test
// runner.
//
// FIXME #4947: The X-ray flag is kind of questionable in the first
// place. It might be better to introduce an expr_xray_path instead.
#[deriving(Eq)]
pub enum XrayFlag {
NoXray, //< Private items cannot be accessed.
Xray //< Private items can be accessed.
}
pub enum UseLexicalScopeFlag {
DontUseLexicalScope,
UseLexicalScope
}
pub enum SearchThroughModulesFlag {
DontSearchThroughModules,
SearchThroughModules
}
pub enum ModulePrefixResult {
NoPrefixFound,
PrefixFound(@mut Module, uint)
}
#[deriving(Eq)]
pub enum AllowCapturingSelfFlag {
AllowCapturingSelf, //< The "self" definition can be captured.
DontAllowCapturingSelf, //< The "self" definition cannot be captured.
}
#[deriving(Eq)]
enum NameSearchType {
/// We're doing a name search in order to resolve a `use` directive.
ImportSearch,
/// We're doing a name search in order to resolve a path type, a path
/// expression, or a path pattern. We can select public or private
/// names.
///
/// XXX: This should be ripped out of resolve and handled later, in
/// the privacy checking phase.
PathPublicOrPrivateSearch,
/// We're doing a name search in order to resolve a path type, a path
/// expression, or a path pattern. Allow only public names to be selected.
PathPublicOnlySearch,
}
pub enum BareIdentifierPatternResolution {
FoundStructOrEnumVariant(Def),
FoundConst(Def),
BareIdentifierPatternUnresolved
}
// Specifies how duplicates should be handled when adding a child item if
// another item exists with the same name in some namespace.
#[deriving(Eq)]
pub enum DuplicateCheckingMode {
ForbidDuplicateModules,
ForbidDuplicateTypes,
ForbidDuplicateValues,
ForbidDuplicateTypesAndValues,
OverwriteDuplicates
}
/// One local scope.
pub struct Rib {
bindings: @mut HashMap<Name, DefLike>,
self_binding: @mut Option<DefLike>,
kind: RibKind,
}
impl Rib {
pub fn new(kind: RibKind) -> Rib {
Rib {
bindings: @mut HashMap::new(),
self_binding: @mut None,
kind: kind
}
}
}
/// One import directive.
pub struct ImportDirective {
privacy: Privacy,
module_path: ~[Ident],
subclass: @ImportDirectiveSubclass,
span: Span,
id: NodeId,
}
impl ImportDirective {
pub fn new(privacy: Privacy,
module_path: ~[Ident],
subclass: @ImportDirectiveSubclass,
span: Span,
id: NodeId)
-> ImportDirective {
ImportDirective {
privacy: privacy,
module_path: module_path,
subclass: subclass,
span: span,
id: id
}
}
}
/// The item that an import resolves to.
pub struct Target {
target_module: @mut Module,
bindings: @mut NameBindings,
}
impl Target {
pub fn new(target_module: @mut Module,
bindings: @mut NameBindings)
-> Target {
Target {
target_module: target_module,
bindings: bindings
}
}
}
/// An ImportResolution represents a particular `use` directive.
pub struct ImportResolution {
/// The privacy of this `use` directive (whether it's `use` or
/// `pub use`.
privacy: Privacy,
// The number of outstanding references to this name. When this reaches
// zero, outside modules can count on the targets being correct. Before
// then, all bets are off; future imports could override this name.
outstanding_references: uint,
/// The value that this `use` directive names, if there is one.
value_target: Option<Target>,
/// The source node of the `use` directive leading to the value target
/// being non-none
value_id: NodeId,
/// The type that this `use` directive names, if there is one.
type_target: Option<Target>,
/// The source node of the `use` directive leading to the type target
/// being non-none
type_id: NodeId,
}
impl ImportResolution {
pub fn new(privacy: Privacy,
id: NodeId) -> ImportResolution {
ImportResolution {
privacy: privacy,
type_id: id,
value_id: id,
outstanding_references: 0,
value_target: None,
type_target: None,
}
}
pub fn target_for_namespace(&self, namespace: Namespace)
-> Option<Target> {
match namespace {
TypeNS => return self.type_target,
ValueNS => return self.value_target,
}
}
fn id(&self, namespace: Namespace) -> NodeId {
match namespace {
TypeNS => self.type_id,
ValueNS => self.value_id,
}
}
}
/// The link from a module up to its nearest parent node.
pub enum ParentLink {
NoParentLink,
ModuleParentLink(@mut Module, Ident),
BlockParentLink(@mut Module, NodeId)
}
/// The type of module this is.
#[deriving(Eq)]
pub enum ModuleKind {
NormalModuleKind,
ExternModuleKind,
TraitModuleKind,
ImplModuleKind,
AnonymousModuleKind,
}
/// One node in the tree of modules.
pub struct Module {
parent_link: ParentLink,
def_id: Option<DefId>,
kind: ModuleKind,
children: @mut HashMap<Name, @mut NameBindings>,
imports: @mut ~[@ImportDirective],
// The external module children of this node that were declared with
// `extern mod`.
external_module_children: @mut HashMap<Name, @mut Module>,
// The anonymous children of this node. Anonymous children are pseudo-
// modules that are implicitly created around items contained within
// blocks.
//
// For example, if we have this:
//
// fn f() {
// fn g() {
// ...
// }
// }
//
// There will be an anonymous module created around `g` with the ID of the
// entry block for `f`.
anonymous_children: @mut HashMap<NodeId,@mut Module>,
// The status of resolving each import in this module.
import_resolutions: @mut HashMap<Name, @mut ImportResolution>,
// The number of unresolved globs that this module exports.
glob_count: uint,
// The index of the import we're resolving.
resolved_import_count: uint,
// Whether this module is populated. If not populated, any attempt to
// access the children must be preceded with a
// `populate_module_if_necessary` call.
populated: bool,
}
impl Module {
pub fn new(parent_link: ParentLink,
def_id: Option<DefId>,
kind: ModuleKind,
external: bool)
-> Module {
Module {
parent_link: parent_link,
def_id: def_id,
kind: kind,
children: @mut HashMap::new(),
imports: @mut ~[],
external_module_children: @mut HashMap::new(),
anonymous_children: @mut HashMap::new(),
import_resolutions: @mut HashMap::new(),
glob_count: 0,
resolved_import_count: 0,
populated: !external,
}
}
pub fn all_imports_resolved(&self) -> bool {
let imports = &mut *self.imports;
return imports.len() == self.resolved_import_count;
}
}
// Records a possibly-private type definition.
pub struct TypeNsDef {
privacy: Privacy,
module_def: Option<@mut Module>,
type_def: Option<Def>,
type_span: Option<Span>
}
// Records a possibly-private value definition.
pub struct ValueNsDef {
privacy: Privacy,
def: Def,
value_span: Option<Span>,
}
// Records the definitions (at most one for each namespace) that a name is
// bound to.
pub struct NameBindings {
type_def: Option<TypeNsDef>, //< Meaning in type namespace.
value_def: Option<ValueNsDef>, //< Meaning in value namespace.
}
/// Ways in which a trait can be referenced
enum TraitReferenceType {
TraitImplementation, // impl SomeTrait for T { ... }
TraitDerivation, // trait T : SomeTrait { ... }
TraitBoundingTypeParameter, // fn f<T:SomeTrait>() { ... }
}
impl NameBindings {
/// Creates a new module in this set of name bindings.
pub fn define_module(@mut self,
privacy: Privacy,
parent_link: ParentLink,
def_id: Option<DefId>,
kind: ModuleKind,
external: bool,
sp: Span) {
// Merges the module with the existing type def or creates a new one.
let module_ = @mut Module::new(parent_link, def_id, kind, external);
match self.type_def {
None => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: Some(module_),
type_def: None,
type_span: Some(sp)
});
}
Some(type_def) => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: Some(module_),
type_span: Some(sp),
type_def: type_def.type_def
});
}
}
}
/// Sets the kind of the module, creating a new one if necessary.
pub fn set_module_kind(@mut self,
privacy: Privacy,
parent_link: ParentLink,
def_id: Option<DefId>,
kind: ModuleKind,
external: bool,
_sp: Span) {
match self.type_def {
None => {
let module = @mut Module::new(parent_link, def_id, kind, external);
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: Some(module),
type_def: None,
type_span: None,
})
}
Some(type_def) => {
match type_def.module_def {
None => {
let module = @mut Module::new(parent_link,
def_id,
kind,
external);
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: Some(module),
type_def: type_def.type_def,
type_span: None,
})
}
Some(module_def) => module_def.kind = kind,
}
}
}
}
/// Records a type definition.
pub fn define_type(@mut self, privacy: Privacy, def: Def, sp: Span) {
// Merges the type with the existing type def or creates a new one.
match self.type_def {
None => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: None,
type_def: Some(def),
type_span: Some(sp)
});
}
Some(type_def) => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
type_def: Some(def),
type_span: Some(sp),
module_def: type_def.module_def
});
}
}
}
/// Records a value definition.
pub fn define_value(@mut self, privacy: Privacy, def: Def, sp: Span) {
self.value_def = Some(ValueNsDef { privacy: privacy, def: def, value_span: Some(sp) });
}
/// Returns the module node if applicable.
pub fn get_module_if_available(&self) -> Option<@mut Module> {
match self.type_def {
Some(ref type_def) => (*type_def).module_def,
None => None
}
}
/**
* Returns the module node. Fails if this node does not have a module
* definition.
*/
pub fn get_module(@mut self) -> @mut Module {
match self.get_module_if_available() {
None => {
fail!("get_module called on a node with no module \
definition!")
}
Some(module_def) => module_def
}
}
pub fn defined_in_namespace(&self, namespace: Namespace) -> bool {
match namespace {
TypeNS => return self.type_def.is_some(),
ValueNS => return self.value_def.is_some()
}
}
pub fn defined_in_public_namespace(&self, namespace: Namespace) -> bool {
match namespace {
TypeNS => match self.type_def {
Some(def) => def.privacy != Private,
None => false
},
ValueNS => match self.value_def {
Some(def) => def.privacy != Private,
None => false
}
}
}
pub fn def_for_namespace(&self, namespace: Namespace) -> Option<Def> {
match namespace {
TypeNS => {
match self.type_def {
None => None,
Some(ref type_def) => {
match (*type_def).type_def {
Some(type_def) => Some(type_def),
None => {
match type_def.module_def {
Some(module) => {
match module.def_id {
Some(did) => Some(DefMod(did)),
None => None,
}
}
None => None,
}
}
}
}
}
}
ValueNS => {
match self.value_def {
None => None,
Some(value_def) => Some(value_def.def)
}
}
}
}
pub fn privacy_for_namespace(&self, namespace: Namespace)
-> Option<Privacy> {
match namespace {
TypeNS => {
match self.type_def {
None => None,
Some(ref type_def) => Some((*type_def).privacy)
}
}
ValueNS => {
match self.value_def {
None => None,
Some(value_def) => Some(value_def.privacy)
}
}
}
}
pub fn span_for_namespace(&self, namespace: Namespace) -> Option<Span> {
if self.defined_in_namespace(namespace) {
match namespace {
TypeNS => {
match self.type_def {
None => None,
Some(type_def) => type_def.type_span
}
}
ValueNS => {
match self.value_def {
None => None,
Some(value_def) => value_def.value_span
}
}
}
} else {
None
}
}
}
pub fn NameBindings() -> NameBindings {
NameBindings {
type_def: None,
value_def: None
}
}
/// Interns the names of the primitive types.
pub struct PrimitiveTypeTable {
primitive_types: HashMap<Name,prim_ty>,
}
impl PrimitiveTypeTable {
pub fn intern(&mut self,
string: &str,
primitive_type: prim_ty) {
self.primitive_types.insert(token::intern(string), primitive_type);
}
}
pub fn PrimitiveTypeTable() -> PrimitiveTypeTable {
let mut table = PrimitiveTypeTable {
primitive_types: HashMap::new()
};
table.intern("bool", ty_bool);
table.intern("char", ty_char);
table.intern("float", ty_float(ty_f));
table.intern("f32", ty_float(ty_f32));
table.intern("f64", ty_float(ty_f64));
table.intern("int", ty_int(ty_i));
table.intern("i8", ty_int(ty_i8));
table.intern("i16", ty_int(ty_i16));
table.intern("i32", ty_int(ty_i32));
table.intern("i64", ty_int(ty_i64));
table.intern("str", ty_str);
table.intern("uint", ty_uint(ty_u));
table.intern("u8", ty_uint(ty_u8));
table.intern("u16", ty_uint(ty_u16));
table.intern("u32", ty_uint(ty_u32));
table.intern("u64", ty_uint(ty_u64));
return table;
}
pub fn namespace_error_to_str(ns: NamespaceError) -> &'static str {
match ns {
NoError => "",
ModuleError => "module",
TypeError => "type",
ValueError => "value",
}
}
pub fn Resolver(session: Session,
lang_items: LanguageItems,
crate: @Crate)
-> Resolver {
let graph_root = @mut NameBindings();
graph_root.define_module(Public,
NoParentLink,
Some(DefId { crate: 0, node: 0 }),
NormalModuleKind,
false,
crate.span);
let current_module = graph_root.get_module();
let this = Resolver {
session: @session,
lang_items: lang_items,
crate: crate,
// The outermost module has def ID 0; this is not reflected in the
// AST.
graph_root: graph_root,
method_map: @mut HashMap::new(),
structs: HashSet::new(),
unresolved_imports: 0,
current_module: current_module,
value_ribs: @mut ~[],
type_ribs: @mut ~[],
label_ribs: @mut ~[],
xray_context: NoXray,
current_trait_refs: None,
self_ident: special_idents::self_,
type_self_ident: special_idents::type_self,
primitive_type_table: @PrimitiveTypeTable(),
namespaces: ~[ TypeNS, ValueNS ],
def_map: @mut HashMap::new(),
export_map2: @mut HashMap::new(),
trait_map: HashMap::new(),
used_imports: HashSet::new(),
emit_errors: true,
intr: session.intr()
};
this
}
/// The main resolver class.
pub struct Resolver {
session: @Session,
lang_items: LanguageItems,
crate: @Crate,
intr: @ident_interner,
graph_root: @mut NameBindings,
method_map: @mut HashMap<Name, HashSet<DefId>>,
structs: HashSet<DefId>,
// The number of imports that are currently unresolved.
unresolved_imports: uint,
// The module that represents the current item scope.
current_module: @mut Module,
// The current set of local scopes, for values.
// FIXME #4948: Reuse ribs to avoid allocation.
value_ribs: @mut ~[@Rib],
// The current set of local scopes, for types.
type_ribs: @mut ~[@Rib],
// The current set of local scopes, for labels.
label_ribs: @mut ~[@Rib],
// Whether the current context is an X-ray context. An X-ray context is
// allowed to access private names of any module.
xray_context: XrayFlag,
// The trait that the current context can refer to.
current_trait_refs: Option<~[DefId]>,
// The ident for the keyword "self".
self_ident: Ident,
// The ident for the non-keyword "Self".
type_self_ident: Ident,
// The idents for the primitive types.
primitive_type_table: @PrimitiveTypeTable,
// The four namespaces.
namespaces: ~[Namespace],
def_map: DefMap,
export_map2: ExportMap2,
trait_map: TraitMap,
// Whether or not to print error messages. Can be set to true
// when getting additional info for error message suggestions,
// so as to avoid printing duplicate errors
emit_errors: bool,
used_imports: HashSet<NodeId>,
}
struct BuildReducedGraphVisitor {
resolver: @mut Resolver,
}
impl Visitor<ReducedGraphParent> for BuildReducedGraphVisitor {
fn visit_item(&mut self, item:@item, context:ReducedGraphParent) {
self.resolver.build_reduced_graph_for_item(item, (context, self));
}
fn visit_foreign_item(&mut self, foreign_item:@foreign_item, context:ReducedGraphParent) {
self.resolver.build_reduced_graph_for_foreign_item(foreign_item,
(context,
self));
}
fn visit_view_item(&mut self, view_item:&view_item, context:ReducedGraphParent) {
self.resolver.build_reduced_graph_for_view_item(view_item,
(context,
self));
}
fn visit_block(&mut self, block:&Block, context:ReducedGraphParent) {
self.resolver.build_reduced_graph_for_block(block,
(context,
self));
}
}
struct UnusedImportCheckVisitor { resolver: @mut Resolver }
impl Visitor<()> for UnusedImportCheckVisitor {
fn visit_view_item(&mut self, vi:&view_item, _:()) {
self.resolver.check_for_item_unused_imports(vi);
visit::walk_view_item(self, vi, ());
}
}
impl Resolver {
/// The main name resolution procedure.
pub fn resolve(@mut self) {
self.build_reduced_graph();
self.session.abort_if_errors();
self.resolve_imports();
self.session.abort_if_errors();
self.record_exports();
self.session.abort_if_errors();
self.resolve_crate();
self.session.abort_if_errors();
self.check_for_unused_imports();
}
//
// Reduced graph building
//
// Here we build the "reduced graph": the graph of the module tree without
// any imports resolved.
//
/// Constructs the reduced graph for the entire crate.
pub fn build_reduced_graph(@mut self) {
let initial_parent =
ModuleReducedGraphParent(self.graph_root.get_module());
let mut visitor = BuildReducedGraphVisitor { resolver: self, };
visit::walk_crate(&mut visitor, self.crate, initial_parent);
}
/// Returns the current module tracked by the reduced graph parent.
pub fn get_module_from_parent(@mut self,
reduced_graph_parent: ReducedGraphParent)
-> @mut Module {
match reduced_graph_parent {
ModuleReducedGraphParent(module_) => {
return module_;
}
}
}
/**
* Adds a new child item to the module definition of the parent node and
* returns its corresponding name bindings as well as the current parent.
* Or, if we're inside a block, creates (or reuses) an anonymous module
* corresponding to the innermost block ID and returns the name bindings
* as well as the newly-created parent.
*
* If this node does not have a module definition and we are not inside
* a block, fails.
*/
pub fn add_child(@mut self,
name: Ident,
reduced_graph_parent: ReducedGraphParent,
duplicate_checking_mode: DuplicateCheckingMode,
// For printing errors
sp: Span)
-> (@mut NameBindings, ReducedGraphParent) {
// If this is the immediate descendant of a module, then we add the
// child name directly. Otherwise, we create or reuse an anonymous
// module and add the child to that.
let module_;
match reduced_graph_parent {
ModuleReducedGraphParent(parent_module) => {
module_ = parent_module;
}
}
// Add or reuse the child.
let new_parent = ModuleReducedGraphParent(module_);
match module_.children.find(&name.name) {
None => {
let child = @mut NameBindings();
module_.children.insert(name.name, child);
return (child, new_parent);
}
Some(&child) => {
// Enforce the duplicate checking mode:
//
// * If we're requesting duplicate module checking, check that
// there isn't a module in the module with the same name.
//
// * If we're requesting duplicate type checking, check that
// there isn't a type in the module with the same name.
//
// * If we're requesting duplicate value checking, check that
// there isn't a value in the module with the same name.
//
// * If we're requesting duplicate type checking and duplicate
// value checking, check that there isn't a duplicate type
// and a duplicate value with the same name.
//
// * If no duplicate checking was requested at all, do
// nothing.
let mut duplicate_type = NoError;
let ns = match duplicate_checking_mode {
ForbidDuplicateModules => {
if (child.get_module_if_available().is_some()) {
duplicate_type = ModuleError;
}
Some(TypeNS)
}
ForbidDuplicateTypes => {
match child.def_for_namespace(TypeNS) {
Some(DefMod(_)) | None => {}
Some(_) => duplicate_type = TypeError
}
Some(TypeNS)
}
ForbidDuplicateValues => {
if child.defined_in_namespace(ValueNS) {
duplicate_type = ValueError;
}
Some(ValueNS)
}
ForbidDuplicateTypesAndValues => {
let mut n = None;
match child.def_for_namespace(TypeNS) {
Some(DefMod(_)) | None => {}
Some(_) => {
n = Some(TypeNS);
duplicate_type = TypeError;
}
};
if child.defined_in_namespace(ValueNS) {
duplicate_type = ValueError;
n = Some(ValueNS);
}
n
}
OverwriteDuplicates => None
};
if (duplicate_type != NoError) {
// Return an error here by looking up the namespace that
// had the duplicate.
let ns = ns.unwrap();
self.resolve_error(sp,
fmt!("duplicate definition of %s `%s`",
namespace_error_to_str(duplicate_type),
self.session.str_of(name)));
{
let r = child.span_for_namespace(ns);
for sp in r.iter() {
self.session.span_note(*sp,
fmt!("first definition of %s `%s` here",
namespace_error_to_str(duplicate_type),
self.session.str_of(name)));
}
}
}
return (child, new_parent);
}
}
}
pub fn block_needs_anonymous_module(@mut self, block: &Block) -> bool {
// If the block has view items, we need an anonymous module.
if block.view_items.len() > 0 {
return true;
}
// Check each statement.
for statement in block.stmts.iter() {
match statement.node {
StmtDecl(declaration, _) => {
match declaration.node {
DeclItem(_) => {
return true;
}
_ => {
// Keep searching.
}
}
}
_ => {
// Keep searching.
}
}
}
// If we found neither view items nor items, we don't need to create
// an anonymous module.
return false;
}
pub fn get_parent_link(@mut self, parent: ReducedGraphParent, name: Ident)
-> ParentLink {
match parent {
ModuleReducedGraphParent(module_) => {
return ModuleParentLink(module_, name);
}
}
}
/// Constructs the reduced graph for one item.
pub fn build_reduced_graph_for_item(@mut self,
item: @item,
(parent, visitor): (ReducedGraphParent,
&mut BuildReducedGraphVisitor)) {
let ident = item.ident;
let sp = item.span;
let privacy = visibility_to_privacy(item.vis);
match item.node {
item_mod(ref module_) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateModules, sp);
let parent_link = self.get_parent_link(new_parent, ident);
let def_id = DefId { crate: 0, node: item.id };
name_bindings.define_module(privacy,
parent_link,
Some(def_id),
NormalModuleKind,
false,
sp);
let new_parent =
ModuleReducedGraphParent(name_bindings.get_module());
visit::walk_mod(visitor, module_, new_parent);
}
item_foreign_mod(ref fm) => {
let new_parent = match fm.sort {
named => {
let (name_bindings, new_parent) =
self.add_child(ident, parent,
ForbidDuplicateModules, sp);
let parent_link = self.get_parent_link(new_parent,
ident);
let def_id = DefId { crate: 0, node: item.id };
name_bindings.define_module(privacy,
parent_link,
Some(def_id),
ExternModuleKind,
false,
sp);
ModuleReducedGraphParent(name_bindings.get_module())
}
// For anon foreign mods, the contents just go in the
// current scope
anonymous => parent
};
visit::walk_item(visitor, item, new_parent);
}
// These items live in the value namespace.
item_static(_, m, _) => {
let (name_bindings, _) =
self.add_child(ident, parent, ForbidDuplicateValues, sp);
let mutbl = m == ast::MutMutable;
name_bindings.define_value
(privacy, DefStatic(local_def(item.id), mutbl), sp);
}
item_fn(_, purity, _, _, _) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateValues, sp);
let def = DefFn(local_def(item.id), purity);
name_bindings.define_value(privacy, def, sp);
visit::walk_item(visitor, item, new_parent);
}
// These items live in the type namespace.
item_ty(*) => {
let (name_bindings, _) =
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
name_bindings.define_type
(privacy, DefTy(local_def(item.id)), sp);
}
item_enum(ref enum_definition, _) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
name_bindings.define_type
(privacy, DefTy(local_def(item.id)), sp);
for variant in (*enum_definition).variants.iter() {
self.build_reduced_graph_for_variant(
variant,
local_def(item.id),
// inherited => privacy of the enum item
variant_visibility_to_privacy(variant.node.vis,
privacy == Public),
new_parent, visitor);
}
}
// These items live in both the type and value namespaces.
item_struct(struct_def, _) => {
// Adding to both Type and Value namespaces or just Type?
let (forbid, ctor_id) = match struct_def.ctor_id {
Some(ctor_id) => (ForbidDuplicateTypesAndValues, Some(ctor_id)),
None => (ForbidDuplicateTypes, None)
};
let (name_bindings, new_parent) = self.add_child(ident, parent, forbid, sp);
// Define a name in the type namespace.
name_bindings.define_type(privacy, DefTy(local_def(item.id)), sp);
// If this is a newtype or unit-like struct, define a name
// in the value namespace as well
do ctor_id.while_some |cid| {
name_bindings.define_value(privacy, DefStruct(local_def(cid)), sp);
None
}
// Record the def ID of this struct.
self.structs.insert(local_def(item.id));
visit::walk_item(visitor, item, new_parent);
}
item_impl(_, None, ref ty, ref methods) => {
// If this implements an anonymous trait, then add all the
// methods within to a new module, if the type was defined
// within this module.
//
// FIXME (#3785): This is quite unsatisfactory. Perhaps we
// should modify anonymous traits to only be implementable in
// the same module that declared the type.
// Create the module and add all methods.
match ty {
&Ty {
node: ty_path(ref path, _, _),
_
} if path.segments.len() == 1 => {
let name = path_to_ident(path);
let new_parent = match parent.children.find(&name.name) {
// It already exists
Some(&child) if child.get_module_if_available()
.is_some() &&
child.get_module().kind ==
ImplModuleKind => {
ModuleReducedGraphParent(child.get_module())
}
// Create the module
_ => {
let (name_bindings, new_parent) =
self.add_child(name,
parent,
ForbidDuplicateModules,
sp);
let parent_link =
self.get_parent_link(new_parent, ident);
let def_id = local_def(item.id);
name_bindings.define_module(Public,
parent_link,
Some(def_id),
ImplModuleKind,
false,
sp);
ModuleReducedGraphParent(
name_bindings.get_module())
}
};
// For each method...
for method in methods.iter() {
// Add the method to the module.
let ident = method.ident;
let (method_name_bindings, _) =
self.add_child(ident,
new_parent,
ForbidDuplicateValues,
method.span);
let def = match method.explicit_self.node {
sty_static => {
// Static methods become
// `def_static_method`s.
DefStaticMethod(local_def(method.id),
FromImpl(local_def(
item.id)),
method.purity)
}
_ => {
// Non-static methods become
// `def_method`s.
DefMethod(local_def(method.id), None)
}
};
method_name_bindings.define_value(Public,
def,
method.span);
}
}
_ => {}
}
visit::walk_item(visitor, item, parent);
}
item_impl(_, Some(_), _, _) => {
visit::walk_item(visitor, item, parent);
}
item_trait(_, _, ref methods) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
// Add all the methods within to a new module.
let parent_link = self.get_parent_link(parent, ident);
name_bindings.define_module(privacy,
parent_link,
Some(local_def(item.id)),
TraitModuleKind,
false,
sp);
let module_parent = ModuleReducedGraphParent(name_bindings.
get_module());
// Add the names of all the methods to the trait info.
let mut method_names = HashMap::new();
for method in methods.iter() {
let ty_m = trait_method_to_ty_method(method);
let ident = ty_m.ident;
// Add it as a name in the trait module.
let def = match ty_m.explicit_self.node {
sty_static => {
// Static methods become `def_static_method`s.
DefStaticMethod(local_def(ty_m.id),
FromTrait(local_def(item.id)),
ty_m.purity)
}
_ => {
// Non-static methods become `def_method`s.
DefMethod(local_def(ty_m.id),
Some(local_def(item.id)))
}
};
let (method_name_bindings, _) =
self.add_child(ident,
module_parent,
ForbidDuplicateValues,
ty_m.span);
method_name_bindings.define_value(Public, def, ty_m.span);
// Add it to the trait info if not static.
match ty_m.explicit_self.node {
sty_static => {}
_ => {
method_names.insert(ident.name, ());
}
}
}
let def_id = local_def(item.id);
for (name, _) in method_names.iter() {
if !self.method_map.contains_key(name) {
self.method_map.insert(*name, HashSet::new());
}
match self.method_map.find_mut(name) {
Some(s) => { s.insert(def_id); },
_ => fail!("Can't happen"),
}
}
name_bindings.define_type(privacy, DefTrait(def_id), sp);
visit::walk_item(visitor, item, new_parent);
}
item_mac(*) => {
fail!("item macros unimplemented")
}
}
}
// Constructs the reduced graph for one variant. Variants exist in the
// type and/or value namespaces.
pub fn build_reduced_graph_for_variant(@mut self,
variant: &variant,
item_id: DefId,
parent_privacy: Privacy,
parent: ReducedGraphParent,
_: &mut BuildReducedGraphVisitor) {
let ident = variant.node.name;
let privacy =
match variant.node.vis {
public => Public,
private => Private,
inherited => parent_privacy
};
match variant.node.kind {
tuple_variant_kind(_) => {
let (child, _) = self.add_child(ident, parent, ForbidDuplicateValues,
variant.span);
child.define_value(privacy,
DefVariant(item_id,
local_def(variant.node.id), false),
variant.span);
}
struct_variant_kind(_) => {
let (child, _) = self.add_child(ident, parent, ForbidDuplicateTypesAndValues,
variant.span);
child.define_type(privacy,
DefVariant(item_id,
local_def(variant.node.id), true),
variant.span);
self.structs.insert(local_def(variant.node.id));
}
}
}
/// Constructs the reduced graph for one 'view item'. View items consist
/// of imports and use directives.
pub fn build_reduced_graph_for_view_item(@mut self,
view_item: &view_item,
(parent, _):
(ReducedGraphParent,
&mut BuildReducedGraphVisitor)) {
let privacy = visibility_to_privacy(view_item.vis);
match view_item.node {
view_item_use(ref view_paths) => {
for view_path in view_paths.iter() {
// Extract and intern the module part of the path. For
// globs and lists, the path is found directly in the AST;
// for simple paths we have to munge the path a little.
let mut module_path = ~[];
match view_path.node {
view_path_simple(_, ref full_path, _) => {
let path_len = full_path.segments.len();
assert!(path_len != 0);
for (i, segment) in full_path.segments
.iter()
.enumerate() {
if i != path_len - 1 {
module_path.push(segment.identifier)
}
}
}
view_path_glob(ref module_ident_path, _) |
view_path_list(ref module_ident_path, _, _) => {
for segment in module_ident_path.segments.iter() {
module_path.push(segment.identifier)
}
}
}
// Build up the import directives.
let module_ = self.get_module_from_parent(parent);
match view_path.node {
view_path_simple(binding, ref full_path, id) => {
let source_ident =
full_path.segments.last().identifier;
let subclass = @SingleImport(binding,
source_ident);
self.build_import_directive(privacy,
module_,
module_path,
subclass,
view_path.span,
id);
}
view_path_list(_, ref source_idents, _) => {
for source_ident in source_idents.iter() {
let name = source_ident.node.name;
let subclass = @SingleImport(name, name);
self.build_import_directive(
privacy,
module_,
module_path.clone(),
subclass,
source_ident.span,
source_ident.node.id);
}
}
view_path_glob(_, id) => {
self.build_import_directive(privacy,
module_,
module_path,
@GlobImport,
view_path.span,
id);
}
}
}
}
view_item_extern_mod(name, _, _, node_id) => {
// n.b. we don't need to look at the path option here, because cstore already did
match find_extern_mod_stmt_cnum(self.session.cstore,
node_id) {
Some(crate_id) => {
let def_id = DefId { crate: crate_id, node: 0 };
let parent_link = ModuleParentLink
(self.get_module_from_parent(parent), name);
let external_module = @mut Module::new(parent_link,
Some(def_id),
NormalModuleKind,
false);
parent.external_module_children.insert(
name.name,
external_module);
self.build_reduced_graph_for_external_crate(
external_module);
}
None => {} // Ignore.
}
}
}
}
/// Constructs the reduced graph for one foreign item.
pub fn build_reduced_graph_for_foreign_item(@mut self,
foreign_item: @foreign_item,
(parent, visitor):
(ReducedGraphParent,
&mut BuildReducedGraphVisitor)) {
let name = foreign_item.ident;
let (name_bindings, new_parent) =
self.add_child(name, parent, ForbidDuplicateValues,
foreign_item.span);
match foreign_item.node {
foreign_item_fn(_, ref generics) => {
let def = DefFn(local_def(foreign_item.id), unsafe_fn);
name_bindings.define_value(Public, def, foreign_item.span);
do self.with_type_parameter_rib(
HasTypeParameters(
generics, foreign_item.id, 0, NormalRibKind))
{
visit::walk_foreign_item(visitor, foreign_item, new_parent);
}
}
foreign_item_static(_, m) => {
let def = DefStatic(local_def(foreign_item.id), m);
name_bindings.define_value(Public, def, foreign_item.span);
visit::walk_foreign_item(visitor, foreign_item, new_parent);
}
}
}
pub fn build_reduced_graph_for_block(@mut self,
block: &Block,
(parent, visitor):
(ReducedGraphParent,
&mut BuildReducedGraphVisitor)) {
let new_parent;
if self.block_needs_anonymous_module(block) {
let block_id = block.id;
debug!("(building reduced graph for block) creating a new \
anonymous module for block %d",
block_id);
let parent_module = self.get_module_from_parent(parent);
let new_module = @mut Module::new(
BlockParentLink(parent_module, block_id),
None,
AnonymousModuleKind,
false);
parent_module.anonymous_children.insert(block_id, new_module);
new_parent = ModuleReducedGraphParent(new_module);
} else {
new_parent = parent;
}
visit::walk_block(visitor, block, new_parent);
}
fn handle_external_def(@mut self,
def: Def,
visibility: ast::visibility,
child_name_bindings: @mut NameBindings,
final_ident: &str,
ident: Ident,
new_parent: ReducedGraphParent) {
let privacy = visibility_to_privacy(visibility);
match def {
DefMod(def_id) | DefForeignMod(def_id) | DefStruct(def_id) |
DefTy(def_id) => {
match child_name_bindings.type_def {
Some(TypeNsDef { module_def: Some(module_def), _ }) => {
debug!("(building reduced graph for external crate) \
already created module");
module_def.def_id = Some(def_id);
}
Some(_) | None => {
debug!("(building reduced graph for \
external crate) building module \
%s", final_ident);
let parent_link = self.get_parent_link(new_parent, ident);
child_name_bindings.define_module(privacy,
parent_link,
Some(def_id),
NormalModuleKind,
true,
dummy_sp());
}
}
}
_ => {}
}
match def {
DefMod(_) | DefForeignMod(_) => {}
DefVariant(_, variant_id, is_struct) => {
debug!("(building reduced graph for external crate) building \
variant %s",
final_ident);
// We assume the parent is visible, or else we wouldn't have seen
// it.
let privacy = variant_visibility_to_privacy(visibility, true);
if is_struct {
child_name_bindings.define_type(privacy, def, dummy_sp());
self.structs.insert(variant_id);
}
else {
child_name_bindings.define_value(privacy, def, dummy_sp());
}
}
DefFn(*) | DefStaticMethod(*) | DefStatic(*) => {
debug!("(building reduced graph for external \
crate) building value (fn/static) %s", final_ident);
child_name_bindings.define_value(privacy, def, dummy_sp());
}
DefTrait(def_id) => {
debug!("(building reduced graph for external \
crate) building type %s", final_ident);
// If this is a trait, add all the method names
// to the trait info.
let method_def_ids =
get_trait_method_def_ids(self.session.cstore, def_id);
let mut interned_method_names = HashSet::new();
for &method_def_id in method_def_ids.iter() {
let (method_name, explicit_self) =
get_method_name_and_explicit_self(self.session.cstore,
method_def_id);
debug!("(building reduced graph for \
external crate) ... adding \
trait method '%s'",
self.session.str_of(method_name));
// Add it to the trait info if not static.
if explicit_self != sty_static {
interned_method_names.insert(method_name.name);
}
}
for name in interned_method_names.iter() {
if !self.method_map.contains_key(name) {
self.method_map.insert(*name, HashSet::new());
}
match self.method_map.find_mut(name) {
Some(s) => { s.insert(def_id); },
_ => fail!("Can't happen"),
}
}
child_name_bindings.define_type(privacy, def, dummy_sp());
// Define a module if necessary.
let parent_link = self.get_parent_link(new_parent, ident);
child_name_bindings.set_module_kind(privacy,
parent_link,
Some(def_id),
TraitModuleKind,
true,
dummy_sp())
}
DefTy(_) => {
debug!("(building reduced graph for external \
crate) building type %s", final_ident);
child_name_bindings.define_type(privacy, def, dummy_sp());
}
DefStruct(def_id) => {
debug!("(building reduced graph for external \
crate) building type and value for %s",
final_ident);
child_name_bindings.define_type(privacy, def, dummy_sp());
if get_struct_fields(self.session.cstore, def_id).len() == 0 {
child_name_bindings.define_value(privacy, def, dummy_sp());
}
self.structs.insert(def_id);
}
DefMethod(*) => {
// Ignored; handled elsewhere.
}
DefSelf(*) | DefArg(*) | DefLocal(*) |
DefPrimTy(*) | DefTyParam(*) | DefBinding(*) |
DefUse(*) | DefUpvar(*) | DefRegion(*) |
DefTyParamBinder(*) | DefLabel(*) | DefSelfTy(*) => {
fail!("didn't expect `%?`", def);
}
}
}
/// Builds the reduced graph for a single item in an external crate.
fn build_reduced_graph_for_external_crate_def(@mut self,
root: @mut Module,
def_like: DefLike,
ident: Ident) {
match def_like {
DlDef(def) => {
// Add the new child item, if necessary.
match def {
DefForeignMod(def_id) => {
// Foreign modules have no names. Recur and populate
// eagerly.
do csearch::each_child_of_item(self.session.cstore,
def_id)
|def_like, child_ident| {
self.build_reduced_graph_for_external_crate_def(
root,
def_like,
child_ident)
}
}
_ => {
let (child_name_bindings, new_parent) =
self.add_child(ident,
ModuleReducedGraphParent(root),
OverwriteDuplicates,
dummy_sp());
self.handle_external_def(def,
public,
child_name_bindings,
self.session.str_of(ident),
ident,
new_parent);
}
}
}
DlImpl(def) => {
// We only process static methods of impls here.
match get_type_name_if_impl(self.session.cstore, def) {
None => {}
Some(final_ident) => {
let static_methods_opt =
get_static_methods_if_impl(self.session.cstore,
def);
match static_methods_opt {
Some(ref static_methods) if
static_methods.len() >= 1 => {
debug!("(building reduced graph for \
external crate) processing \
static methods for type name %s",
self.session.str_of(
final_ident));
let (child_name_bindings, new_parent) =
self.add_child(
final_ident,
ModuleReducedGraphParent(root),
OverwriteDuplicates,
dummy_sp());
// Process the static methods. First,
// create the module.
let type_module;
match child_name_bindings.type_def {
Some(TypeNsDef {
module_def: Some(module_def),
_
}) => {
// We already have a module. This
// is OK.
type_module = module_def;
// Mark it as an impl module if
// necessary.
type_module.kind = ImplModuleKind;
}
Some(_) | None => {
let parent_link =
self.get_parent_link(new_parent,
final_ident);
child_name_bindings.define_module(
Public,
parent_link,
Some(def),
ImplModuleKind,
true,
dummy_sp());
type_module =
child_name_bindings.
get_module();
}
}
// Add each static method to the module.
let new_parent =
ModuleReducedGraphParent(type_module);
for static_method_info in
static_methods.iter() {
let ident = static_method_info.ident;
debug!("(building reduced graph for \
external crate) creating \
static method '%s'",
self.session.str_of(ident));
let (method_name_bindings, _) =
self.add_child(ident,
new_parent,
OverwriteDuplicates,
dummy_sp());
let def = DefFn(
static_method_info.def_id,
static_method_info.purity);
method_name_bindings.define_value(
Public,
def,
dummy_sp());
}
}
// Otherwise, do nothing.
Some(_) | None => {}
}
}
}
}
DlField => {
debug!("(building reduced graph for external crate) \
ignoring field");
}
}
}
/// Builds the reduced graph rooted at the given external module.
fn populate_external_module(@mut self, module: @mut Module) {
debug!("(populating external module) attempting to populate %s",
self.module_to_str(module));
let def_id = match module.def_id {
None => {
debug!("(populating external module) ... no def ID!");
return
}
Some(def_id) => def_id,
};
do csearch::each_child_of_item(self.session.cstore, def_id)
|def_like, child_ident| {
debug!("(populating external module) ... found ident: %s",
token::ident_to_str(&child_ident));
self.build_reduced_graph_for_external_crate_def(module,
def_like,
child_ident)
}
module.populated = true
}
/// Ensures that the reduced graph rooted at the given external module
/// is built, building it if it is not.
fn populate_module_if_necessary(@mut self, module: @mut Module) {
if !module.populated {
self.populate_external_module(module)
}
assert!(module.populated)
}
/// Builds the reduced graph rooted at the 'use' directive for an external
/// crate.
pub fn build_reduced_graph_for_external_crate(@mut self,
root: @mut Module) {
do csearch::each_top_level_item_of_crate(self.session.cstore,
root.def_id.unwrap().crate)
|def_like, ident| {
self.build_reduced_graph_for_external_crate_def(root,
def_like,
ident)
}
}
/// Creates and adds an import directive to the given module.
pub fn build_import_directive(@mut self,
privacy: Privacy,
module_: @mut Module,
module_path: ~[Ident],
subclass: @ImportDirectiveSubclass,
span: Span,
id: NodeId) {
let directive = @ImportDirective::new(privacy, module_path,
subclass, span, id);
module_.imports.push(directive);
// Bump the reference count on the name. Or, if this is a glob, set
// the appropriate flag.
match *subclass {
SingleImport(target, _) => {
debug!("(building import directive) building import \
directive: privacy %? %s::%s",
privacy,
self.idents_to_str(directive.module_path),
self.session.str_of(target));
match module_.import_resolutions.find(&target.name) {
Some(&resolution) => {
debug!("(building import directive) bumping \
reference");
resolution.outstanding_references += 1;
// the source of this name is different now
resolution.privacy = privacy;
resolution.type_id = id;
resolution.value_id = id;
}
None => {
debug!("(building import directive) creating new");
let resolution = @mut ImportResolution::new(privacy, id);
resolution.outstanding_references = 1;
module_.import_resolutions.insert(target.name, resolution);
}
}
}
GlobImport => {
// Set the glob flag. This tells us that we don't know the
// module's exports ahead of time.
module_.glob_count += 1;
}
}
self.unresolved_imports += 1;
}
// Import resolution
//
// This is a fixed-point algorithm. We resolve imports until our efforts
// are stymied by an unresolved import; then we bail out of the current
// module and continue. We terminate successfully once no more imports
// remain or unsuccessfully when no forward progress in resolving imports
// is made.
/// Resolves all imports for the crate. This method performs the fixed-
/// point iteration.
pub fn resolve_imports(@mut self) {
let mut i = 0;
let mut prev_unresolved_imports = 0;
loop {
debug!("(resolving imports) iteration %u, %u imports left",
i, self.unresolved_imports);
let module_root = self.graph_root.get_module();
self.resolve_imports_for_module_subtree(module_root);
if self.unresolved_imports == 0 {
debug!("(resolving imports) success");
break;
}
if self.unresolved_imports == prev_unresolved_imports {
self.report_unresolved_imports(module_root);
break;
}
i += 1;
prev_unresolved_imports = self.unresolved_imports;
}
}
/// Attempts to resolve imports for the given module and all of its
/// submodules.
pub fn resolve_imports_for_module_subtree(@mut self,
module_: @mut Module) {
debug!("(resolving imports for module subtree) resolving %s",
self.module_to_str(module_));
self.resolve_imports_for_module(module_);
self.populate_module_if_necessary(module_);
for (_, &child_node) in module_.children.iter() {
match child_node.get_module_if_available() {
None => {
// Nothing to do.
}
Some(child_module) => {
self.resolve_imports_for_module_subtree(child_module);
}
}
}
for (_, &child_module) in module_.anonymous_children.iter() {
self.resolve_imports_for_module_subtree(child_module);
}
}
/// Attempts to resolve imports for the given module only.
pub fn resolve_imports_for_module(@mut self, module: @mut Module) {
if module.all_imports_resolved() {
debug!("(resolving imports for module) all imports resolved for \
%s",
self.module_to_str(module));
return;
}
let imports = &mut *module.imports;
let import_count = imports.len();
while module.resolved_import_count < import_count {
let import_index = module.resolved_import_count;
let import_directive = imports[import_index];
match self.resolve_import_for_module(module, import_directive) {
Failed => {
// We presumably emitted an error. Continue.
let msg = fmt!("failed to resolve import `%s`",
self.import_path_to_str(
import_directive.module_path,
*import_directive.subclass));
self.resolve_error(import_directive.span, msg);
}
Indeterminate => {
// Bail out. We'll come around next time.
break;
}
Success(()) => {
// Good. Continue.
}
}
module.resolved_import_count += 1;
}
}
pub fn idents_to_str(@mut self, idents: &[Ident]) -> ~str {
let mut first = true;
let mut result = ~"";
for ident in idents.iter() {
if first {
first = false
} else {
result.push_str("::")
}
result.push_str(self.session.str_of(*ident));
};
return result;
}
fn path_idents_to_str(@mut self, path: &Path) -> ~str {
let identifiers: ~[ast::Ident] = path.segments
.iter()
.map(|seg| seg.identifier)
.collect();
self.idents_to_str(identifiers)
}
pub fn import_directive_subclass_to_str(@mut self,
subclass: ImportDirectiveSubclass)
-> @str {
match subclass {
SingleImport(_target, source) => self.session.str_of(source),
GlobImport => @"*"
}
}
pub fn import_path_to_str(@mut self,
idents: &[Ident],
subclass: ImportDirectiveSubclass)
-> @str {
if idents.is_empty() {
self.import_directive_subclass_to_str(subclass)
} else {
(fmt!("%s::%s",
self.idents_to_str(idents),
self.import_directive_subclass_to_str(subclass))).to_managed()
}
}
/// Attempts to resolve the given import. The return value indicates
/// failure if we're certain the name does not exist, indeterminate if we
/// don't know whether the name exists at the moment due to other
/// currently-unresolved imports, or success if we know the name exists.
/// If successful, the resolved bindings are written into the module.
pub fn resolve_import_for_module(@mut self,
module_: @mut Module,
import_directive: @ImportDirective)
-> ResolveResult<()> {
let mut resolution_result = Failed;
let module_path = &import_directive.module_path;
debug!("(resolving import for module) resolving import `%s::...` in \
`%s`",
self.idents_to_str(*module_path),
self.module_to_str(module_));
// First, resolve the module path for the directive, if necessary.
let containing_module = if module_path.len() == 0 {
// Use the crate root.
Some(self.graph_root.get_module())
} else {
match self.resolve_module_path(module_,
*module_path,
DontUseLexicalScope,
import_directive.span,
ImportSearch) {
Failed => None,
Indeterminate => {
resolution_result = Indeterminate;
None
}
Success(containing_module) => Some(containing_module),
}
};
match containing_module {
None => {}
Some(containing_module) => {
// We found the module that the target is contained
// within. Attempt to resolve the import within it.
match *import_directive.subclass {
SingleImport(target, source) => {
resolution_result =
self.resolve_single_import(module_,
containing_module,
target,
source,
import_directive);
}
GlobImport => {
let privacy = import_directive.privacy;
resolution_result =
self.resolve_glob_import(privacy,
module_,
containing_module,
import_directive.id);
}
}
}
}
// Decrement the count of unresolved imports.
match resolution_result {
Success(()) => {
assert!(self.unresolved_imports >= 1);
self.unresolved_imports -= 1;
}
_ => {
// Nothing to do here; just return the error.
}
}
// Decrement the count of unresolved globs if necessary. But only if
// the resolution result is indeterminate -- otherwise we'll stop
// processing imports here. (See the loop in
// resolve_imports_for_module.)
if !resolution_result.indeterminate() {
match *import_directive.subclass {
GlobImport => {
assert!(module_.glob_count >= 1);
module_.glob_count -= 1;
}
SingleImport(*) => {
// Ignore.
}
}
}
return resolution_result;
}
pub fn create_name_bindings_from_module(module: @mut Module)
-> NameBindings {
NameBindings {
type_def: Some(TypeNsDef {
privacy: Public,
module_def: Some(module),
type_def: None,
type_span: None
}),
value_def: None,
}
}
pub fn resolve_single_import(@mut self,
module_: @mut Module,
containing_module: @mut Module,
target: Ident,
source: Ident,
directive: &ImportDirective)
-> ResolveResult<()> {
debug!("(resolving single import) resolving `%s` = `%s::%s` from \
`%s`",
self.session.str_of(target),
self.module_to_str(containing_module),
self.session.str_of(source),
self.module_to_str(module_));
// We need to resolve both namespaces for this to succeed.
//
let mut value_result = UnknownResult;
let mut type_result = UnknownResult;
// Search for direct children of the containing module.
self.populate_module_if_necessary(containing_module);
match containing_module.children.find(&source.name) {
None => {
// Continue.
}
Some(child_name_bindings) => {
if child_name_bindings.defined_in_namespace(ValueNS) {
value_result = BoundResult(containing_module,
*child_name_bindings);
}
if child_name_bindings.defined_in_namespace(TypeNS) {
type_result = BoundResult(containing_module,
*child_name_bindings);
}
}
}
// Unless we managed to find a result in both namespaces (unlikely),
// search imports as well.
match (value_result, type_result) {
(BoundResult(*), BoundResult(*)) => {} // Continue.
_ => {
// If there is an unresolved glob at this point in the
// containing module, bail out. We don't know enough to be
// able to resolve this import.
if containing_module.glob_count > 0 {
debug!("(resolving single import) unresolved glob; \
bailing out");
return Indeterminate;
}
// Now search the exported imports within the containing
// module.
match containing_module.import_resolutions.find(&source.name) {
None => {
// The containing module definitely doesn't have an
// exported import with the name in question. We can
// therefore accurately report that the names are
// unbound.
if value_result.is_unknown() {
value_result = UnboundResult;
}
if type_result.is_unknown() {
type_result = UnboundResult;
}
}
Some(import_resolution)
if import_resolution.outstanding_references
== 0 => {
fn get_binding(this: @mut Resolver,
import_resolution:
@mut ImportResolution,
namespace: Namespace)
-> NamespaceResult {
// Import resolutions must be declared with "pub"
// in order to be exported.
if import_resolution.privacy == Private {
return UnboundResult;
}
match (*import_resolution).
target_for_namespace(namespace) {
None => {
return UnboundResult;
}
Some(target) => {
let id = import_resolution.id(namespace);
this.used_imports.insert(id);
return BoundResult(target.target_module,
target.bindings);
}
}
}
// The name is an import which has been fully
// resolved. We can, therefore, just follow it.
if value_result.is_unknown() {
value_result = get_binding(self, *import_resolution,
ValueNS);
}
if type_result.is_unknown() {
type_result = get_binding(self, *import_resolution,
TypeNS);
}
}
Some(_) => {
// The import is unresolved. Bail out.
debug!("(resolving single import) unresolved import; \
bailing out");
return Indeterminate;
}
}
}
}
// If we didn't find a result in the type namespace, search the
// external modules.
match type_result {
BoundResult(*) => {}
_ => {
match containing_module.external_module_children
.find(&source.name) {
None => {} // Continue.
Some(module) => {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(
*module);
type_result = BoundResult(containing_module,
name_bindings);
}
}
}
}
// We've successfully resolved the import. Write the results in.
assert!(module_.import_resolutions.contains_key(&target.name));
let import_resolution = module_.import_resolutions.get(&target.name);
match value_result {
BoundResult(target_module, name_bindings) => {
debug!("(resolving single import) found value target");
import_resolution.value_target =
Some(Target::new(target_module, name_bindings));
import_resolution.value_id = directive.id;
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
fail!("value result should be known at this point");
}
}
match type_result {
BoundResult(target_module, name_bindings) => {
debug!("(resolving single import) found type target: %?",
name_bindings.type_def.unwrap().type_def);
import_resolution.type_target =
Some(Target::new(target_module, name_bindings));
import_resolution.type_id = directive.id;
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
fail!("type result should be known at this point");
}
}
let i = import_resolution;
let mut resolve_fail = false;
let mut priv_fail = false;
match (i.value_target, i.type_target) {
// If this name wasn't found in either namespace, it's definitely
// unresolved.
(None, None) => { resolve_fail = true; }
// If it's private, it's also unresolved.
(Some(t), None) | (None, Some(t)) => {
let bindings = &mut *t.bindings;
match bindings.type_def {
Some(ref type_def) => {
if type_def.privacy == Private {
priv_fail = true;
}
}
_ => ()
}
match bindings.value_def {
Some(ref value_def) => {
if value_def.privacy == Private {
priv_fail = true;
}
}
_ => ()
}
}
// It's also an error if there's both a type and a value with this
// name, but both are private
(Some(val), Some(ty)) => {
match (val.bindings.value_def, ty.bindings.value_def) {
(Some(ref value_def), Some(ref type_def)) =>
if value_def.privacy == Private
&& type_def.privacy == Private {
priv_fail = true;
},
_ => ()
}
}
}
let span = directive.span;
if resolve_fail {
self.resolve_error(span, fmt!("unresolved import: there is no `%s` in `%s`",
self.session.str_of(source),
self.module_to_str(containing_module)));
return Failed;
} else if priv_fail {
self.resolve_error(span, fmt!("unresolved import: found `%s` in `%s` but it is \
private", self.session.str_of(source),
self.module_to_str(containing_module)));
return Failed;
}
assert!(import_resolution.outstanding_references >= 1);
import_resolution.outstanding_references -= 1;
debug!("(resolving single import) successfully resolved import");
return Success(());
}
// Resolves a glob import. Note that this function cannot fail; it either
// succeeds or bails out (as importing * from an empty module or a module
// that exports nothing is valid).
pub fn resolve_glob_import(@mut self,
privacy: Privacy,
module_: @mut Module,
containing_module: @mut Module,
id: NodeId)
-> ResolveResult<()> {
// This function works in a highly imperative manner; it eagerly adds
// everything it can to the list of import resolutions of the module
// node.
debug!("(resolving glob import) resolving %? glob import", privacy);
// We must bail out if the node has unresolved imports of any kind
// (including globs).
if !(*containing_module).all_imports_resolved() {
debug!("(resolving glob import) target module has unresolved \
imports; bailing out");
return Indeterminate;
}
assert_eq!(containing_module.glob_count, 0);
// Add all resolved imports from the containing module.
for (ident, target_import_resolution) in containing_module.import_resolutions.iter() {
debug!("(resolving glob import) writing module resolution \
%? into `%s`",
target_import_resolution.type_target.is_none(),
self.module_to_str(module_));
// Here we merge two import resolutions.
match module_.import_resolutions.find(ident) {
None if target_import_resolution.privacy == Public => {
// Simple: just copy the old import resolution.
let new_import_resolution =
@mut ImportResolution::new(privacy, id);
new_import_resolution.value_target =
target_import_resolution.value_target;
new_import_resolution.type_target =
target_import_resolution.type_target;
module_.import_resolutions.insert
(*ident, new_import_resolution);
}
None => { /* continue ... */ }
Some(&dest_import_resolution) => {
// Merge the two import resolutions at a finer-grained
// level.
match target_import_resolution.value_target {
None => {
// Continue.
}
Some(value_target) => {
dest_import_resolution.value_target =
Some(value_target);
}
}
match target_import_resolution.type_target {
None => {
// Continue.
}
Some(type_target) => {
dest_import_resolution.type_target =
Some(type_target);
}
}
}
}
}
let merge_import_resolution = |name,
name_bindings: @mut NameBindings| {
let dest_import_resolution;
match module_.import_resolutions.find(&name) {
None => {
// Create a new import resolution from this child.
dest_import_resolution = @mut ImportResolution::new(privacy, id);
module_.import_resolutions.insert
(name, dest_import_resolution);
}
Some(&existing_import_resolution) => {
dest_import_resolution = existing_import_resolution;
}
}
debug!("(resolving glob import) writing resolution `%s` in `%s` \
to `%s`, privacy=%?",
interner_get(name),
self.module_to_str(containing_module),
self.module_to_str(module_),
dest_import_resolution.privacy);
// Merge the child item into the import resolution.
if name_bindings.defined_in_public_namespace(ValueNS) {
debug!("(resolving glob import) ... for value target");
dest_import_resolution.value_target =
Some(Target::new(containing_module, name_bindings));
dest_import_resolution.value_id = id;
}
if name_bindings.defined_in_public_namespace(TypeNS) {
debug!("(resolving glob import) ... for type target");
dest_import_resolution.type_target =
Some(Target::new(containing_module, name_bindings));
dest_import_resolution.type_id = id;
}
};
// Add all children from the containing module.
self.populate_module_if_necessary(containing_module);
for (&name, name_bindings) in containing_module.children.iter() {
merge_import_resolution(name, *name_bindings);
}
// Add external module children from the containing module.
for (&name, module) in containing_module.external_module_children.iter() {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(*module);
merge_import_resolution(name, name_bindings);
}
debug!("(resolving glob import) successfully resolved import");
return Success(());
}
/// Resolves the given module path from the given root `module_`.
pub fn resolve_module_path_from_root(@mut self,
module_: @mut Module,
module_path: &[Ident],
index: uint,
span: Span,
mut name_search_type: NameSearchType)
-> ResolveResult<@mut Module> {
let mut search_module = module_;
let mut index = index;
let module_path_len = module_path.len();
// Resolve the module part of the path. This does not involve looking
// upward though scope chains; we simply resolve names directly in
// modules as we go.
while index < module_path_len {
let name = module_path[index];
match self.resolve_name_in_module(search_module,
name,
TypeNS,
name_search_type) {
Failed => {
let segment_name = self.session.str_of(name);
let module_name = self.module_to_str(search_module);
if "???" == module_name {
let span = Span {
lo: span.lo,
hi: span.lo + BytePos(segment_name.len()),
expn_info: span.expn_info,
};
self.resolve_error(span,
fmt!("unresolved import. maybe \
a missing `extern mod \
%s`?",
segment_name));
return Failed;
}
self.resolve_error(span, fmt!("unresolved import: could not find `%s` in \
`%s`.", segment_name, module_name));
return Failed;
}
Indeterminate => {
debug!("(resolving module path for import) module \
resolution is indeterminate: %s",
self.session.str_of(name));
return Indeterminate;
}
Success(target) => {
// Check to see whether there are type bindings, and, if
// so, whether there is a module within.
match target.bindings.type_def {
Some(type_def) => {
match type_def.module_def {
None => {
// Not a module.
self.resolve_error(span,
fmt!("not a \
module `%s`",
self.session.
str_of(
name)));
return Failed;
}
Some(module_def) => {
// If we're doing the search for an
// import, do not allow traits and impls
// to be selected.
match (name_search_type,
module_def.kind) {
(ImportSearch, TraitModuleKind) |
(ImportSearch, ImplModuleKind) => {
self.resolve_error(
span,
"cannot import from a trait \
or type implementation");
return Failed;
}
(_, _) => search_module = module_def,
}
}
}
}
None => {
// There are no type bindings at all.
self.resolve_error(span,
fmt!("not a module `%s`",
self.session.str_of(
name)));
return Failed;
}
}
}
}
index += 1;
// After the first element of the path, allow searching only
// through public identifiers.
//
// XXX: Rip this out and move it to the privacy checker.
if name_search_type == PathPublicOrPrivateSearch {
name_search_type = PathPublicOnlySearch
}
}
return Success(search_module);
}
/// Attempts to resolve the module part of an import directive or path
/// rooted at the given module.
pub fn resolve_module_path(@mut self,
module_: @mut Module,
module_path: &[Ident],
use_lexical_scope: UseLexicalScopeFlag,
span: Span,
name_search_type: NameSearchType)
-> ResolveResult<@mut Module> {
let module_path_len = module_path.len();
assert!(module_path_len > 0);
debug!("(resolving module path for import) processing `%s` rooted at \
`%s`",
self.idents_to_str(module_path),
self.module_to_str(module_));
// Resolve the module prefix, if any.
let module_prefix_result = self.resolve_module_prefix(module_,
module_path);
let search_module;
let start_index;
match module_prefix_result {
Failed => {
let mpath = self.idents_to_str(module_path);
match mpath.rfind(':') {
Some(idx) => {
self.resolve_error(span, fmt!("unresolved import: could not find `%s` \
in `%s`",
// idx +- 1 to account for the colons
// on either side
mpath.slice_from(idx + 1),
mpath.slice_to(idx - 1)));
},
None => (),
};
return Failed;
}
Indeterminate => {
debug!("(resolving module path for import) indeterminate; \
bailing");
return Indeterminate;
}
Success(NoPrefixFound) => {
// There was no prefix, so we're considering the first element
// of the path. How we handle this depends on whether we were
// instructed to use lexical scope or not.
match use_lexical_scope {
DontUseLexicalScope => {
// This is a crate-relative path. We will start the
// resolution process at index zero.
search_module = self.graph_root.get_module();
start_index = 0;
}
UseLexicalScope => {
// This is not a crate-relative path. We resolve the
// first component of the path in the current lexical
// scope and then proceed to resolve below that.
let result = self.resolve_module_in_lexical_scope(
module_,
module_path[0]);
match result {
Failed => {
self.resolve_error(span, "unresolved name");
return Failed;
}
Indeterminate => {
debug!("(resolving module path for import) \
indeterminate; bailing");
return Indeterminate;
}
Success(containing_module) => {
search_module = containing_module;
start_index = 1;
}
}
}
}
}
Success(PrefixFound(containing_module, index)) => {
search_module = containing_module;
start_index = index;
}
}
self.resolve_module_path_from_root(search_module,
module_path,
start_index,
span,
name_search_type)
}
/// Invariant: This must only be called during main resolution, not during
/// import resolution.
pub fn resolve_item_in_lexical_scope(@mut self,
module_: @mut Module,
name: Ident,
namespace: Namespace,
search_through_modules:
SearchThroughModulesFlag)
-> ResolveResult<Target> {
debug!("(resolving item in lexical scope) resolving `%s` in \
namespace %? in `%s`",
self.session.str_of(name),
namespace,
self.module_to_str(module_));
// The current module node is handled specially. First, check for
// its immediate children.
self.populate_module_if_necessary(module_);
match module_.children.find(&name.name) {
Some(name_bindings)
if name_bindings.defined_in_namespace(namespace) => {
return Success(Target::new(module_, *name_bindings));
}
Some(_) | None => { /* Not found; continue. */ }
}
// Now check for its import directives. We don't have to have resolved
// all its imports in the usual way; this is because chains of
// adjacent import statements are processed as though they mutated the
// current scope.
match module_.import_resolutions.find(&name.name) {
None => {
// Not found; continue.
}
Some(import_resolution) => {
match (*import_resolution).target_for_namespace(namespace) {
None => {
// Not found; continue.
debug!("(resolving item in lexical scope) found \
import resolution, but not in namespace %?",
namespace);
}
Some(target) => {
debug!("(resolving item in lexical scope) using \
import resolution");
self.used_imports.insert(import_resolution.id(namespace));
return Success(target);
}
}
}
}
// Search for external modules.
if namespace == TypeNS {
match module_.external_module_children.find(&name.name) {
None => {}
Some(module) => {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(
*module);
return Success(Target::new(module_, name_bindings));
}
}
}
// Finally, proceed up the scope chain looking for parent modules.
let mut search_module = module_;
loop {
// Go to the next parent.
match search_module.parent_link {
NoParentLink => {
// No more parents. This module was unresolved.
debug!("(resolving item in lexical scope) unresolved \
module");
return Failed;
}
ModuleParentLink(parent_module_node, _) => {
match search_through_modules {
DontSearchThroughModules => {
match search_module.kind {
NormalModuleKind => {
// We stop the search here.
debug!("(resolving item in lexical \
scope) unresolved module: not \
searching through module \
parents");
return Failed;
}
ExternModuleKind |
TraitModuleKind |
ImplModuleKind |
AnonymousModuleKind => {
search_module = parent_module_node;
}
}
}
SearchThroughModules => {
search_module = parent_module_node;
}
}
}
BlockParentLink(parent_module_node, _) => {
search_module = parent_module_node;
}
}
// Resolve the name in the parent module.
match self.resolve_name_in_module(search_module,
name,
namespace,
PathPublicOrPrivateSearch) {
Failed => {
// Continue up the search chain.
}
Indeterminate => {
// We couldn't see through the higher scope because of an
// unresolved import higher up. Bail.
debug!("(resolving item in lexical scope) indeterminate \
higher scope; bailing");
return Indeterminate;
}
Success(target) => {
// We found the module.
return Success(target);
}
}
}
}
/// Resolves a module name in the current lexical scope.
pub fn resolve_module_in_lexical_scope(@mut self,
module_: @mut Module,
name: Ident)
-> ResolveResult<@mut Module> {
// If this module is an anonymous module, resolve the item in the
// lexical scope. Otherwise, resolve the item from the crate root.
let resolve_result = self.resolve_item_in_lexical_scope(
module_, name, TypeNS, DontSearchThroughModules);
match resolve_result {
Success(target) => {
let bindings = &mut *target.bindings;
match bindings.type_def {
Some(ref type_def) => {
match (*type_def).module_def {
None => {
error!("!!! (resolving module in lexical \
scope) module wasn't actually a \
module!");
return Failed;
}
Some(module_def) => {
return Success(module_def);
}
}
}
None => {
error!("!!! (resolving module in lexical scope) module
wasn't actually a module!");
return Failed;
}
}
}
Indeterminate => {
debug!("(resolving module in lexical scope) indeterminate; \
bailing");
return Indeterminate;
}
Failed => {
debug!("(resolving module in lexical scope) failed to \
resolve");
return Failed;
}
}
}
/// Returns the nearest normal module parent of the given module.
pub fn get_nearest_normal_module_parent(@mut self, module_: @mut Module)
-> Option<@mut Module> {
let mut module_ = module_;
loop {
match module_.parent_link {
NoParentLink => return None,
ModuleParentLink(new_module, _) |
BlockParentLink(new_module, _) => {
match new_module.kind {
NormalModuleKind => return Some(new_module),
ExternModuleKind |
TraitModuleKind |
ImplModuleKind |
AnonymousModuleKind => module_ = new_module,
}
}
}
}
}
/// Returns the nearest normal module parent of the given module, or the
/// module itself if it is a normal module.
pub fn get_nearest_normal_module_parent_or_self(@mut self,
module_: @mut Module)
-> @mut Module {
match module_.kind {
NormalModuleKind => return module_,
ExternModuleKind |
TraitModuleKind |
ImplModuleKind |
AnonymousModuleKind => {
match self.get_nearest_normal_module_parent(module_) {
None => module_,
Some(new_module) => new_module
}
}
}
}
/// Resolves a "module prefix". A module prefix is one or both of (a) `self::`;
/// (b) some chain of `super::`.
/// grammar: (SELF MOD_SEP ) ? (SUPER MOD_SEP) *
pub fn resolve_module_prefix(@mut self,
module_: @mut Module,
module_path: &[Ident])
-> ResolveResult<ModulePrefixResult> {
// Start at the current module if we see `self` or `super`, or at the
// top of the crate otherwise.
let mut containing_module;
let mut i;
if "self" == token::ident_to_str(&module_path[0]) {
containing_module =
self.get_nearest_normal_module_parent_or_self(module_);
i = 1;
} else if "super" == token::ident_to_str(&module_path[0]) {
containing_module =
self.get_nearest_normal_module_parent_or_self(module_);
i = 0; // We'll handle `super` below.
} else {
return Success(NoPrefixFound);
}
// Now loop through all the `super`s we find.
while i < module_path.len() &&
"super" == token::ident_to_str(&module_path[i]) {
debug!("(resolving module prefix) resolving `super` at %s",
self.module_to_str(containing_module));
match self.get_nearest_normal_module_parent(containing_module) {
None => return Failed,
Some(new_module) => {
containing_module = new_module;
i += 1;
}
}
}
debug!("(resolving module prefix) finished resolving prefix at %s",
self.module_to_str(containing_module));
return Success(PrefixFound(containing_module, i));
}
/// Attempts to resolve the supplied name in the given module for the
/// given namespace. If successful, returns the target corresponding to
/// the name.
pub fn resolve_name_in_module(@mut self,
module_: @mut Module,
name: Ident,
namespace: Namespace,
name_search_type: NameSearchType)
-> ResolveResult<Target> {
debug!("(resolving name in module) resolving `%s` in `%s`",
self.session.str_of(name),
self.module_to_str(module_));
// First, check the direct children of the module.
self.populate_module_if_necessary(module_);
match module_.children.find(&name.name) {
Some(name_bindings)
if name_bindings.defined_in_namespace(namespace) => {
debug!("(resolving name in module) found node as child");
return Success(Target::new(module_, *name_bindings));
}
Some(_) | None => {
// Continue.
}
}
// Next, check the module's imports if necessary.
// If this is a search of all imports, we should be done with glob
// resolution at this point.
if name_search_type == PathPublicOrPrivateSearch ||
name_search_type == PathPublicOnlySearch {
assert_eq!(module_.glob_count, 0);
}
// Check the list of resolved imports.
match module_.import_resolutions.find(&name.name) {
Some(import_resolution) => {
if import_resolution.privacy == Public &&
import_resolution.outstanding_references != 0 {
debug!("(resolving name in module) import \
unresolved; bailing out");
return Indeterminate;
}
match import_resolution.target_for_namespace(namespace) {
None => {
debug!("(resolving name in module) name found, \
but not in namespace %?",
namespace);
}
Some(target)
if name_search_type ==
PathPublicOrPrivateSearch ||
import_resolution.privacy == Public => {
debug!("(resolving name in module) resolved to \
import");
self.used_imports.insert(import_resolution.id(namespace));
return Success(target);
}
Some(_) => {
debug!("(resolving name in module) name found, \
but not public");
}
}
}
None => {} // Continue.
}
// Finally, search through external children.
if namespace == TypeNS {
match module_.external_module_children.find(&name.name) {
None => {}
Some(module) => {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(
*module);
return Success(Target::new(module_, name_bindings));
}
}
}
// We're out of luck.
debug!("(resolving name in module) failed to resolve `%s`",
self.session.str_of(name));
return Failed;
}
pub fn report_unresolved_imports(@mut self, module_: @mut Module) {
let index = module_.resolved_import_count;
let imports: &mut ~[@ImportDirective] = &mut *module_.imports;
let import_count = imports.len();
if index != import_count {
let sn = self.session.codemap.span_to_snippet(imports[index].span).unwrap();
if sn.contains("::") {
self.resolve_error(imports[index].span, "unresolved import");
} else {
let err = fmt!("unresolved import (maybe you meant `%s::*`?)",
sn.slice(0, sn.len()));
self.resolve_error(imports[index].span, err);
}
}
// Descend into children and anonymous children.
self.populate_module_if_necessary(module_);
for (_, &child_node) in module_.children.iter() {
match child_node.get_module_if_available() {
None => {
// Continue.
}
Some(child_module) => {
self.report_unresolved_imports(child_module);
}
}
}
for (_, &module_) in module_.anonymous_children.iter() {
self.report_unresolved_imports(module_);
}
}
// Export recording
//
// This pass simply determines what all "export" keywords refer to and
// writes the results into the export map.
//
// FIXME #4953 This pass will be removed once exports change to per-item.
// Then this operation can simply be performed as part of item (or import)
// processing.
pub fn record_exports(@mut self) {
let root_module = self.graph_root.get_module();
self.record_exports_for_module_subtree(root_module);
}
pub fn record_exports_for_module_subtree(@mut self,
module_: @mut Module) {
// If this isn't a local crate, then bail out. We don't need to record
// exports for nonlocal crates.
match module_.def_id {
Some(def_id) if def_id.crate == LOCAL_CRATE => {
// OK. Continue.
debug!("(recording exports for module subtree) recording \
exports for local module `%s`",
self.module_to_str(module_));
}
None => {
// Record exports for the root module.
debug!("(recording exports for module subtree) recording \
exports for root module `%s`",
self.module_to_str(module_));
}
Some(_) => {
// Bail out.
debug!("(recording exports for module subtree) not recording \
exports for `%s`",
self.module_to_str(module_));
return;
}
}
self.record_exports_for_module(module_);
self.populate_module_if_necessary(module_);
for (_, &child_name_bindings) in module_.children.iter() {
match child_name_bindings.get_module_if_available() {
None => {
// Nothing to do.
}
Some(child_module) => {
self.record_exports_for_module_subtree(child_module);
}
}
}
for (_, &child_module) in module_.anonymous_children.iter() {
self.record_exports_for_module_subtree(child_module);
}
}
pub fn record_exports_for_module(@mut self, module_: @mut Module) {
let mut exports2 = ~[];
self.add_exports_for_module(&mut exports2, module_);
match module_.def_id {
Some(def_id) => {
self.export_map2.insert(def_id.node, exports2);
debug!("(computing exports) writing exports for %d (some)",
def_id.node);
}
None => {}
}
}
pub fn add_exports_of_namebindings(@mut self,
exports2: &mut ~[Export2],
name: Name,
namebindings: @mut NameBindings,
ns: Namespace,
reexport: bool) {
match (namebindings.def_for_namespace(ns),
namebindings.privacy_for_namespace(ns)) {
(Some(d), Some(Public)) => {
debug!("(computing exports) YES: %s '%s' => %?",
if reexport { ~"reexport" } else { ~"export"},
interner_get(name),
def_id_of_def(d));
exports2.push(Export2 {
reexport: reexport,
name: interner_get(name),
def_id: def_id_of_def(d)
});
}
(Some(_), Some(privacy)) => {
debug!("(computing reexports) NO: privacy %?", privacy);
}
(d_opt, p_opt) => {
debug!("(computing reexports) NO: %?, %?", d_opt, p_opt);
}
}
}
pub fn add_exports_for_module(@mut self,
exports2: &mut ~[Export2],
module_: @mut Module) {
for (name, importresolution) in module_.import_resolutions.iter() {
if importresolution.privacy != Public {
debug!("(computing exports) not reexporting private `%s`",
interner_get(*name));
loop;
}
let xs = [TypeNS, ValueNS];
for ns in xs.iter() {
match importresolution.target_for_namespace(*ns) {
Some(target) => {
debug!("(computing exports) maybe reexport '%s'",
interner_get(*name));
self.add_exports_of_namebindings(&mut *exports2,
*name,
target.bindings,
*ns,
true)
}
_ => ()
}
}
}
}
// AST resolution
//
// We maintain a list of value ribs and type ribs.
//
// Simultaneously, we keep track of the current position in the module
// graph in the `current_module` pointer. When we go to resolve a name in
// the value or type namespaces, we first look through all the ribs and
// then query the module graph. When we resolve a name in the module
// namespace, we can skip all the ribs (since nested modules are not
// allowed within blocks in Rust) and jump straight to the current module
// graph node.
//
// Named implementations are handled separately. When we find a method
// call, we consult the module node to find all of the implementations in
// scope. This information is lazily cached in the module node. We then
// generate a fake "implementation scope" containing all the
// implementations thus found, for compatibility with old resolve pass.
pub fn with_scope(@mut self, name: Option<Ident>, f: &fn()) {
let orig_module = self.current_module;
// Move down in the graph.
match name {
None => {
// Nothing to do.
}
Some(name) => {
self.populate_module_if_necessary(orig_module);
match orig_module.children.find(&name.name) {
None => {
debug!("!!! (with scope) didn't find `%s` in `%s`",
self.session.str_of(name),
self.module_to_str(orig_module));
}
Some(name_bindings) => {
match (*name_bindings).get_module_if_available() {
None => {
debug!("!!! (with scope) didn't find module \
for `%s` in `%s`",
self.session.str_of(name),
self.module_to_str(orig_module));
}
Some(module_) => {
self.current_module = module_;
}
}
}
}
}
}
f();
self.current_module = orig_module;
}
/// Wraps the given definition in the appropriate number of `def_upvar`
/// wrappers.
pub fn upvarify(@mut self,
ribs: &mut ~[@Rib],
rib_index: uint,
def_like: DefLike,
span: Span,
allow_capturing_self: AllowCapturingSelfFlag)
-> Option<DefLike> {
let mut def;
let is_ty_param;
match def_like {
DlDef(d @ DefLocal(*)) | DlDef(d @ DefUpvar(*)) |
DlDef(d @ DefArg(*)) | DlDef(d @ DefBinding(*)) => {
def = d;
is_ty_param = false;
}
DlDef(d @ DefTyParam(*)) => {
def = d;
is_ty_param = true;
}
DlDef(d @ DefSelf(*))
if allow_capturing_self == DontAllowCapturingSelf => {
def = d;
is_ty_param = false;
}
_ => {
return Some(def_like);
}
}
let mut rib_index = rib_index + 1;
while rib_index < ribs.len() {
match ribs[rib_index].kind {
NormalRibKind => {
// Nothing to do. Continue.
}
FunctionRibKind(function_id, body_id) => {
if !is_ty_param {
def = DefUpvar(def_id_of_def(def).node,
@def,
function_id,
body_id);
}
}
MethodRibKind(item_id, _) => {
// If the def is a ty param, and came from the parent
// item, it's ok
match def {
DefTyParam(did, _)
if self.def_map.find(&did.node).map_move(|x| *x)
== Some(DefTyParamBinder(item_id)) => {
// ok
}
_ => {
if !is_ty_param {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
self.resolve_error(
span,
"can't capture dynamic environment in a fn item; \
use the || { ... } closure form instead");
} else {
// This was an attempt to use a type parameter outside
// its scope.
self.resolve_error(span,
"attempt to use a type \
argument out of scope");
}
return None;
}
}
}
OpaqueFunctionRibKind => {
if !is_ty_param {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
self.resolve_error(
span,
"can't capture dynamic environment in a fn item; \
use the || { ... } closure form instead");
} else {
// This was an attempt to use a type parameter outside
// its scope.
self.resolve_error(span,
"attempt to use a type \
argument out of scope");
}
return None;
}
ConstantItemRibKind => {
// Still doesn't deal with upvars
self.resolve_error(span,
"attempt to use a non-constant \
value in a constant");
}
}
rib_index += 1;
}
return Some(DlDef(def));
}
pub fn search_ribs(@mut self,
ribs: &mut ~[@Rib],
name: Name,
span: Span,
allow_capturing_self: AllowCapturingSelfFlag)
-> Option<DefLike> {
// FIXME #4950: This should not use a while loop.
// FIXME #4950: Try caching?
let mut i = ribs.len();
while i != 0 {
i -= 1;
match ribs[i].bindings.find(&name) {
Some(&def_like) => {
return self.upvarify(ribs, i, def_like, span,
allow_capturing_self);
}
None => {
// Continue.
}
}
}
return None;
}
pub fn resolve_crate(@mut self) {
debug!("(resolving crate) starting");
let mut visitor = ResolveVisitor{ resolver: self };
visit::walk_crate(&mut visitor, self.crate, ());
}
pub fn resolve_item(@mut self, item: @item, visitor: &mut ResolveVisitor) {
debug!("(resolving item) resolving %s",
self.session.str_of(item.ident));
// Items with the !resolve_unexported attribute are X-ray contexts.
// This is used to allow the test runner to run unexported tests.
let orig_xray_flag = self.xray_context;
if attr::contains_name(item.attrs, "!resolve_unexported") {
self.xray_context = Xray;
}
match item.node {
// enum item: resolve all the variants' discrs,
// then resolve the ty params
item_enum(ref enum_def, ref generics) => {
for variant in (*enum_def).variants.iter() {
for dis_expr in variant.node.disr_expr.iter() {
// resolve the discriminator expr
// as a constant
self.with_constant_rib(|| {
self.resolve_expr(*dis_expr, visitor);
});
}
}
// n.b. the discr expr gets visted twice.
// but maybe it's okay since the first time will signal an
// error if there is one? -- tjc
do self.with_type_parameter_rib(
HasTypeParameters(
generics, item.id, 0, NormalRibKind)) {
visit::walk_item(visitor, item, ());
}
}
item_ty(_, ref generics) => {
do self.with_type_parameter_rib
(HasTypeParameters(generics, item.id, 0,
NormalRibKind))
|| {
visit::walk_item(visitor, item, ());
}
}
item_impl(ref generics,
ref implemented_traits,
ref self_type,
ref methods) => {
self.resolve_implementation(item.id,
generics,
implemented_traits,
self_type,
*methods,
visitor);
}
item_trait(ref generics, ref traits, ref methods) => {
// Create a new rib for the self type.
let self_type_rib = @Rib::new(NormalRibKind);
self.type_ribs.push(self_type_rib);
// plain insert (no renaming)
let name = self.type_self_ident.name;
self_type_rib.bindings.insert(name,
DlDef(DefSelfTy(item.id)));
// Create a new rib for the trait-wide type parameters.
do self.with_type_parameter_rib
(HasTypeParameters(generics, item.id, 0,
NormalRibKind)) {
self.resolve_type_parameters(&generics.ty_params,
visitor);
// Resolve derived traits.
for trt in traits.iter() {
self.resolve_trait_reference(item.id, trt, visitor, TraitDerivation);
}
for method in (*methods).iter() {
// Create a new rib for the method-specific type
// parameters.
//
// FIXME #4951: Do we need a node ID here?
match *method {
required(ref ty_m) => {
do self.with_type_parameter_rib
(HasTypeParameters(&ty_m.generics,
item.id,
generics.ty_params.len(),
MethodRibKind(item.id, Required))) {
// Resolve the method-specific type
// parameters.
self.resolve_type_parameters(
&ty_m.generics.ty_params,
visitor);
for argument in ty_m.decl.inputs.iter() {
self.resolve_type(&argument.ty, visitor);
}
self.resolve_type(&ty_m.decl.output, visitor);
}
}
provided(m) => {
self.resolve_method(MethodRibKind(item.id,
Provided(m.id)),
m,
generics.ty_params.len(),
visitor)
}
}
}
}
self.type_ribs.pop();
}
item_struct(ref struct_def, ref generics) => {
self.resolve_struct(item.id,
generics,
struct_def.fields,
visitor);
}
item_mod(ref module_) => {
do self.with_scope(Some(item.ident)) {
self.resolve_module(module_, item.span, item.ident,
item.id, visitor);
}
}
item_foreign_mod(ref foreign_module) => {
do self.with_scope(Some(item.ident)) {
for foreign_item in foreign_module.items.iter() {
match foreign_item.node {
foreign_item_fn(_, ref generics) => {
self.with_type_parameter_rib(
HasTypeParameters(
generics, foreign_item.id, 0,
NormalRibKind),
|| visit::walk_foreign_item(visitor,
*foreign_item,
()));
}
foreign_item_static(*) => {
visit::walk_foreign_item(visitor,
*foreign_item,
());
}
}
}
}
}
item_fn(ref fn_decl, _, _, ref generics, ref block) => {
self.resolve_function(OpaqueFunctionRibKind,
Some(fn_decl),
HasTypeParameters
(generics,
item.id,
0,
OpaqueFunctionRibKind),
block,
NoSelfBinding,
visitor);
}
item_static(*) => {
self.with_constant_rib(|| {
visit::walk_item(visitor, item, ());
});
}
item_mac(*) => {
fail!("item macros unimplemented")
}
}
self.xray_context = orig_xray_flag;
}
pub fn with_type_parameter_rib(@mut self,
type_parameters: TypeParameters,
f: &fn()) {
match type_parameters {
HasTypeParameters(generics, node_id, initial_index,
rib_kind) => {
let function_type_rib = @Rib::new(rib_kind);
self.type_ribs.push(function_type_rib);
for (index, type_parameter) in generics.ty_params.iter().enumerate() {
let ident = type_parameter.ident;
debug!("with_type_parameter_rib: %d %d", node_id,
type_parameter.id);
let def_like = DlDef(DefTyParam
(local_def(type_parameter.id),
index + initial_index));
// Associate this type parameter with
// the item that bound it
self.record_def(type_parameter.id,
DefTyParamBinder(node_id));
// plain insert (no renaming)
function_type_rib.bindings.insert(ident.name, def_like);
}
}
NoTypeParameters => {
// Nothing to do.
}
}
f();
match type_parameters {
HasTypeParameters(*) => {
self.type_ribs.pop();
}
NoTypeParameters => {
// Nothing to do.
}
}
}
pub fn with_label_rib(@mut self, f: &fn()) {
self.label_ribs.push(@Rib::new(NormalRibKind));
f();
self.label_ribs.pop();
}
pub fn with_constant_rib(@mut self, f: &fn()) {
self.value_ribs.push(@Rib::new(ConstantItemRibKind));
f();
self.value_ribs.pop();
}
pub fn resolve_function(@mut self,
rib_kind: RibKind,
optional_declaration: Option<&fn_decl>,
type_parameters: TypeParameters,
block: &Block,
self_binding: SelfBinding,
visitor: &mut ResolveVisitor) {
// Create a value rib for the function.
let function_value_rib = @Rib::new(rib_kind);
self.value_ribs.push(function_value_rib);
// Create a label rib for the function.
let function_label_rib = @Rib::new(rib_kind);
self.label_ribs.push(function_label_rib);
// If this function has type parameters, add them now.
do self.with_type_parameter_rib(type_parameters) {
// Resolve the type parameters.
match type_parameters {
NoTypeParameters => {
// Continue.
}
HasTypeParameters(ref generics, _, _, _) => {
self.resolve_type_parameters(&generics.ty_params,
visitor);
}
}
// Add self to the rib, if necessary.
match self_binding {
NoSelfBinding => {
// Nothing to do.
}
HasSelfBinding(self_node_id) => {
let def_like = DlDef(DefSelf(self_node_id));
*function_value_rib.self_binding = Some(def_like);
}
}
// Add each argument to the rib.
match optional_declaration {
None => {
// Nothing to do.
}
Some(declaration) => {
for argument in declaration.inputs.iter() {
let binding_mode = ArgumentIrrefutableMode;
let mutability =
if argument.is_mutbl {Mutable} else {Immutable};
self.resolve_pattern(argument.pat,
binding_mode,
mutability,
None,
visitor);
self.resolve_type(&argument.ty, visitor);
debug!("(resolving function) recorded argument");
}
self.resolve_type(&declaration.output, visitor);
}
}
// Resolve the function body.
self.resolve_block(block, visitor);
debug!("(resolving function) leaving function");
}
self.label_ribs.pop();
self.value_ribs.pop();
}
pub fn resolve_type_parameters(@mut self,
type_parameters: &OptVec<TyParam>,
visitor: &mut ResolveVisitor) {
for type_parameter in type_parameters.iter() {
for bound in type_parameter.bounds.iter() {
self.resolve_type_parameter_bound(type_parameter.id, bound, visitor);
}
}
}
pub fn resolve_type_parameter_bound(@mut self,
id: NodeId,
type_parameter_bound: &TyParamBound,
visitor: &mut ResolveVisitor) {
match *type_parameter_bound {
TraitTyParamBound(ref tref) => {
self.resolve_trait_reference(id, tref, visitor, TraitBoundingTypeParameter)
}
RegionTyParamBound => {}
}
}
pub fn resolve_trait_reference(@mut self,
id: NodeId,
trait_reference: &trait_ref,
visitor: &mut ResolveVisitor,
reference_type: TraitReferenceType) {
match self.resolve_path(id, &trait_reference.path, TypeNS, true, visitor) {
None => {
let path_str = self.path_idents_to_str(&trait_reference.path);
let usage_str = match reference_type {
TraitBoundingTypeParameter => "bound type parameter with",
TraitImplementation => "implement",
TraitDerivation => "derive"
};
let msg = fmt!("attempt to %s a nonexistent trait `%s`", usage_str, path_str);
self.resolve_error(trait_reference.path.span, msg);
}
Some(def) => {
debug!("(resolving trait) found trait def: %?", def);
self.record_def(trait_reference.ref_id, def);
}
}
}
pub fn resolve_struct(@mut self,
id: NodeId,
generics: &Generics,
fields: &[@struct_field],
visitor: &mut ResolveVisitor) {
let mut ident_map: HashMap<ast::Ident,@struct_field> = HashMap::new();
for &field in fields.iter() {
match field.node.kind {
named_field(ident, _) => {
match ident_map.find(&ident) {
Some(&prev_field) => {
let ident_str = self.session.str_of(ident);
self.resolve_error(field.span,
fmt!("field `%s` is already declared", ident_str));
self.session.span_note(prev_field.span,
"Previously declared here");
},
None => {
ident_map.insert(ident, field);
}
}
}
_ => ()
}
}
// If applicable, create a rib for the type parameters.
do self.with_type_parameter_rib(HasTypeParameters
(generics, id, 0,
OpaqueFunctionRibKind)) {
// Resolve the type parameters.
self.resolve_type_parameters(&generics.ty_params, visitor);
// Resolve fields.
for field in fields.iter() {
self.resolve_type(&field.node.ty, visitor);
}
}
}
// Does this really need to take a RibKind or is it always going
// to be NormalRibKind?
pub fn resolve_method(@mut self,
rib_kind: RibKind,
method: @method,
outer_type_parameter_count: uint,
visitor: &mut ResolveVisitor) {
let method_generics = &method.generics;
let type_parameters =
HasTypeParameters(method_generics,
method.id,
outer_type_parameter_count,
rib_kind);
// we only have self ty if it is a non static method
let self_binding = match method.explicit_self.node {
sty_static => { NoSelfBinding }
_ => { HasSelfBinding(method.self_id) }
};
self.resolve_function(rib_kind,
Some(&method.decl),
type_parameters,
&method.body,
self_binding,
visitor);
}
pub fn resolve_implementation(@mut self,
id: NodeId,
generics: &Generics,
opt_trait_reference: &Option<trait_ref>,
self_type: &Ty,
methods: &[@method],
visitor: &mut ResolveVisitor) {
// If applicable, create a rib for the type parameters.
let outer_type_parameter_count = generics.ty_params.len();
do self.with_type_parameter_rib(HasTypeParameters
(generics, id, 0,
NormalRibKind)) {
// Resolve the type parameters.
self.resolve_type_parameters(&generics.ty_params,
visitor);
// Resolve the trait reference, if necessary.
let original_trait_refs;
match opt_trait_reference {
&Some(ref trait_reference) => {
self.resolve_trait_reference(id, trait_reference, visitor,
TraitImplementation);
// Record the current set of trait references.
let mut new_trait_refs = ~[];
{
let r = self.def_map.find(&trait_reference.ref_id);
for &def in r.iter() {
new_trait_refs.push(def_id_of_def(*def));
}
}
original_trait_refs = Some(util::replace(
&mut self.current_trait_refs,
Some(new_trait_refs)));
}
&None => {
original_trait_refs = None;
}
}
// Resolve the self type.
self.resolve_type(self_type, visitor);
for method in methods.iter() {
// We also need a new scope for the method-specific
// type parameters.
self.resolve_method(MethodRibKind(
id,
Provided(method.id)),
*method,
outer_type_parameter_count,
visitor);
/*
let borrowed_type_parameters = &method.tps;
self.resolve_function(MethodRibKind(
id,
Provided(method.id)),
Some(@method.decl),
HasTypeParameters
(borrowed_type_parameters,
method.id,
outer_type_parameter_count,
NormalRibKind),
method.body,
HasSelfBinding(method.self_id),
visitor);
*/
}
// Restore the original trait references.
match original_trait_refs {
Some(r) => { self.current_trait_refs = r; }
None => ()
}
}
}
pub fn resolve_module(@mut self,
module_: &_mod,
_span: Span,
_name: Ident,
id: NodeId,
visitor: &mut ResolveVisitor) {
// Write the implementations in scope into the module metadata.
debug!("(resolving module) resolving module ID %d", id);
visit::walk_mod(visitor, module_, ());
}
pub fn resolve_local(@mut self, local: @Local, visitor: &mut ResolveVisitor) {
let mutability = if local.is_mutbl {Mutable} else {Immutable};
// Resolve the type.
self.resolve_type(&local.ty, visitor);
// Resolve the initializer, if necessary.
match local.init {
None => {
// Nothing to do.
}
Some(initializer) => {
self.resolve_expr(initializer, visitor);
}
}
// Resolve the pattern.
self.resolve_pattern(local.pat, LocalIrrefutableMode, mutability,
None, visitor);
}
// build a map from pattern identifiers to binding-info's.
// this is done hygienically. This could arise for a macro
// that expands into an or-pattern where one 'x' was from the
// user and one 'x' came from the macro.
pub fn binding_mode_map(@mut self, pat: @Pat) -> BindingMap {
let mut result = HashMap::new();
do pat_bindings(self.def_map, pat) |binding_mode, _id, sp, path| {
let name = mtwt_resolve(path_to_ident(path));
result.insert(name,
binding_info {span: sp,
binding_mode: binding_mode});
}
return result;
}
// check that all of the arms in an or-pattern have exactly the
// same set of bindings, with the same binding modes for each.
pub fn check_consistent_bindings(@mut self, arm: &Arm) {
if arm.pats.len() == 0 { return; }
let map_0 = self.binding_mode_map(arm.pats[0]);
for (i, p) in arm.pats.iter().enumerate() {
let map_i = self.binding_mode_map(*p);
for (&key, &binding_0) in map_0.iter() {
match map_i.find(&key) {
None => {
self.resolve_error(
p.span,
fmt!("variable `%s` from pattern #1 is \
not bound in pattern #%u",
interner_get(key), i + 1));
}
Some(binding_i) => {
if binding_0.binding_mode != binding_i.binding_mode {
self.resolve_error(
binding_i.span,
fmt!("variable `%s` is bound with different \
mode in pattern #%u than in pattern #1",
interner_get(key), i + 1));
}
}
}
}
for (&key, &binding) in map_i.iter() {
if !map_0.contains_key(&key) {
self.resolve_error(
binding.span,
fmt!("variable `%s` from pattern #%u is \
not bound in pattern #1",
interner_get(key), i + 1));
}
}
}
}
pub fn resolve_arm(@mut self, arm: &Arm, visitor: &mut ResolveVisitor) {
self.value_ribs.push(@Rib::new(NormalRibKind));
let bindings_list = @mut HashMap::new();
for pattern in arm.pats.iter() {
self.resolve_pattern(*pattern, RefutableMode, Immutable,
Some(bindings_list), visitor);
}
// This has to happen *after* we determine which
// pat_idents are variants
self.check_consistent_bindings(arm);
visit::walk_expr_opt(visitor, arm.guard, ());
self.resolve_block(&arm.body, visitor);
self.value_ribs.pop();
}
pub fn resolve_block(@mut self, block: &Block, visitor: &mut ResolveVisitor) {
debug!("(resolving block) entering block");
self.value_ribs.push(@Rib::new(NormalRibKind));
// Move down in the graph, if there's an anonymous module rooted here.
let orig_module = self.current_module;
match self.current_module.anonymous_children.find(&block.id) {
None => { /* Nothing to do. */ }
Some(&anonymous_module) => {
debug!("(resolving block) found anonymous module, moving \
down");
self.current_module = anonymous_module;
}
}
// Descend into the block.
visit::walk_block(visitor, block, ());
// Move back up.
self.current_module = orig_module;
self.value_ribs.pop();
debug!("(resolving block) leaving block");
}
pub fn resolve_type(@mut self, ty: &Ty, visitor: &mut ResolveVisitor) {
match ty.node {
// Like path expressions, the interpretation of path types depends
// on whether the path has multiple elements in it or not.
ty_path(ref path, ref bounds, path_id) => {
// This is a path in the type namespace. Walk through scopes
// scopes looking for it.
let mut result_def = None;
// First, check to see whether the name is a primitive type.
if path.segments.len() == 1 {
let id = path.segments.last().identifier;
match self.primitive_type_table
.primitive_types
.find(&id.name) {
Some(&primitive_type) => {
result_def =
Some(DefPrimTy(primitive_type));
if path.segments
.iter()
.any(|s| s.lifetime.is_some()) {
self.session.span_err(path.span,
"lifetime parameters \
are not allowed on \
this type")
} else if path.segments
.iter()
.any(|s| s.types.len() > 0) {
self.session.span_err(path.span,
"type parameters are \
not allowed on this \
type")
}
}
None => {
// Continue.
}
}
}
match result_def {
None => {
match self.resolve_path(ty.id,
path,
TypeNS,
true,
visitor) {
Some(def) => {
debug!("(resolving type) resolved `%s` to \
type %?",
self.session.str_of(path.segments
.last()
.identifier),
def);
result_def = Some(def);
}
None => {
result_def = None;
}
}
}
Some(_) => {} // Continue.
}
match result_def {
Some(def) => {
// Write the result into the def map.
debug!("(resolving type) writing resolution for `%s` \
(id %d)",
self.path_idents_to_str(path),
path_id);
self.record_def(path_id, def);
}
None => {
self.resolve_error
(ty.span,
fmt!("use of undeclared type name `%s`",
self.path_idents_to_str(path)))
}
}
do bounds.map |bound_vec| {
for bound in bound_vec.iter() {
self.resolve_type_parameter_bound(ty.id, bound, visitor);
}
};
}
ty_closure(c) => {
do c.bounds.map |bounds| {
for bound in bounds.iter() {
self.resolve_type_parameter_bound(ty.id, bound, visitor);
}
};
visit::walk_ty(visitor, ty, ());
}
_ => {
// Just resolve embedded types.
visit::walk_ty(visitor, ty, ());
}
}
}
pub fn resolve_pattern(@mut self,
pattern: @Pat,
mode: PatternBindingMode,
mutability: Mutability,
// Maps idents to the node ID for the (outermost)
// pattern that binds them
bindings_list: Option<@mut HashMap<Name,NodeId>>,
visitor: &mut ResolveVisitor) {
let pat_id = pattern.id;
do walk_pat(pattern) |pattern| {
match pattern.node {
PatIdent(binding_mode, ref path, _)
if !path.global && path.segments.len() == 1 => {
// The meaning of pat_ident with no type parameters
// depends on whether an enum variant or unit-like struct
// with that name is in scope. The probing lookup has to
// be careful not to emit spurious errors. Only matching
// patterns (match) can match nullary variants or
// unit-like structs. For binding patterns (let), matching
// such a value is simply disallowed (since it's rarely
// what you want).
let ident = path.segments[0].identifier;
let renamed = mtwt_resolve(ident);
match self.resolve_bare_identifier_pattern(ident) {
FoundStructOrEnumVariant(def)
if mode == RefutableMode => {
debug!("(resolving pattern) resolving `%s` to \
struct or enum variant",
interner_get(renamed));
self.enforce_default_binding_mode(
pattern,
binding_mode,
"an enum variant");
self.record_def(pattern.id, def);
}
FoundStructOrEnumVariant(_) => {
self.resolve_error(pattern.span,
fmt!("declaration of `%s` \
shadows an enum \
variant or unit-like \
struct in scope",
interner_get(renamed)));
}
FoundConst(def) if mode == RefutableMode => {
debug!("(resolving pattern) resolving `%s` to \
constant",
interner_get(renamed));
self.enforce_default_binding_mode(
pattern,
binding_mode,
"a constant");
self.record_def(pattern.id, def);
}
FoundConst(_) => {
self.resolve_error(pattern.span,
"only refutable patterns \
allowed here");
}
BareIdentifierPatternUnresolved => {
debug!("(resolving pattern) binding `%s`",
interner_get(renamed));
let is_mutable = mutability == Mutable;
let def = match mode {
RefutableMode => {
// For pattern arms, we must use
// `def_binding` definitions.
DefBinding(pattern.id, binding_mode)
}
LocalIrrefutableMode => {
// But for locals, we use `def_local`.
DefLocal(pattern.id, is_mutable)
}
ArgumentIrrefutableMode => {
// And for function arguments, `def_arg`.
DefArg(pattern.id, is_mutable)
}
};
// Record the definition so that later passes
// will be able to distinguish variants from
// locals in patterns.
self.record_def(pattern.id, def);
// Add the binding to the local ribs, if it
// doesn't already exist in the bindings list. (We
// must not add it if it's in the bindings list
// because that breaks the assumptions later
// passes make about or-patterns.)
match bindings_list {
Some(bindings_list)
if !bindings_list.contains_key(&renamed) => {
let this = &mut *self;
let last_rib = this.value_ribs[
this.value_ribs.len() - 1];
last_rib.bindings.insert(renamed,
DlDef(def));
bindings_list.insert(renamed, pat_id);
}
Some(b) => {
if b.find(&renamed) == Some(&pat_id) {
// Then this is a duplicate variable
// in the same disjunct, which is an
// error
self.resolve_error(pattern.span,
fmt!("Identifier `%s` is bound more \
than once in the same pattern",
path_to_str(path, self.session
.intr())));
}
// Not bound in the same pattern: do nothing
}
None => {
let this = &mut *self;
let last_rib = this.value_ribs[
this.value_ribs.len() - 1];
last_rib.bindings.insert(renamed,
DlDef(def));
}
}
}
}
// Check the types in the path pattern.
for ty in path.segments
.iter()
.flat_map(|seg| seg.types.iter()) {
self.resolve_type(ty, visitor);
}
}
PatIdent(binding_mode, ref path, _) => {
// This must be an enum variant, struct, or constant.
match self.resolve_path(pat_id, path, ValueNS, false, visitor) {
Some(def @ DefVariant(*)) |
Some(def @ DefStruct(*)) => {
self.record_def(pattern.id, def);
}
Some(def @ DefStatic(*)) => {
self.enforce_default_binding_mode(
pattern,
binding_mode,
"a constant");
self.record_def(pattern.id, def);
}
Some(_) => {
self.resolve_error(
path.span,
fmt!("`%s` is not an enum variant or constant",
self.session.str_of(
path.segments.last().identifier)))
}
None => {
self.resolve_error(path.span,
"unresolved enum variant");
}
}
// Check the types in the path pattern.
for ty in path.segments
.iter()
.flat_map(|s| s.types.iter()) {
self.resolve_type(ty, visitor);
}
}
PatEnum(ref path, _) => {
// This must be an enum variant, struct or const.
match self.resolve_path(pat_id, path, ValueNS, false, visitor) {
Some(def @ DefFn(*)) |
Some(def @ DefVariant(*)) |
Some(def @ DefStruct(*)) |
Some(def @ DefStatic(*)) => {
self.record_def(pattern.id, def);
}
Some(_) => {
self.resolve_error(
path.span,
fmt!("`%s` is not an enum variant, struct or const",
self.session
.str_of(path.segments
.last()
.identifier)));
}
None => {
self.resolve_error(path.span,
fmt!("unresolved enum variant, \
struct or const `%s`",
self.session
.str_of(path.segments
.last()
.identifier)));
}
}
// Check the types in the path pattern.
for ty in path.segments
.iter()
.flat_map(|s| s.types.iter()) {
self.resolve_type(ty, visitor);
}
}
PatLit(expr) => {
self.resolve_expr(expr, visitor);
}
PatRange(first_expr, last_expr) => {
self.resolve_expr(first_expr, visitor);
self.resolve_expr(last_expr, visitor);
}
PatStruct(ref path, _, _) => {
match self.resolve_path(pat_id, path, TypeNS, false, visitor) {
Some(DefTy(class_id))
if self.structs.contains(&class_id) => {
let class_def = DefStruct(class_id);
self.record_def(pattern.id, class_def);
}
Some(definition @ DefStruct(class_id)) => {
assert!(self.structs.contains(&class_id));
self.record_def(pattern.id, definition);
}
Some(definition @ DefVariant(_, variant_id, _))
if self.structs.contains(&variant_id) => {
self.record_def(pattern.id, definition);
}
result => {
debug!("(resolving pattern) didn't find struct \
def: %?", result);
self.resolve_error(
path.span,
fmt!("`%s` does not name a structure",
self.path_idents_to_str(path)));
}
}
}
_ => {
// Nothing to do.
}
}
true
};
}
pub fn resolve_bare_identifier_pattern(@mut self, name: Ident)
->
BareIdentifierPatternResolution {
match self.resolve_item_in_lexical_scope(self.current_module,
name,
ValueNS,
SearchThroughModules) {
Success(target) => {
match target.bindings.value_def {
None => {
fail!("resolved name in the value namespace to a \
set of name bindings with no def?!");
}
Some(def) => {
match def.def {
def @ DefVariant(*) | def @ DefStruct(*) => {
return FoundStructOrEnumVariant(def);
}
def @ DefStatic(_, false) => {
return FoundConst(def);
}
_ => {
return BareIdentifierPatternUnresolved;
}
}
}
}
}
Indeterminate => {
fail!("unexpected indeterminate result");
}
Failed => {
return BareIdentifierPatternUnresolved;
}
}
}
/// If `check_ribs` is true, checks the local definitions first; i.e.
/// doesn't skip straight to the containing module.
pub fn resolve_path(@mut self,
id: NodeId,
path: &Path,
namespace: Namespace,
check_ribs: bool,
visitor: &mut ResolveVisitor)
-> Option<Def> {
// First, resolve the types.
for ty in path.segments.iter().flat_map(|s| s.types.iter()) {
self.resolve_type(ty, visitor);
}
if path.global {
return self.resolve_crate_relative_path(path,
self.xray_context,
namespace);
}
let unqualified_def = self.resolve_identifier(path.segments
.last()
.identifier,
namespace,
check_ribs,
path.span);
if path.segments.len() > 1 {
let def = self.resolve_module_relative_path(path,
self.xray_context,
namespace);
match (def, unqualified_def) {
(Some(d), Some(ud)) if d == ud => {
self.session.add_lint(unnecessary_qualification,
id,
path.span,
~"unnecessary qualification");
}
_ => ()
}
return def;
}
return unqualified_def;
}
// resolve a single identifier (used as a varref)
pub fn resolve_identifier(@mut self,
identifier: Ident,
namespace: Namespace,
check_ribs: bool,
span: Span)
-> Option<Def> {
if check_ribs {
match self.resolve_identifier_in_local_ribs(identifier,
namespace,
span) {
Some(def) => {
return Some(def);
}
None => {
// Continue.
}
}
}
return self.resolve_item_by_identifier_in_lexical_scope(identifier,
namespace);
}
// FIXME #4952: Merge me with resolve_name_in_module?
pub fn resolve_definition_of_name_in_module(@mut self,
containing_module: @mut Module,
name: Ident,
namespace: Namespace,
xray: XrayFlag)
-> NameDefinition {
// First, search children.
self.populate_module_if_necessary(containing_module);
match containing_module.children.find(&name.name) {
Some(child_name_bindings) => {
match (child_name_bindings.def_for_namespace(namespace),
child_name_bindings.privacy_for_namespace(namespace)) {
(Some(def), Some(Public)) => {
// Found it. Stop the search here.
return ChildNameDefinition(def);
}
(Some(def), _) if xray == Xray => {
// Found it. Stop the search here.
return ChildNameDefinition(def);
}
(Some(_), _) | (None, _) => {
// Continue.
}
}
}
None => {
// Continue.
}
}
// Next, search import resolutions.
match containing_module.import_resolutions.find(&name.name) {
Some(import_resolution) if import_resolution.privacy == Public ||
xray == Xray => {
match (*import_resolution).target_for_namespace(namespace) {
Some(target) => {
match (target.bindings.def_for_namespace(namespace),
target.bindings.privacy_for_namespace(
namespace)) {
(Some(def), Some(Public)) => {
// Found it.
let id = import_resolution.id(namespace);
self.used_imports.insert(id);
return ImportNameDefinition(def);
}
(Some(_), _) | (None, _) => {
// This can happen with external impls, due to
// the imperfect way we read the metadata.
}
}
}
None => {}
}
}
Some(_) | None => {} // Continue.
}
// Finally, search through external children.
if namespace == TypeNS {
match containing_module.external_module_children.find(&name.name) {
None => {}
Some(module) => {
match module.def_id {
None => {} // Continue.
Some(def_id) => {
return ChildNameDefinition(DefMod(def_id));
}
}
}
}
}
return NoNameDefinition;
}
// resolve a "module-relative" path, e.g. a::b::c
pub fn resolve_module_relative_path(@mut self,
path: &Path,
xray: XrayFlag,
namespace: Namespace)
-> Option<Def> {
let module_path_idents = path.segments.init().map(|ps| ps.identifier);
let containing_module;
match self.resolve_module_path(self.current_module,
module_path_idents,
UseLexicalScope,
path.span,
PathPublicOnlySearch) {
Failed => {
self.resolve_error(path.span,
fmt!("use of undeclared module `%s`",
self.idents_to_str(
module_path_idents)));
return None;
}
Indeterminate => {
fail!("indeterminate unexpected");
}
Success(resulting_module) => {
containing_module = resulting_module;
}
}
let ident = path.segments.last().identifier;
let def = match self.resolve_definition_of_name_in_module(containing_module,
ident,
namespace,
xray) {
NoNameDefinition => {
// We failed to resolve the name. Report an error.
return None;
}
ChildNameDefinition(def) | ImportNameDefinition(def) => {
def
}
};
match containing_module.kind {
TraitModuleKind | ImplModuleKind => {
match self.method_map.find(&ident.name) {
Some(s) => {
match containing_module.def_id {
Some(def_id) if s.contains(&def_id) => {
debug!("containing module was a trait or impl \
and name was a method -> not resolved");
return None;
},
_ => (),
}
},
None => (),
}
},
_ => (),
};
return Some(def);
}
/// Invariant: This must be called only during main resolution, not during
/// import resolution.
pub fn resolve_crate_relative_path(@mut self,
path: &Path,
xray: XrayFlag,
namespace: Namespace)
-> Option<Def> {
let module_path_idents = path.segments.init().map(|ps| ps.identifier);
let root_module = self.graph_root.get_module();
let containing_module;
match self.resolve_module_path_from_root(root_module,
module_path_idents,
0,
path.span,
PathPublicOrPrivateSearch) {
Failed => {
self.resolve_error(path.span,
fmt!("use of undeclared module `::%s`",
self.idents_to_str(
module_path_idents)));
return None;
}
Indeterminate => {
fail!("indeterminate unexpected");
}
Success(resulting_module) => {
containing_module = resulting_module;
}
}
let name = path.segments.last().identifier;
match self.resolve_definition_of_name_in_module(containing_module,
name,
namespace,
xray) {
NoNameDefinition => {
// We failed to resolve the name. Report an error.
return None;
}
ChildNameDefinition(def) | ImportNameDefinition(def) => {
return Some(def);
}
}
}
pub fn resolve_identifier_in_local_ribs(@mut self,
ident: Ident,
namespace: Namespace,
span: Span)
-> Option<Def> {
// Check the local set of ribs.
let search_result;
match namespace {
ValueNS => {
let renamed = mtwt_resolve(ident);
search_result = self.search_ribs(self.value_ribs, renamed,
span,
DontAllowCapturingSelf);
}
TypeNS => {
let name = ident.name;
search_result = self.search_ribs(self.type_ribs, name,
span, AllowCapturingSelf);
}
}
match search_result {
Some(DlDef(def)) => {
debug!("(resolving path in local ribs) resolved `%s` to \
local: %?",
self.session.str_of(ident),
def);
return Some(def);
}
Some(DlField) | Some(DlImpl(_)) | None => {
return None;
}
}
}
pub fn resolve_self_value_in_local_ribs(@mut self, span: Span)
-> Option<Def> {
// FIXME #4950: This should not use a while loop.
let ribs = &mut self.value_ribs;
let mut i = ribs.len();
while i != 0 {
i -= 1;
match *ribs[i].self_binding {
Some(def_like) => {
match self.upvarify(*ribs,
i,
def_like,
span,
DontAllowCapturingSelf) {
Some(DlDef(def)) => return Some(def),
_ => {
if self.session.has_errors() {
// May happen inside a nested fn item, cf #6642.
return None;
} else {
self.session.span_bug(span,
"self wasn't mapped to a def?!")
}
}
}
}
None => {}
}
}
None
}
pub fn resolve_item_by_identifier_in_lexical_scope(@mut self,
ident: Ident,
namespace: Namespace)
-> Option<Def> {
// Check the items.
match self.resolve_item_in_lexical_scope(self.current_module,
ident,
namespace,
DontSearchThroughModules) {
Success(target) => {
match (*target.bindings).def_for_namespace(namespace) {
None => {
// This can happen if we were looking for a type and
// found a module instead. Modules don't have defs.
return None;
}
Some(def) => {
debug!("(resolving item path in lexical scope) \
resolved `%s` to item",
self.session.str_of(ident));
return Some(def);
}
}
}
Indeterminate => {
fail!("unexpected indeterminate result");
}
Failed => {
return None;
}
}
}
fn with_no_errors<T>(@mut self, f: &fn() -> T) -> T {
self.emit_errors = false;
let rs = f();
self.emit_errors = true;
rs
}
fn resolve_error(@mut self, span: Span, s: &str) {
if self.emit_errors {
self.session.span_err(span, s);
}
}
pub fn find_best_match_for_name(@mut self,
name: &str,
max_distance: uint)
-> Option<@str> {
let this = &mut *self;
let mut maybes: ~[@str] = ~[];
let mut values: ~[uint] = ~[];
let mut j = this.value_ribs.len();
while j != 0 {
j -= 1;
for (&k, _) in this.value_ribs[j].bindings.iter() {
maybes.push(interner_get(k));
values.push(uint::max_value);
}
}
let mut smallest = 0;
for (i, &other) in maybes.iter().enumerate() {
values[i] = name.lev_distance(other);
if values[i] <= values[smallest] {
smallest = i;
}
}
if values.len() > 0 &&
values[smallest] != uint::max_value &&
values[smallest] < name.len() + 2 &&
values[smallest] <= max_distance &&
name != maybes[smallest] {
Some(maybes.swap_remove(smallest))
} else {
None
}
}
pub fn name_exists_in_scope_struct(@mut self, name: &str) -> bool {
let this = &mut *self;
let mut i = this.type_ribs.len();
while i != 0 {
i -= 1;
match this.type_ribs[i].kind {
MethodRibKind(node_id, _) =>
for item in this.crate.module.items.iter() {
if item.id == node_id {
match item.node {
item_struct(class_def, _) => {
for field in class_def.fields.iter() {
match field.node.kind {
unnamed_field => {},
named_field(ident, _) => {
if str::eq_slice(this.session.str_of(ident),
name) {
return true
}
}
}
}
}
_ => {}
}
}
},
_ => {}
}
}
return false;
}
pub fn resolve_expr(@mut self, expr: @Expr, visitor: &mut ResolveVisitor) {
// First, record candidate traits for this expression if it could
// result in the invocation of a method call.
self.record_candidate_traits_for_expr_if_necessary(expr);
// Next, resolve the node.
match expr.node {
// The interpretation of paths depends on whether the path has
// multiple elements in it or not.
ExprPath(ref path) => {
// This is a local path in the value namespace. Walk through
// scopes looking for it.
match self.resolve_path(expr.id, path, ValueNS, true, visitor) {
Some(def) => {
// Write the result into the def map.
debug!("(resolving expr) resolved `%s`",
self.path_idents_to_str(path));
// First-class methods are not supported yet; error
// out here.
match def {
DefMethod(*) => {
self.resolve_error(expr.span,
"first-class methods \
are not supported");
self.session.span_note(expr.span,
"call the method \
using the `.` \
syntax");
}
_ => {}
}
self.record_def(expr.id, def);
}
None => {
let wrong_name = self.path_idents_to_str(path);
if self.name_exists_in_scope_struct(wrong_name) {
self.resolve_error(expr.span,
fmt!("unresolved name `%s`. \
Did you mean `self.%s`?",
wrong_name,
wrong_name));
}
else {
// Be helpful if the name refers to a struct
// (The pattern matching def_tys where the id is in self.structs
// matches on regular structs while excluding tuple- and enum-like
// structs, which wouldn't result in this error.)
match self.with_no_errors(||
self.resolve_path(expr.id, path, TypeNS, false, visitor)) {
Some(DefTy(struct_id))
if self.structs.contains(&struct_id) => {
self.resolve_error(expr.span,
fmt!("`%s` is a structure name, but this expression \
uses it like a function name", wrong_name));
self.session.span_note(expr.span, fmt!("Did you mean to write: \
`%s { /* fields */ }`?", wrong_name));
}
_ =>
// limit search to 5 to reduce the number
// of stupid suggestions
match self.find_best_match_for_name(wrong_name, 5) {
Some(m) => {
self.resolve_error(expr.span,
fmt!("unresolved name `%s`. \
Did you mean `%s`?",
wrong_name, m));
}
None => {
self.resolve_error(expr.span,
fmt!("unresolved name `%s`.",
wrong_name));
}
}
}
}
}
}
visit::walk_expr(visitor, expr, ());
}
ExprFnBlock(ref fn_decl, ref block) => {
self.resolve_function(FunctionRibKind(expr.id, block.id),
Some(fn_decl),
NoTypeParameters,
block,
NoSelfBinding,
visitor);
}
ExprStruct(ref path, _, _) => {
// Resolve the path to the structure it goes to.
match self.resolve_path(expr.id, path, TypeNS, false, visitor) {
Some(DefTy(class_id)) | Some(DefStruct(class_id))
if self.structs.contains(&class_id) => {
let class_def = DefStruct(class_id);
self.record_def(expr.id, class_def);
}
Some(definition @ DefVariant(_, class_id, _))
if self.structs.contains(&class_id) => {
self.record_def(expr.id, definition);
}
result => {
debug!("(resolving expression) didn't find struct \
def: %?", result);
self.resolve_error(
path.span,
fmt!("`%s` does not name a structure",
self.path_idents_to_str(path)));
}
}
visit::walk_expr(visitor, expr, ());
}
ExprLoop(_, Some(label)) => {
do self.with_label_rib {
{
let this = &mut *self;
let def_like = DlDef(DefLabel(expr.id));
let rib = this.label_ribs[this.label_ribs.len() - 1];
// plain insert (no renaming)
rib.bindings.insert(label.name, def_like);
}
visit::walk_expr(visitor, expr, ());
}
}
ExprForLoop(*) => fail!("non-desugared expr_for_loop"),
ExprBreak(Some(label)) | ExprAgain(Some(label)) => {
match self.search_ribs(self.label_ribs, label, expr.span,
DontAllowCapturingSelf) {
None =>
self.resolve_error(expr.span,
fmt!("use of undeclared label \
`%s`",
interner_get(label))),
Some(DlDef(def @ DefLabel(_))) => {
self.record_def(expr.id, def)
}
Some(_) => {
self.session.span_bug(expr.span,
"label wasn't mapped to a \
label def!")
}
}
}
ExprSelf => {
match self.resolve_self_value_in_local_ribs(expr.span) {
None => {
self.resolve_error(expr.span,
"`self` is not allowed in \
this context")
}
Some(def) => self.record_def(expr.id, def),
}
}
_ => {
visit::walk_expr(visitor, expr, ());
}
}
}
pub fn record_candidate_traits_for_expr_if_necessary(@mut self,
expr: @Expr) {
match expr.node {
ExprField(_, ident, _) => {
// FIXME(#6890): Even though you can't treat a method like a
// field, we need to add any trait methods we find that match
// the field name so that we can do some nice error reporting
// later on in typeck.
let traits = self.search_for_traits_containing_method(ident);
self.trait_map.insert(expr.id, @mut traits);
}
ExprMethodCall(_, _, ident, _, _, _) => {
debug!("(recording candidate traits for expr) recording \
traits for %d",
expr.id);
let traits = self.search_for_traits_containing_method(ident);
self.trait_map.insert(expr.id, @mut traits);
}
ExprBinary(_, BiAdd, _, _) | ExprAssignOp(_, BiAdd, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.add_trait());
}
ExprBinary(_, BiSub, _, _) | ExprAssignOp(_, BiSub, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.sub_trait());
}
ExprBinary(_, BiMul, _, _) | ExprAssignOp(_, BiMul, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.mul_trait());
}
ExprBinary(_, BiDiv, _, _) | ExprAssignOp(_, BiDiv, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.div_trait());
}
ExprBinary(_, BiRem, _, _) | ExprAssignOp(_, BiRem, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.rem_trait());
}
ExprBinary(_, BiBitXor, _, _) | ExprAssignOp(_, BiBitXor, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitxor_trait());
}
ExprBinary(_, BiBitAnd, _, _) | ExprAssignOp(_, BiBitAnd, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitand_trait());
}
ExprBinary(_, BiBitOr, _, _) | ExprAssignOp(_, BiBitOr, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitor_trait());
}
ExprBinary(_, BiShl, _, _) | ExprAssignOp(_, BiShl, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.shl_trait());
}
ExprBinary(_, BiShr, _, _) | ExprAssignOp(_, BiShr, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.shr_trait());
}
ExprBinary(_, BiLt, _, _) | ExprBinary(_, BiLe, _, _) |
ExprBinary(_, BiGe, _, _) | ExprBinary(_, BiGt, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.ord_trait());
}
ExprBinary(_, BiEq, _, _) | ExprBinary(_, BiNe, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.eq_trait());
}
ExprUnary(_, UnNeg, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.neg_trait());
}
ExprUnary(_, UnNot, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.not_trait());
}
ExprIndex(*) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.index_trait());
}
_ => {
// Nothing to do.
}
}
}
pub fn search_for_traits_containing_method(@mut self, name: Ident)
-> ~[DefId] {
debug!("(searching for traits containing method) looking for '%s'",
self.session.str_of(name));
let mut found_traits = ~[];
let mut search_module = self.current_module;
match self.method_map.find(&name.name) {
Some(candidate_traits) => loop {
// Look for the current trait.
match self.current_trait_refs {
Some(ref trait_def_ids) => {
for trait_def_id in trait_def_ids.iter() {
if candidate_traits.contains(trait_def_id) {
self.add_trait_info(&mut found_traits,
*trait_def_id,
name);
}
}
}
None => {
// Nothing to do.
}
}
// Look for trait children.
self.populate_module_if_necessary(search_module);
for (_, &child_name_bindings) in
search_module.children.iter() {
match child_name_bindings.def_for_namespace(TypeNS) {
Some(def) => {
match def {
DefTrait(trait_def_id) => {
if candidate_traits.contains(&trait_def_id) {
self.add_trait_info(
&mut found_traits,
trait_def_id, name);
}
}
_ => {
// Continue.
}
}
}
None => {
// Continue.
}
}
}
// Look for imports.
for (_, &import_resolution) in search_module.import_resolutions.iter() {
match import_resolution.target_for_namespace(TypeNS) {
None => {
// Continue.
}
Some(target) => {
match target.bindings.def_for_namespace(TypeNS) {
Some(def) => {
match def {
DefTrait(trait_def_id) => {
if candidate_traits.contains(&trait_def_id) {
self.add_trait_info(
&mut found_traits,
trait_def_id, name);
self.used_imports.insert(
import_resolution.type_id);
}
}
_ => {
// Continue.
}
}
}
None => {
// Continue.
}
}
}
}
}
// Move to the next parent.
match search_module.parent_link {
NoParentLink => {
// Done.
break;
}
ModuleParentLink(parent_module, _) |
BlockParentLink(parent_module, _) => {
search_module = parent_module;
}
}
},
_ => ()
}
return found_traits;
}
pub fn add_trait_info(&self,
found_traits: &mut ~[DefId],
trait_def_id: DefId,
name: Ident) {
debug!("(adding trait info) found trait %d:%d for method '%s'",
trait_def_id.crate,
trait_def_id.node,
self.session.str_of(name));
found_traits.push(trait_def_id);
}
pub fn add_fixed_trait_for_expr(@mut self,
expr_id: NodeId,
trait_id: Option<DefId>) {
match trait_id {
Some(trait_id) => {
self.trait_map.insert(expr_id, @mut ~[trait_id]);
}
None => {}
}
}
pub fn record_def(@mut self, node_id: NodeId, def: Def) {
debug!("(recording def) recording %? for %?", def, node_id);
do self.def_map.insert_or_update_with(node_id, def) |_, old_value| {
// Resolve appears to "resolve" the same ID multiple
// times, so here is a sanity check it at least comes to
// the same conclusion! - nmatsakis
if def != *old_value {
self.session.bug(fmt!("node_id %? resolved first to %? \
and then %?", node_id, *old_value, def));
}
};
}
pub fn enforce_default_binding_mode(@mut self,
pat: @Pat,
pat_binding_mode: BindingMode,
descr: &str) {
match pat_binding_mode {
BindInfer => {}
BindByRef(*) => {
self.resolve_error(
pat.span,
fmt!("cannot use `ref` binding mode with %s",
descr));
}
}
}
//
// Unused import checking
//
// Although this is a lint pass, it lives in here because it depends on
// resolve data structures.
//
pub fn check_for_unused_imports(@mut self) {
let mut visitor = UnusedImportCheckVisitor{ resolver: self };
visit::walk_crate(&mut visitor, self.crate, ());
}
pub fn check_for_item_unused_imports(&mut self, vi: &view_item) {
// Ignore public import statements because there's no way to be sure
// whether they're used or not. Also ignore imports with a dummy span
// because this means that they were generated in some fashion by the
// compiler and we don't need to consider them.
if vi.vis == public { return }
if vi.span == dummy_sp() { return }
match vi.node {
view_item_extern_mod(*) => {} // ignore
view_item_use(ref path) => {
for p in path.iter() {
match p.node {
view_path_simple(_, _, id) | view_path_glob(_, id) => {
if !self.used_imports.contains(&id) {
self.session.add_lint(unused_imports,
id, p.span,
~"unused import");
}
}
view_path_list(_, ref list, _) => {
for i in list.iter() {
if !self.used_imports.contains(&i.node.id) {
self.session.add_lint(unused_imports,
i.node.id, i.span,
~"unused import");
}
}
}
}
}
}
}
}
//
// Diagnostics
//
// Diagnostics are not particularly efficient, because they're rarely
// hit.
//
/// A somewhat inefficient routine to obtain the name of a module.
pub fn module_to_str(@mut self, module_: @mut Module) -> ~str {
let mut idents = ~[];
let mut current_module = module_;
loop {
match current_module.parent_link {
NoParentLink => {
break;
}
ModuleParentLink(module_, name) => {
idents.push(name);
current_module = module_;
}
BlockParentLink(module_, _) => {
idents.push(special_idents::opaque);
current_module = module_;
}
}
}
if idents.len() == 0 {
return ~"???";
}
return self.idents_to_str(idents.move_rev_iter().collect::<~[ast::Ident]>());
}
pub fn dump_module(@mut self, module_: @mut Module) {
debug!("Dump of module `%s`:", self.module_to_str(module_));
debug!("Children:");
self.populate_module_if_necessary(module_);
for (&name, _) in module_.children.iter() {
debug!("* %s", interner_get(name));
}
debug!("Import resolutions:");
for (name, import_resolution) in module_.import_resolutions.iter() {
let value_repr;
match import_resolution.target_for_namespace(ValueNS) {
None => { value_repr = ~""; }
Some(_) => {
value_repr = ~" value:?";
// FIXME #4954
}
}
let type_repr;
match import_resolution.target_for_namespace(TypeNS) {
None => { type_repr = ~""; }
Some(_) => {
type_repr = ~" type:?";
// FIXME #4954
}
}
debug!("* %s:%s%s", interner_get(*name),
value_repr, type_repr);
}
}
}
pub struct CrateMap {
def_map: DefMap,
exp_map2: ExportMap2,
trait_map: TraitMap
}
/// Entry point to crate resolution.
pub fn resolve_crate(session: Session,
lang_items: LanguageItems,
crate: @Crate)
-> CrateMap {
let resolver = @mut Resolver(session, lang_items, crate);
resolver.resolve();
CrateMap {
def_map: resolver.def_map,
exp_map2: resolver.export_map2,
trait_map: resolver.trait_map.clone(),
}
}