5572 lines
220 KiB
Rust
5572 lines
220 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
|
|
use driver::session::Session;
|
|
use metadata::csearch::get_trait_method_def_ids;
|
|
use metadata::csearch::get_method_name_and_explicit_self;
|
|
use metadata::csearch::get_static_methods_if_impl;
|
|
use metadata::csearch::{get_type_name_if_impl, get_struct_fields};
|
|
use metadata::csearch;
|
|
use metadata::cstore::find_extern_mod_stmt_cnum;
|
|
use metadata::decoder::{DefLike, DlDef, DlField, DlImpl};
|
|
use middle::lang_items::LanguageItems;
|
|
use middle::lint::{unnecessary_qualification, unused_imports};
|
|
use middle::pat_util::pat_bindings;
|
|
|
|
use syntax::ast::*;
|
|
use syntax::ast;
|
|
use syntax::ast_util::{def_id_of_def, local_def, mtwt_resolve};
|
|
use syntax::ast_util::{path_to_ident, walk_pat, trait_method_to_ty_method};
|
|
use syntax::ast_util::{Privacy, Public, Private};
|
|
use syntax::ast_util::{variant_visibility_to_privacy, visibility_to_privacy};
|
|
use syntax::attr;
|
|
use syntax::parse::token;
|
|
use syntax::parse::token::{ident_interner, interner_get};
|
|
use syntax::parse::token::special_idents;
|
|
use syntax::print::pprust::path_to_str;
|
|
use syntax::codemap::{Span, dummy_sp, BytePos};
|
|
use syntax::opt_vec::OptVec;
|
|
use syntax::visit;
|
|
use syntax::visit::Visitor;
|
|
|
|
use std::str;
|
|
use std::uint;
|
|
use std::hashmap::{HashMap, HashSet};
|
|
use std::util;
|
|
|
|
// Definition mapping
|
|
pub type DefMap = @mut HashMap<NodeId,Def>;
|
|
|
|
pub struct binding_info {
|
|
span: Span,
|
|
binding_mode: BindingMode,
|
|
}
|
|
|
|
// Map from the name in a pattern to its binding mode.
|
|
pub type BindingMap = HashMap<Name,binding_info>;
|
|
|
|
// Trait method resolution
|
|
pub type TraitMap = HashMap<NodeId,@mut ~[DefId]>;
|
|
|
|
// A summary of the generics on a trait.
|
|
struct TraitGenerics {
|
|
has_lifetime: bool,
|
|
type_parameter_count: uint,
|
|
}
|
|
|
|
// This is the replacement export map. It maps a module to all of the exports
|
|
// within.
|
|
pub type ExportMap2 = @mut HashMap<NodeId, ~[Export2]>;
|
|
|
|
pub struct Export2 {
|
|
name: @str, // The name of the target.
|
|
def_id: DefId, // The definition of the target.
|
|
reexport: bool, // Whether this is a reexport.
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
pub enum PatternBindingMode {
|
|
RefutableMode,
|
|
LocalIrrefutableMode,
|
|
ArgumentIrrefutableMode,
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
pub enum Namespace {
|
|
TypeNS,
|
|
ValueNS
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
pub enum NamespaceError {
|
|
NoError,
|
|
ModuleError,
|
|
TypeError,
|
|
ValueError
|
|
}
|
|
|
|
/// A NamespaceResult represents the result of resolving an import in
|
|
/// a particular namespace. The result is either definitely-resolved,
|
|
/// definitely- unresolved, or unknown.
|
|
pub enum NamespaceResult {
|
|
/// Means that resolve hasn't gathered enough information yet to determine
|
|
/// whether the name is bound in this namespace. (That is, it hasn't
|
|
/// resolved all `use` directives yet.)
|
|
UnknownResult,
|
|
/// Means that resolve has determined that the name is definitely
|
|
/// not bound in the namespace.
|
|
UnboundResult,
|
|
/// Means that resolve has determined that the name is bound in the Module
|
|
/// argument, and specified by the NameBindings argument.
|
|
BoundResult(@mut Module, @mut NameBindings)
|
|
}
|
|
|
|
impl NamespaceResult {
|
|
pub fn is_unknown(&self) -> bool {
|
|
match *self {
|
|
UnknownResult => true,
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
|
|
pub enum NameDefinition {
|
|
NoNameDefinition, //< The name was unbound.
|
|
ChildNameDefinition(Def), //< The name identifies an immediate child.
|
|
ImportNameDefinition(Def) //< The name identifies an import.
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
pub enum Mutability {
|
|
Mutable,
|
|
Immutable
|
|
}
|
|
|
|
pub enum SelfBinding {
|
|
NoSelfBinding,
|
|
HasSelfBinding(NodeId)
|
|
}
|
|
|
|
struct ResolveVisitor {
|
|
resolver: @mut Resolver,
|
|
}
|
|
|
|
impl Visitor<()> for ResolveVisitor {
|
|
fn visit_item(&mut self, item:@item, _:()) {
|
|
self.resolver.resolve_item(item, self);
|
|
}
|
|
fn visit_arm(&mut self, arm:&Arm, _:()) {
|
|
self.resolver.resolve_arm(arm, self);
|
|
}
|
|
fn visit_block(&mut self, block:&Block, _:()) {
|
|
self.resolver.resolve_block(block, self);
|
|
}
|
|
fn visit_expr(&mut self, expr:@Expr, _:()) {
|
|
self.resolver.resolve_expr(expr, self);
|
|
}
|
|
fn visit_local(&mut self, local:@Local, _:()) {
|
|
self.resolver.resolve_local(local, self);
|
|
}
|
|
fn visit_ty(&mut self, ty:&Ty, _:()) {
|
|
self.resolver.resolve_type(ty, self);
|
|
}
|
|
}
|
|
|
|
/// Contains data for specific types of import directives.
|
|
pub enum ImportDirectiveSubclass {
|
|
SingleImport(Ident /* target */, Ident /* source */),
|
|
GlobImport
|
|
}
|
|
|
|
/// The context that we thread through while building the reduced graph.
|
|
#[deriving(Clone)]
|
|
pub enum ReducedGraphParent {
|
|
ModuleReducedGraphParent(@mut Module)
|
|
}
|
|
|
|
pub enum ResolveResult<T> {
|
|
Failed, // Failed to resolve the name.
|
|
Indeterminate, // Couldn't determine due to unresolved globs.
|
|
Success(T) // Successfully resolved the import.
|
|
}
|
|
|
|
impl<T> ResolveResult<T> {
|
|
pub fn failed(&self) -> bool {
|
|
match *self { Failed => true, _ => false }
|
|
}
|
|
pub fn indeterminate(&self) -> bool {
|
|
match *self { Indeterminate => true, _ => false }
|
|
}
|
|
}
|
|
|
|
pub enum TypeParameters<'self> {
|
|
NoTypeParameters, //< No type parameters.
|
|
HasTypeParameters(&'self Generics, //< Type parameters.
|
|
NodeId, //< ID of the enclosing item
|
|
|
|
// The index to start numbering the type parameters at.
|
|
// This is zero if this is the outermost set of type
|
|
// parameters, or equal to the number of outer type
|
|
// parameters. For example, if we have:
|
|
//
|
|
// impl I<T> {
|
|
// fn method<U>() { ... }
|
|
// }
|
|
//
|
|
// The index at the method site will be 1, because the
|
|
// outer T had index 0.
|
|
uint,
|
|
|
|
// The kind of the rib used for type parameters.
|
|
RibKind)
|
|
}
|
|
|
|
// The rib kind controls the translation of argument or local definitions
|
|
// (`def_arg` or `def_local`) to upvars (`def_upvar`).
|
|
|
|
pub enum RibKind {
|
|
// No translation needs to be applied.
|
|
NormalRibKind,
|
|
|
|
// We passed through a function scope at the given node ID. Translate
|
|
// upvars as appropriate.
|
|
FunctionRibKind(NodeId /* func id */, NodeId /* body id */),
|
|
|
|
// We passed through an impl or trait and are now in one of its
|
|
// methods. Allow references to ty params that impl or trait
|
|
// binds. Disallow any other upvars (including other ty params that are
|
|
// upvars).
|
|
// parent; method itself
|
|
MethodRibKind(NodeId, MethodSort),
|
|
|
|
// We passed through a function *item* scope. Disallow upvars.
|
|
OpaqueFunctionRibKind,
|
|
|
|
// We're in a constant item. Can't refer to dynamic stuff.
|
|
ConstantItemRibKind
|
|
}
|
|
|
|
// Methods can be required or provided. Required methods only occur in traits.
|
|
pub enum MethodSort {
|
|
Required,
|
|
Provided(NodeId)
|
|
}
|
|
|
|
// The X-ray flag indicates that a context has the X-ray privilege, which
|
|
// allows it to reference private names. Currently, this is used for the test
|
|
// runner.
|
|
//
|
|
// FIXME #4947: The X-ray flag is kind of questionable in the first
|
|
// place. It might be better to introduce an expr_xray_path instead.
|
|
|
|
#[deriving(Eq)]
|
|
pub enum XrayFlag {
|
|
NoXray, //< Private items cannot be accessed.
|
|
Xray //< Private items can be accessed.
|
|
}
|
|
|
|
pub enum UseLexicalScopeFlag {
|
|
DontUseLexicalScope,
|
|
UseLexicalScope
|
|
}
|
|
|
|
pub enum SearchThroughModulesFlag {
|
|
DontSearchThroughModules,
|
|
SearchThroughModules
|
|
}
|
|
|
|
pub enum ModulePrefixResult {
|
|
NoPrefixFound,
|
|
PrefixFound(@mut Module, uint)
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
pub enum AllowCapturingSelfFlag {
|
|
AllowCapturingSelf, //< The "self" definition can be captured.
|
|
DontAllowCapturingSelf, //< The "self" definition cannot be captured.
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
enum NameSearchType {
|
|
/// We're doing a name search in order to resolve a `use` directive.
|
|
ImportSearch,
|
|
|
|
/// We're doing a name search in order to resolve a path type, a path
|
|
/// expression, or a path pattern. We can select public or private
|
|
/// names.
|
|
///
|
|
/// XXX: This should be ripped out of resolve and handled later, in
|
|
/// the privacy checking phase.
|
|
PathPublicOrPrivateSearch,
|
|
|
|
/// We're doing a name search in order to resolve a path type, a path
|
|
/// expression, or a path pattern. Allow only public names to be selected.
|
|
PathPublicOnlySearch,
|
|
}
|
|
|
|
pub enum BareIdentifierPatternResolution {
|
|
FoundStructOrEnumVariant(Def),
|
|
FoundConst(Def),
|
|
BareIdentifierPatternUnresolved
|
|
}
|
|
|
|
// Specifies how duplicates should be handled when adding a child item if
|
|
// another item exists with the same name in some namespace.
|
|
#[deriving(Eq)]
|
|
pub enum DuplicateCheckingMode {
|
|
ForbidDuplicateModules,
|
|
ForbidDuplicateTypes,
|
|
ForbidDuplicateValues,
|
|
ForbidDuplicateTypesAndValues,
|
|
OverwriteDuplicates
|
|
}
|
|
|
|
/// One local scope.
|
|
pub struct Rib {
|
|
bindings: @mut HashMap<Name, DefLike>,
|
|
self_binding: @mut Option<DefLike>,
|
|
kind: RibKind,
|
|
}
|
|
|
|
impl Rib {
|
|
pub fn new(kind: RibKind) -> Rib {
|
|
Rib {
|
|
bindings: @mut HashMap::new(),
|
|
self_binding: @mut None,
|
|
kind: kind
|
|
}
|
|
}
|
|
}
|
|
|
|
/// One import directive.
|
|
pub struct ImportDirective {
|
|
privacy: Privacy,
|
|
module_path: ~[Ident],
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: Span,
|
|
id: NodeId,
|
|
}
|
|
|
|
impl ImportDirective {
|
|
pub fn new(privacy: Privacy,
|
|
module_path: ~[Ident],
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: Span,
|
|
id: NodeId)
|
|
-> ImportDirective {
|
|
ImportDirective {
|
|
privacy: privacy,
|
|
module_path: module_path,
|
|
subclass: subclass,
|
|
span: span,
|
|
id: id
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The item that an import resolves to.
|
|
pub struct Target {
|
|
target_module: @mut Module,
|
|
bindings: @mut NameBindings,
|
|
}
|
|
|
|
impl Target {
|
|
pub fn new(target_module: @mut Module,
|
|
bindings: @mut NameBindings)
|
|
-> Target {
|
|
Target {
|
|
target_module: target_module,
|
|
bindings: bindings
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An ImportResolution represents a particular `use` directive.
|
|
pub struct ImportResolution {
|
|
/// The privacy of this `use` directive (whether it's `use` or
|
|
/// `pub use`.
|
|
privacy: Privacy,
|
|
|
|
// The number of outstanding references to this name. When this reaches
|
|
// zero, outside modules can count on the targets being correct. Before
|
|
// then, all bets are off; future imports could override this name.
|
|
outstanding_references: uint,
|
|
|
|
/// The value that this `use` directive names, if there is one.
|
|
value_target: Option<Target>,
|
|
/// The source node of the `use` directive leading to the value target
|
|
/// being non-none
|
|
value_id: NodeId,
|
|
|
|
/// The type that this `use` directive names, if there is one.
|
|
type_target: Option<Target>,
|
|
/// The source node of the `use` directive leading to the type target
|
|
/// being non-none
|
|
type_id: NodeId,
|
|
}
|
|
|
|
impl ImportResolution {
|
|
pub fn new(privacy: Privacy,
|
|
id: NodeId) -> ImportResolution {
|
|
ImportResolution {
|
|
privacy: privacy,
|
|
type_id: id,
|
|
value_id: id,
|
|
outstanding_references: 0,
|
|
value_target: None,
|
|
type_target: None,
|
|
}
|
|
}
|
|
|
|
pub fn target_for_namespace(&self, namespace: Namespace)
|
|
-> Option<Target> {
|
|
match namespace {
|
|
TypeNS => return self.type_target,
|
|
ValueNS => return self.value_target,
|
|
}
|
|
}
|
|
|
|
fn id(&self, namespace: Namespace) -> NodeId {
|
|
match namespace {
|
|
TypeNS => self.type_id,
|
|
ValueNS => self.value_id,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The link from a module up to its nearest parent node.
|
|
pub enum ParentLink {
|
|
NoParentLink,
|
|
ModuleParentLink(@mut Module, Ident),
|
|
BlockParentLink(@mut Module, NodeId)
|
|
}
|
|
|
|
/// The type of module this is.
|
|
#[deriving(Eq)]
|
|
pub enum ModuleKind {
|
|
NormalModuleKind,
|
|
ExternModuleKind,
|
|
TraitModuleKind,
|
|
ImplModuleKind,
|
|
AnonymousModuleKind,
|
|
}
|
|
|
|
/// One node in the tree of modules.
|
|
pub struct Module {
|
|
parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
|
|
children: @mut HashMap<Name, @mut NameBindings>,
|
|
imports: @mut ~[@ImportDirective],
|
|
|
|
// The external module children of this node that were declared with
|
|
// `extern mod`.
|
|
external_module_children: @mut HashMap<Name, @mut Module>,
|
|
|
|
// The anonymous children of this node. Anonymous children are pseudo-
|
|
// modules that are implicitly created around items contained within
|
|
// blocks.
|
|
//
|
|
// For example, if we have this:
|
|
//
|
|
// fn f() {
|
|
// fn g() {
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// There will be an anonymous module created around `g` with the ID of the
|
|
// entry block for `f`.
|
|
anonymous_children: @mut HashMap<NodeId,@mut Module>,
|
|
|
|
// The status of resolving each import in this module.
|
|
import_resolutions: @mut HashMap<Name, @mut ImportResolution>,
|
|
|
|
// The number of unresolved globs that this module exports.
|
|
glob_count: uint,
|
|
|
|
// The index of the import we're resolving.
|
|
resolved_import_count: uint,
|
|
|
|
// Whether this module is populated. If not populated, any attempt to
|
|
// access the children must be preceded with a
|
|
// `populate_module_if_necessary` call.
|
|
populated: bool,
|
|
}
|
|
|
|
impl Module {
|
|
pub fn new(parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool)
|
|
-> Module {
|
|
Module {
|
|
parent_link: parent_link,
|
|
def_id: def_id,
|
|
kind: kind,
|
|
children: @mut HashMap::new(),
|
|
imports: @mut ~[],
|
|
external_module_children: @mut HashMap::new(),
|
|
anonymous_children: @mut HashMap::new(),
|
|
import_resolutions: @mut HashMap::new(),
|
|
glob_count: 0,
|
|
resolved_import_count: 0,
|
|
populated: !external,
|
|
}
|
|
}
|
|
|
|
pub fn all_imports_resolved(&self) -> bool {
|
|
let imports = &mut *self.imports;
|
|
return imports.len() == self.resolved_import_count;
|
|
}
|
|
}
|
|
|
|
// Records a possibly-private type definition.
|
|
pub struct TypeNsDef {
|
|
privacy: Privacy,
|
|
module_def: Option<@mut Module>,
|
|
type_def: Option<Def>,
|
|
type_span: Option<Span>
|
|
}
|
|
|
|
// Records a possibly-private value definition.
|
|
pub struct ValueNsDef {
|
|
privacy: Privacy,
|
|
def: Def,
|
|
value_span: Option<Span>,
|
|
}
|
|
|
|
// Records the definitions (at most one for each namespace) that a name is
|
|
// bound to.
|
|
pub struct NameBindings {
|
|
type_def: Option<TypeNsDef>, //< Meaning in type namespace.
|
|
value_def: Option<ValueNsDef>, //< Meaning in value namespace.
|
|
}
|
|
|
|
/// Ways in which a trait can be referenced
|
|
enum TraitReferenceType {
|
|
TraitImplementation, // impl SomeTrait for T { ... }
|
|
TraitDerivation, // trait T : SomeTrait { ... }
|
|
TraitBoundingTypeParameter, // fn f<T:SomeTrait>() { ... }
|
|
}
|
|
|
|
impl NameBindings {
|
|
/// Creates a new module in this set of name bindings.
|
|
pub fn define_module(@mut self,
|
|
privacy: Privacy,
|
|
parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
sp: Span) {
|
|
// Merges the module with the existing type def or creates a new one.
|
|
let module_ = @mut Module::new(parent_link, def_id, kind, external);
|
|
match self.type_def {
|
|
None => {
|
|
self.type_def = Some(TypeNsDef {
|
|
privacy: privacy,
|
|
module_def: Some(module_),
|
|
type_def: None,
|
|
type_span: Some(sp)
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
self.type_def = Some(TypeNsDef {
|
|
privacy: privacy,
|
|
module_def: Some(module_),
|
|
type_span: Some(sp),
|
|
type_def: type_def.type_def
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Sets the kind of the module, creating a new one if necessary.
|
|
pub fn set_module_kind(@mut self,
|
|
privacy: Privacy,
|
|
parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
_sp: Span) {
|
|
match self.type_def {
|
|
None => {
|
|
let module = @mut Module::new(parent_link, def_id, kind, external);
|
|
self.type_def = Some(TypeNsDef {
|
|
privacy: privacy,
|
|
module_def: Some(module),
|
|
type_def: None,
|
|
type_span: None,
|
|
})
|
|
}
|
|
Some(type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
let module = @mut Module::new(parent_link,
|
|
def_id,
|
|
kind,
|
|
external);
|
|
self.type_def = Some(TypeNsDef {
|
|
privacy: privacy,
|
|
module_def: Some(module),
|
|
type_def: type_def.type_def,
|
|
type_span: None,
|
|
})
|
|
}
|
|
Some(module_def) => module_def.kind = kind,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Records a type definition.
|
|
pub fn define_type(@mut self, privacy: Privacy, def: Def, sp: Span) {
|
|
// Merges the type with the existing type def or creates a new one.
|
|
match self.type_def {
|
|
None => {
|
|
self.type_def = Some(TypeNsDef {
|
|
privacy: privacy,
|
|
module_def: None,
|
|
type_def: Some(def),
|
|
type_span: Some(sp)
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
self.type_def = Some(TypeNsDef {
|
|
privacy: privacy,
|
|
type_def: Some(def),
|
|
type_span: Some(sp),
|
|
module_def: type_def.module_def
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Records a value definition.
|
|
pub fn define_value(@mut self, privacy: Privacy, def: Def, sp: Span) {
|
|
self.value_def = Some(ValueNsDef { privacy: privacy, def: def, value_span: Some(sp) });
|
|
}
|
|
|
|
/// Returns the module node if applicable.
|
|
pub fn get_module_if_available(&self) -> Option<@mut Module> {
|
|
match self.type_def {
|
|
Some(ref type_def) => (*type_def).module_def,
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the module node. Fails if this node does not have a module
|
|
* definition.
|
|
*/
|
|
pub fn get_module(@mut self) -> @mut Module {
|
|
match self.get_module_if_available() {
|
|
None => {
|
|
fail!("get_module called on a node with no module \
|
|
definition!")
|
|
}
|
|
Some(module_def) => module_def
|
|
}
|
|
}
|
|
|
|
pub fn defined_in_namespace(&self, namespace: Namespace) -> bool {
|
|
match namespace {
|
|
TypeNS => return self.type_def.is_some(),
|
|
ValueNS => return self.value_def.is_some()
|
|
}
|
|
}
|
|
|
|
pub fn defined_in_public_namespace(&self, namespace: Namespace) -> bool {
|
|
match namespace {
|
|
TypeNS => match self.type_def {
|
|
Some(def) => def.privacy != Private,
|
|
None => false
|
|
},
|
|
ValueNS => match self.value_def {
|
|
Some(def) => def.privacy != Private,
|
|
None => false
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn def_for_namespace(&self, namespace: Namespace) -> Option<Def> {
|
|
match namespace {
|
|
TypeNS => {
|
|
match self.type_def {
|
|
None => None,
|
|
Some(ref type_def) => {
|
|
match (*type_def).type_def {
|
|
Some(type_def) => Some(type_def),
|
|
None => {
|
|
match type_def.module_def {
|
|
Some(module) => {
|
|
match module.def_id {
|
|
Some(did) => Some(DefMod(did)),
|
|
None => None,
|
|
}
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ValueNS => {
|
|
match self.value_def {
|
|
None => None,
|
|
Some(value_def) => Some(value_def.def)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn privacy_for_namespace(&self, namespace: Namespace)
|
|
-> Option<Privacy> {
|
|
match namespace {
|
|
TypeNS => {
|
|
match self.type_def {
|
|
None => None,
|
|
Some(ref type_def) => Some((*type_def).privacy)
|
|
}
|
|
}
|
|
ValueNS => {
|
|
match self.value_def {
|
|
None => None,
|
|
Some(value_def) => Some(value_def.privacy)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn span_for_namespace(&self, namespace: Namespace) -> Option<Span> {
|
|
if self.defined_in_namespace(namespace) {
|
|
match namespace {
|
|
TypeNS => {
|
|
match self.type_def {
|
|
None => None,
|
|
Some(type_def) => type_def.type_span
|
|
}
|
|
}
|
|
ValueNS => {
|
|
match self.value_def {
|
|
None => None,
|
|
Some(value_def) => value_def.value_span
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn NameBindings() -> NameBindings {
|
|
NameBindings {
|
|
type_def: None,
|
|
value_def: None
|
|
}
|
|
}
|
|
|
|
/// Interns the names of the primitive types.
|
|
pub struct PrimitiveTypeTable {
|
|
primitive_types: HashMap<Name,prim_ty>,
|
|
}
|
|
|
|
impl PrimitiveTypeTable {
|
|
pub fn intern(&mut self,
|
|
string: &str,
|
|
primitive_type: prim_ty) {
|
|
self.primitive_types.insert(token::intern(string), primitive_type);
|
|
}
|
|
}
|
|
|
|
pub fn PrimitiveTypeTable() -> PrimitiveTypeTable {
|
|
let mut table = PrimitiveTypeTable {
|
|
primitive_types: HashMap::new()
|
|
};
|
|
|
|
table.intern("bool", ty_bool);
|
|
table.intern("char", ty_char);
|
|
table.intern("float", ty_float(ty_f));
|
|
table.intern("f32", ty_float(ty_f32));
|
|
table.intern("f64", ty_float(ty_f64));
|
|
table.intern("int", ty_int(ty_i));
|
|
table.intern("i8", ty_int(ty_i8));
|
|
table.intern("i16", ty_int(ty_i16));
|
|
table.intern("i32", ty_int(ty_i32));
|
|
table.intern("i64", ty_int(ty_i64));
|
|
table.intern("str", ty_str);
|
|
table.intern("uint", ty_uint(ty_u));
|
|
table.intern("u8", ty_uint(ty_u8));
|
|
table.intern("u16", ty_uint(ty_u16));
|
|
table.intern("u32", ty_uint(ty_u32));
|
|
table.intern("u64", ty_uint(ty_u64));
|
|
|
|
return table;
|
|
}
|
|
|
|
|
|
pub fn namespace_error_to_str(ns: NamespaceError) -> &'static str {
|
|
match ns {
|
|
NoError => "",
|
|
ModuleError => "module",
|
|
TypeError => "type",
|
|
ValueError => "value",
|
|
}
|
|
}
|
|
|
|
pub fn Resolver(session: Session,
|
|
lang_items: LanguageItems,
|
|
crate: @Crate)
|
|
-> Resolver {
|
|
let graph_root = @mut NameBindings();
|
|
|
|
graph_root.define_module(Public,
|
|
NoParentLink,
|
|
Some(DefId { crate: 0, node: 0 }),
|
|
NormalModuleKind,
|
|
false,
|
|
crate.span);
|
|
|
|
let current_module = graph_root.get_module();
|
|
|
|
let this = Resolver {
|
|
session: @session,
|
|
lang_items: lang_items,
|
|
crate: crate,
|
|
|
|
// The outermost module has def ID 0; this is not reflected in the
|
|
// AST.
|
|
|
|
graph_root: graph_root,
|
|
|
|
method_map: @mut HashMap::new(),
|
|
structs: HashSet::new(),
|
|
|
|
unresolved_imports: 0,
|
|
|
|
current_module: current_module,
|
|
value_ribs: @mut ~[],
|
|
type_ribs: @mut ~[],
|
|
label_ribs: @mut ~[],
|
|
|
|
xray_context: NoXray,
|
|
current_trait_refs: None,
|
|
|
|
self_ident: special_idents::self_,
|
|
type_self_ident: special_idents::type_self,
|
|
|
|
primitive_type_table: @PrimitiveTypeTable(),
|
|
|
|
namespaces: ~[ TypeNS, ValueNS ],
|
|
|
|
def_map: @mut HashMap::new(),
|
|
export_map2: @mut HashMap::new(),
|
|
trait_map: HashMap::new(),
|
|
used_imports: HashSet::new(),
|
|
|
|
emit_errors: true,
|
|
intr: session.intr()
|
|
};
|
|
|
|
this
|
|
}
|
|
|
|
/// The main resolver class.
|
|
pub struct Resolver {
|
|
session: @Session,
|
|
lang_items: LanguageItems,
|
|
crate: @Crate,
|
|
|
|
intr: @ident_interner,
|
|
|
|
graph_root: @mut NameBindings,
|
|
|
|
method_map: @mut HashMap<Name, HashSet<DefId>>,
|
|
structs: HashSet<DefId>,
|
|
|
|
// The number of imports that are currently unresolved.
|
|
unresolved_imports: uint,
|
|
|
|
// The module that represents the current item scope.
|
|
current_module: @mut Module,
|
|
|
|
// The current set of local scopes, for values.
|
|
// FIXME #4948: Reuse ribs to avoid allocation.
|
|
value_ribs: @mut ~[@Rib],
|
|
|
|
// The current set of local scopes, for types.
|
|
type_ribs: @mut ~[@Rib],
|
|
|
|
// The current set of local scopes, for labels.
|
|
label_ribs: @mut ~[@Rib],
|
|
|
|
// Whether the current context is an X-ray context. An X-ray context is
|
|
// allowed to access private names of any module.
|
|
xray_context: XrayFlag,
|
|
|
|
// The trait that the current context can refer to.
|
|
current_trait_refs: Option<~[DefId]>,
|
|
|
|
// The ident for the keyword "self".
|
|
self_ident: Ident,
|
|
// The ident for the non-keyword "Self".
|
|
type_self_ident: Ident,
|
|
|
|
// The idents for the primitive types.
|
|
primitive_type_table: @PrimitiveTypeTable,
|
|
|
|
// The four namespaces.
|
|
namespaces: ~[Namespace],
|
|
|
|
def_map: DefMap,
|
|
export_map2: ExportMap2,
|
|
trait_map: TraitMap,
|
|
|
|
// Whether or not to print error messages. Can be set to true
|
|
// when getting additional info for error message suggestions,
|
|
// so as to avoid printing duplicate errors
|
|
emit_errors: bool,
|
|
|
|
used_imports: HashSet<NodeId>,
|
|
}
|
|
|
|
struct BuildReducedGraphVisitor {
|
|
resolver: @mut Resolver,
|
|
}
|
|
|
|
impl Visitor<ReducedGraphParent> for BuildReducedGraphVisitor {
|
|
|
|
fn visit_item(&mut self, item:@item, context:ReducedGraphParent) {
|
|
self.resolver.build_reduced_graph_for_item(item, (context, self));
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, foreign_item:@foreign_item, context:ReducedGraphParent) {
|
|
self.resolver.build_reduced_graph_for_foreign_item(foreign_item,
|
|
(context,
|
|
self));
|
|
}
|
|
|
|
fn visit_view_item(&mut self, view_item:&view_item, context:ReducedGraphParent) {
|
|
self.resolver.build_reduced_graph_for_view_item(view_item,
|
|
(context,
|
|
self));
|
|
}
|
|
|
|
fn visit_block(&mut self, block:&Block, context:ReducedGraphParent) {
|
|
self.resolver.build_reduced_graph_for_block(block,
|
|
(context,
|
|
self));
|
|
}
|
|
|
|
}
|
|
|
|
struct UnusedImportCheckVisitor { resolver: @mut Resolver }
|
|
|
|
impl Visitor<()> for UnusedImportCheckVisitor {
|
|
fn visit_view_item(&mut self, vi:&view_item, _:()) {
|
|
self.resolver.check_for_item_unused_imports(vi);
|
|
visit::walk_view_item(self, vi, ());
|
|
}
|
|
}
|
|
|
|
impl Resolver {
|
|
/// The main name resolution procedure.
|
|
pub fn resolve(@mut self) {
|
|
self.build_reduced_graph();
|
|
self.session.abort_if_errors();
|
|
|
|
self.resolve_imports();
|
|
self.session.abort_if_errors();
|
|
|
|
self.record_exports();
|
|
self.session.abort_if_errors();
|
|
|
|
self.resolve_crate();
|
|
self.session.abort_if_errors();
|
|
|
|
self.check_for_unused_imports();
|
|
}
|
|
|
|
//
|
|
// Reduced graph building
|
|
//
|
|
// Here we build the "reduced graph": the graph of the module tree without
|
|
// any imports resolved.
|
|
//
|
|
|
|
/// Constructs the reduced graph for the entire crate.
|
|
pub fn build_reduced_graph(@mut self) {
|
|
let initial_parent =
|
|
ModuleReducedGraphParent(self.graph_root.get_module());
|
|
|
|
let mut visitor = BuildReducedGraphVisitor { resolver: self, };
|
|
visit::walk_crate(&mut visitor, self.crate, initial_parent);
|
|
}
|
|
|
|
/// Returns the current module tracked by the reduced graph parent.
|
|
pub fn get_module_from_parent(@mut self,
|
|
reduced_graph_parent: ReducedGraphParent)
|
|
-> @mut Module {
|
|
match reduced_graph_parent {
|
|
ModuleReducedGraphParent(module_) => {
|
|
return module_;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Adds a new child item to the module definition of the parent node and
|
|
* returns its corresponding name bindings as well as the current parent.
|
|
* Or, if we're inside a block, creates (or reuses) an anonymous module
|
|
* corresponding to the innermost block ID and returns the name bindings
|
|
* as well as the newly-created parent.
|
|
*
|
|
* If this node does not have a module definition and we are not inside
|
|
* a block, fails.
|
|
*/
|
|
pub fn add_child(@mut self,
|
|
name: Ident,
|
|
reduced_graph_parent: ReducedGraphParent,
|
|
duplicate_checking_mode: DuplicateCheckingMode,
|
|
// For printing errors
|
|
sp: Span)
|
|
-> (@mut NameBindings, ReducedGraphParent) {
|
|
// If this is the immediate descendant of a module, then we add the
|
|
// child name directly. Otherwise, we create or reuse an anonymous
|
|
// module and add the child to that.
|
|
|
|
let module_;
|
|
match reduced_graph_parent {
|
|
ModuleReducedGraphParent(parent_module) => {
|
|
module_ = parent_module;
|
|
}
|
|
}
|
|
|
|
// Add or reuse the child.
|
|
let new_parent = ModuleReducedGraphParent(module_);
|
|
match module_.children.find(&name.name) {
|
|
None => {
|
|
let child = @mut NameBindings();
|
|
module_.children.insert(name.name, child);
|
|
return (child, new_parent);
|
|
}
|
|
Some(&child) => {
|
|
// Enforce the duplicate checking mode:
|
|
//
|
|
// * If we're requesting duplicate module checking, check that
|
|
// there isn't a module in the module with the same name.
|
|
//
|
|
// * If we're requesting duplicate type checking, check that
|
|
// there isn't a type in the module with the same name.
|
|
//
|
|
// * If we're requesting duplicate value checking, check that
|
|
// there isn't a value in the module with the same name.
|
|
//
|
|
// * If we're requesting duplicate type checking and duplicate
|
|
// value checking, check that there isn't a duplicate type
|
|
// and a duplicate value with the same name.
|
|
//
|
|
// * If no duplicate checking was requested at all, do
|
|
// nothing.
|
|
|
|
let mut duplicate_type = NoError;
|
|
let ns = match duplicate_checking_mode {
|
|
ForbidDuplicateModules => {
|
|
if (child.get_module_if_available().is_some()) {
|
|
duplicate_type = ModuleError;
|
|
}
|
|
Some(TypeNS)
|
|
}
|
|
ForbidDuplicateTypes => {
|
|
match child.def_for_namespace(TypeNS) {
|
|
Some(DefMod(_)) | None => {}
|
|
Some(_) => duplicate_type = TypeError
|
|
}
|
|
Some(TypeNS)
|
|
}
|
|
ForbidDuplicateValues => {
|
|
if child.defined_in_namespace(ValueNS) {
|
|
duplicate_type = ValueError;
|
|
}
|
|
Some(ValueNS)
|
|
}
|
|
ForbidDuplicateTypesAndValues => {
|
|
let mut n = None;
|
|
match child.def_for_namespace(TypeNS) {
|
|
Some(DefMod(_)) | None => {}
|
|
Some(_) => {
|
|
n = Some(TypeNS);
|
|
duplicate_type = TypeError;
|
|
}
|
|
};
|
|
if child.defined_in_namespace(ValueNS) {
|
|
duplicate_type = ValueError;
|
|
n = Some(ValueNS);
|
|
}
|
|
n
|
|
}
|
|
OverwriteDuplicates => None
|
|
};
|
|
if (duplicate_type != NoError) {
|
|
// Return an error here by looking up the namespace that
|
|
// had the duplicate.
|
|
let ns = ns.unwrap();
|
|
self.resolve_error(sp,
|
|
fmt!("duplicate definition of %s `%s`",
|
|
namespace_error_to_str(duplicate_type),
|
|
self.session.str_of(name)));
|
|
{
|
|
let r = child.span_for_namespace(ns);
|
|
for sp in r.iter() {
|
|
self.session.span_note(*sp,
|
|
fmt!("first definition of %s `%s` here",
|
|
namespace_error_to_str(duplicate_type),
|
|
self.session.str_of(name)));
|
|
}
|
|
}
|
|
}
|
|
return (child, new_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn block_needs_anonymous_module(@mut self, block: &Block) -> bool {
|
|
// If the block has view items, we need an anonymous module.
|
|
if block.view_items.len() > 0 {
|
|
return true;
|
|
}
|
|
|
|
// Check each statement.
|
|
for statement in block.stmts.iter() {
|
|
match statement.node {
|
|
StmtDecl(declaration, _) => {
|
|
match declaration.node {
|
|
DeclItem(_) => {
|
|
return true;
|
|
}
|
|
_ => {
|
|
// Keep searching.
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
// Keep searching.
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found neither view items nor items, we don't need to create
|
|
// an anonymous module.
|
|
|
|
return false;
|
|
}
|
|
|
|
pub fn get_parent_link(@mut self, parent: ReducedGraphParent, name: Ident)
|
|
-> ParentLink {
|
|
match parent {
|
|
ModuleReducedGraphParent(module_) => {
|
|
return ModuleParentLink(module_, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs the reduced graph for one item.
|
|
pub fn build_reduced_graph_for_item(@mut self,
|
|
item: @item,
|
|
(parent, visitor): (ReducedGraphParent,
|
|
&mut BuildReducedGraphVisitor)) {
|
|
let ident = item.ident;
|
|
let sp = item.span;
|
|
let privacy = visibility_to_privacy(item.vis);
|
|
|
|
match item.node {
|
|
item_mod(ref module_) => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(ident, parent, ForbidDuplicateModules, sp);
|
|
|
|
let parent_link = self.get_parent_link(new_parent, ident);
|
|
let def_id = DefId { crate: 0, node: item.id };
|
|
name_bindings.define_module(privacy,
|
|
parent_link,
|
|
Some(def_id),
|
|
NormalModuleKind,
|
|
false,
|
|
sp);
|
|
|
|
let new_parent =
|
|
ModuleReducedGraphParent(name_bindings.get_module());
|
|
|
|
visit::walk_mod(visitor, module_, new_parent);
|
|
}
|
|
|
|
item_foreign_mod(ref fm) => {
|
|
let new_parent = match fm.sort {
|
|
named => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(ident, parent,
|
|
ForbidDuplicateModules, sp);
|
|
|
|
let parent_link = self.get_parent_link(new_parent,
|
|
ident);
|
|
let def_id = DefId { crate: 0, node: item.id };
|
|
name_bindings.define_module(privacy,
|
|
parent_link,
|
|
Some(def_id),
|
|
ExternModuleKind,
|
|
false,
|
|
sp);
|
|
|
|
ModuleReducedGraphParent(name_bindings.get_module())
|
|
}
|
|
|
|
// For anon foreign mods, the contents just go in the
|
|
// current scope
|
|
anonymous => parent
|
|
};
|
|
|
|
visit::walk_item(visitor, item, new_parent);
|
|
}
|
|
|
|
// These items live in the value namespace.
|
|
item_static(_, m, _) => {
|
|
let (name_bindings, _) =
|
|
self.add_child(ident, parent, ForbidDuplicateValues, sp);
|
|
let mutbl = m == ast::MutMutable;
|
|
|
|
name_bindings.define_value
|
|
(privacy, DefStatic(local_def(item.id), mutbl), sp);
|
|
}
|
|
item_fn(_, purity, _, _, _) => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(ident, parent, ForbidDuplicateValues, sp);
|
|
|
|
let def = DefFn(local_def(item.id), purity);
|
|
name_bindings.define_value(privacy, def, sp);
|
|
visit::walk_item(visitor, item, new_parent);
|
|
}
|
|
|
|
// These items live in the type namespace.
|
|
item_ty(*) => {
|
|
let (name_bindings, _) =
|
|
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
|
|
|
|
name_bindings.define_type
|
|
(privacy, DefTy(local_def(item.id)), sp);
|
|
}
|
|
|
|
item_enum(ref enum_definition, _) => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
|
|
|
|
name_bindings.define_type
|
|
(privacy, DefTy(local_def(item.id)), sp);
|
|
|
|
for variant in (*enum_definition).variants.iter() {
|
|
self.build_reduced_graph_for_variant(
|
|
variant,
|
|
local_def(item.id),
|
|
// inherited => privacy of the enum item
|
|
variant_visibility_to_privacy(variant.node.vis,
|
|
privacy == Public),
|
|
new_parent, visitor);
|
|
}
|
|
}
|
|
|
|
// These items live in both the type and value namespaces.
|
|
item_struct(struct_def, _) => {
|
|
// Adding to both Type and Value namespaces or just Type?
|
|
let (forbid, ctor_id) = match struct_def.ctor_id {
|
|
Some(ctor_id) => (ForbidDuplicateTypesAndValues, Some(ctor_id)),
|
|
None => (ForbidDuplicateTypes, None)
|
|
};
|
|
|
|
let (name_bindings, new_parent) = self.add_child(ident, parent, forbid, sp);
|
|
|
|
// Define a name in the type namespace.
|
|
name_bindings.define_type(privacy, DefTy(local_def(item.id)), sp);
|
|
|
|
// If this is a newtype or unit-like struct, define a name
|
|
// in the value namespace as well
|
|
do ctor_id.while_some |cid| {
|
|
name_bindings.define_value(privacy, DefStruct(local_def(cid)), sp);
|
|
None
|
|
}
|
|
|
|
// Record the def ID of this struct.
|
|
self.structs.insert(local_def(item.id));
|
|
|
|
visit::walk_item(visitor, item, new_parent);
|
|
}
|
|
|
|
item_impl(_, None, ref ty, ref methods) => {
|
|
// If this implements an anonymous trait, then add all the
|
|
// methods within to a new module, if the type was defined
|
|
// within this module.
|
|
//
|
|
// FIXME (#3785): This is quite unsatisfactory. Perhaps we
|
|
// should modify anonymous traits to only be implementable in
|
|
// the same module that declared the type.
|
|
|
|
// Create the module and add all methods.
|
|
match ty {
|
|
&Ty {
|
|
node: ty_path(ref path, _, _),
|
|
_
|
|
} if path.segments.len() == 1 => {
|
|
let name = path_to_ident(path);
|
|
|
|
let new_parent = match parent.children.find(&name.name) {
|
|
// It already exists
|
|
Some(&child) if child.get_module_if_available()
|
|
.is_some() &&
|
|
child.get_module().kind ==
|
|
ImplModuleKind => {
|
|
ModuleReducedGraphParent(child.get_module())
|
|
}
|
|
// Create the module
|
|
_ => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(name,
|
|
parent,
|
|
ForbidDuplicateModules,
|
|
sp);
|
|
|
|
let parent_link =
|
|
self.get_parent_link(new_parent, ident);
|
|
let def_id = local_def(item.id);
|
|
name_bindings.define_module(Public,
|
|
parent_link,
|
|
Some(def_id),
|
|
ImplModuleKind,
|
|
false,
|
|
sp);
|
|
|
|
ModuleReducedGraphParent(
|
|
name_bindings.get_module())
|
|
}
|
|
};
|
|
|
|
// For each method...
|
|
for method in methods.iter() {
|
|
// Add the method to the module.
|
|
let ident = method.ident;
|
|
let (method_name_bindings, _) =
|
|
self.add_child(ident,
|
|
new_parent,
|
|
ForbidDuplicateValues,
|
|
method.span);
|
|
let def = match method.explicit_self.node {
|
|
sty_static => {
|
|
// Static methods become
|
|
// `def_static_method`s.
|
|
DefStaticMethod(local_def(method.id),
|
|
FromImpl(local_def(
|
|
item.id)),
|
|
method.purity)
|
|
}
|
|
_ => {
|
|
// Non-static methods become
|
|
// `def_method`s.
|
|
DefMethod(local_def(method.id), None)
|
|
}
|
|
};
|
|
|
|
method_name_bindings.define_value(Public,
|
|
def,
|
|
method.span);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
visit::walk_item(visitor, item, parent);
|
|
}
|
|
|
|
item_impl(_, Some(_), _, _) => {
|
|
visit::walk_item(visitor, item, parent);
|
|
}
|
|
|
|
item_trait(_, _, ref methods) => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
|
|
|
|
// Add all the methods within to a new module.
|
|
let parent_link = self.get_parent_link(parent, ident);
|
|
name_bindings.define_module(privacy,
|
|
parent_link,
|
|
Some(local_def(item.id)),
|
|
TraitModuleKind,
|
|
false,
|
|
sp);
|
|
let module_parent = ModuleReducedGraphParent(name_bindings.
|
|
get_module());
|
|
|
|
// Add the names of all the methods to the trait info.
|
|
let mut method_names = HashMap::new();
|
|
for method in methods.iter() {
|
|
let ty_m = trait_method_to_ty_method(method);
|
|
|
|
let ident = ty_m.ident;
|
|
|
|
// Add it as a name in the trait module.
|
|
let def = match ty_m.explicit_self.node {
|
|
sty_static => {
|
|
// Static methods become `def_static_method`s.
|
|
DefStaticMethod(local_def(ty_m.id),
|
|
FromTrait(local_def(item.id)),
|
|
ty_m.purity)
|
|
}
|
|
_ => {
|
|
// Non-static methods become `def_method`s.
|
|
DefMethod(local_def(ty_m.id),
|
|
Some(local_def(item.id)))
|
|
}
|
|
};
|
|
|
|
let (method_name_bindings, _) =
|
|
self.add_child(ident,
|
|
module_parent,
|
|
ForbidDuplicateValues,
|
|
ty_m.span);
|
|
method_name_bindings.define_value(Public, def, ty_m.span);
|
|
|
|
// Add it to the trait info if not static.
|
|
match ty_m.explicit_self.node {
|
|
sty_static => {}
|
|
_ => {
|
|
method_names.insert(ident.name, ());
|
|
}
|
|
}
|
|
}
|
|
|
|
let def_id = local_def(item.id);
|
|
for (name, _) in method_names.iter() {
|
|
if !self.method_map.contains_key(name) {
|
|
self.method_map.insert(*name, HashSet::new());
|
|
}
|
|
match self.method_map.find_mut(name) {
|
|
Some(s) => { s.insert(def_id); },
|
|
_ => fail!("Can't happen"),
|
|
}
|
|
}
|
|
|
|
name_bindings.define_type(privacy, DefTrait(def_id), sp);
|
|
visit::walk_item(visitor, item, new_parent);
|
|
}
|
|
|
|
item_mac(*) => {
|
|
fail!("item macros unimplemented")
|
|
}
|
|
}
|
|
}
|
|
|
|
// Constructs the reduced graph for one variant. Variants exist in the
|
|
// type and/or value namespaces.
|
|
pub fn build_reduced_graph_for_variant(@mut self,
|
|
variant: &variant,
|
|
item_id: DefId,
|
|
parent_privacy: Privacy,
|
|
parent: ReducedGraphParent,
|
|
_: &mut BuildReducedGraphVisitor) {
|
|
let ident = variant.node.name;
|
|
|
|
let privacy =
|
|
match variant.node.vis {
|
|
public => Public,
|
|
private => Private,
|
|
inherited => parent_privacy
|
|
};
|
|
|
|
match variant.node.kind {
|
|
tuple_variant_kind(_) => {
|
|
let (child, _) = self.add_child(ident, parent, ForbidDuplicateValues,
|
|
variant.span);
|
|
child.define_value(privacy,
|
|
DefVariant(item_id,
|
|
local_def(variant.node.id), false),
|
|
variant.span);
|
|
}
|
|
struct_variant_kind(_) => {
|
|
let (child, _) = self.add_child(ident, parent, ForbidDuplicateTypesAndValues,
|
|
variant.span);
|
|
child.define_type(privacy,
|
|
DefVariant(item_id,
|
|
local_def(variant.node.id), true),
|
|
variant.span);
|
|
self.structs.insert(local_def(variant.node.id));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs the reduced graph for one 'view item'. View items consist
|
|
/// of imports and use directives.
|
|
pub fn build_reduced_graph_for_view_item(@mut self,
|
|
view_item: &view_item,
|
|
(parent, _):
|
|
(ReducedGraphParent,
|
|
&mut BuildReducedGraphVisitor)) {
|
|
let privacy = visibility_to_privacy(view_item.vis);
|
|
match view_item.node {
|
|
view_item_use(ref view_paths) => {
|
|
for view_path in view_paths.iter() {
|
|
// Extract and intern the module part of the path. For
|
|
// globs and lists, the path is found directly in the AST;
|
|
// for simple paths we have to munge the path a little.
|
|
|
|
let mut module_path = ~[];
|
|
match view_path.node {
|
|
view_path_simple(_, ref full_path, _) => {
|
|
let path_len = full_path.segments.len();
|
|
assert!(path_len != 0);
|
|
|
|
for (i, segment) in full_path.segments
|
|
.iter()
|
|
.enumerate() {
|
|
if i != path_len - 1 {
|
|
module_path.push(segment.identifier)
|
|
}
|
|
}
|
|
}
|
|
|
|
view_path_glob(ref module_ident_path, _) |
|
|
view_path_list(ref module_ident_path, _, _) => {
|
|
for segment in module_ident_path.segments.iter() {
|
|
module_path.push(segment.identifier)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build up the import directives.
|
|
let module_ = self.get_module_from_parent(parent);
|
|
match view_path.node {
|
|
view_path_simple(binding, ref full_path, id) => {
|
|
let source_ident =
|
|
full_path.segments.last().identifier;
|
|
let subclass = @SingleImport(binding,
|
|
source_ident);
|
|
self.build_import_directive(privacy,
|
|
module_,
|
|
module_path,
|
|
subclass,
|
|
view_path.span,
|
|
id);
|
|
}
|
|
view_path_list(_, ref source_idents, _) => {
|
|
for source_ident in source_idents.iter() {
|
|
let name = source_ident.node.name;
|
|
let subclass = @SingleImport(name, name);
|
|
self.build_import_directive(
|
|
privacy,
|
|
module_,
|
|
module_path.clone(),
|
|
subclass,
|
|
source_ident.span,
|
|
source_ident.node.id);
|
|
}
|
|
}
|
|
view_path_glob(_, id) => {
|
|
self.build_import_directive(privacy,
|
|
module_,
|
|
module_path,
|
|
@GlobImport,
|
|
view_path.span,
|
|
id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
view_item_extern_mod(name, _, _, node_id) => {
|
|
// n.b. we don't need to look at the path option here, because cstore already did
|
|
match find_extern_mod_stmt_cnum(self.session.cstore,
|
|
node_id) {
|
|
Some(crate_id) => {
|
|
let def_id = DefId { crate: crate_id, node: 0 };
|
|
let parent_link = ModuleParentLink
|
|
(self.get_module_from_parent(parent), name);
|
|
let external_module = @mut Module::new(parent_link,
|
|
Some(def_id),
|
|
NormalModuleKind,
|
|
false);
|
|
|
|
parent.external_module_children.insert(
|
|
name.name,
|
|
external_module);
|
|
|
|
self.build_reduced_graph_for_external_crate(
|
|
external_module);
|
|
}
|
|
None => {} // Ignore.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs the reduced graph for one foreign item.
|
|
pub fn build_reduced_graph_for_foreign_item(@mut self,
|
|
foreign_item: @foreign_item,
|
|
(parent, visitor):
|
|
(ReducedGraphParent,
|
|
&mut BuildReducedGraphVisitor)) {
|
|
let name = foreign_item.ident;
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(name, parent, ForbidDuplicateValues,
|
|
foreign_item.span);
|
|
|
|
match foreign_item.node {
|
|
foreign_item_fn(_, ref generics) => {
|
|
let def = DefFn(local_def(foreign_item.id), unsafe_fn);
|
|
name_bindings.define_value(Public, def, foreign_item.span);
|
|
|
|
do self.with_type_parameter_rib(
|
|
HasTypeParameters(
|
|
generics, foreign_item.id, 0, NormalRibKind))
|
|
{
|
|
visit::walk_foreign_item(visitor, foreign_item, new_parent);
|
|
}
|
|
}
|
|
foreign_item_static(_, m) => {
|
|
let def = DefStatic(local_def(foreign_item.id), m);
|
|
name_bindings.define_value(Public, def, foreign_item.span);
|
|
|
|
visit::walk_foreign_item(visitor, foreign_item, new_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn build_reduced_graph_for_block(@mut self,
|
|
block: &Block,
|
|
(parent, visitor):
|
|
(ReducedGraphParent,
|
|
&mut BuildReducedGraphVisitor)) {
|
|
let new_parent;
|
|
if self.block_needs_anonymous_module(block) {
|
|
let block_id = block.id;
|
|
|
|
debug!("(building reduced graph for block) creating a new \
|
|
anonymous module for block %d",
|
|
block_id);
|
|
|
|
let parent_module = self.get_module_from_parent(parent);
|
|
let new_module = @mut Module::new(
|
|
BlockParentLink(parent_module, block_id),
|
|
None,
|
|
AnonymousModuleKind,
|
|
false);
|
|
parent_module.anonymous_children.insert(block_id, new_module);
|
|
new_parent = ModuleReducedGraphParent(new_module);
|
|
} else {
|
|
new_parent = parent;
|
|
}
|
|
|
|
visit::walk_block(visitor, block, new_parent);
|
|
}
|
|
|
|
fn handle_external_def(@mut self,
|
|
def: Def,
|
|
visibility: ast::visibility,
|
|
child_name_bindings: @mut NameBindings,
|
|
final_ident: &str,
|
|
ident: Ident,
|
|
new_parent: ReducedGraphParent) {
|
|
let privacy = visibility_to_privacy(visibility);
|
|
match def {
|
|
DefMod(def_id) | DefForeignMod(def_id) | DefStruct(def_id) |
|
|
DefTy(def_id) => {
|
|
match child_name_bindings.type_def {
|
|
Some(TypeNsDef { module_def: Some(module_def), _ }) => {
|
|
debug!("(building reduced graph for external crate) \
|
|
already created module");
|
|
module_def.def_id = Some(def_id);
|
|
}
|
|
Some(_) | None => {
|
|
debug!("(building reduced graph for \
|
|
external crate) building module \
|
|
%s", final_ident);
|
|
let parent_link = self.get_parent_link(new_parent, ident);
|
|
|
|
child_name_bindings.define_module(privacy,
|
|
parent_link,
|
|
Some(def_id),
|
|
NormalModuleKind,
|
|
true,
|
|
dummy_sp());
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
match def {
|
|
DefMod(_) | DefForeignMod(_) => {}
|
|
DefVariant(_, variant_id, is_struct) => {
|
|
debug!("(building reduced graph for external crate) building \
|
|
variant %s",
|
|
final_ident);
|
|
// We assume the parent is visible, or else we wouldn't have seen
|
|
// it.
|
|
let privacy = variant_visibility_to_privacy(visibility, true);
|
|
if is_struct {
|
|
child_name_bindings.define_type(privacy, def, dummy_sp());
|
|
self.structs.insert(variant_id);
|
|
}
|
|
else {
|
|
child_name_bindings.define_value(privacy, def, dummy_sp());
|
|
}
|
|
}
|
|
DefFn(*) | DefStaticMethod(*) | DefStatic(*) => {
|
|
debug!("(building reduced graph for external \
|
|
crate) building value (fn/static) %s", final_ident);
|
|
child_name_bindings.define_value(privacy, def, dummy_sp());
|
|
}
|
|
DefTrait(def_id) => {
|
|
debug!("(building reduced graph for external \
|
|
crate) building type %s", final_ident);
|
|
|
|
// If this is a trait, add all the method names
|
|
// to the trait info.
|
|
|
|
let method_def_ids =
|
|
get_trait_method_def_ids(self.session.cstore, def_id);
|
|
let mut interned_method_names = HashSet::new();
|
|
for &method_def_id in method_def_ids.iter() {
|
|
let (method_name, explicit_self) =
|
|
get_method_name_and_explicit_self(self.session.cstore,
|
|
method_def_id);
|
|
|
|
debug!("(building reduced graph for \
|
|
external crate) ... adding \
|
|
trait method '%s'",
|
|
self.session.str_of(method_name));
|
|
|
|
// Add it to the trait info if not static.
|
|
if explicit_self != sty_static {
|
|
interned_method_names.insert(method_name.name);
|
|
}
|
|
}
|
|
for name in interned_method_names.iter() {
|
|
if !self.method_map.contains_key(name) {
|
|
self.method_map.insert(*name, HashSet::new());
|
|
}
|
|
match self.method_map.find_mut(name) {
|
|
Some(s) => { s.insert(def_id); },
|
|
_ => fail!("Can't happen"),
|
|
}
|
|
}
|
|
|
|
child_name_bindings.define_type(privacy, def, dummy_sp());
|
|
|
|
// Define a module if necessary.
|
|
let parent_link = self.get_parent_link(new_parent, ident);
|
|
child_name_bindings.set_module_kind(privacy,
|
|
parent_link,
|
|
Some(def_id),
|
|
TraitModuleKind,
|
|
true,
|
|
dummy_sp())
|
|
}
|
|
DefTy(_) => {
|
|
debug!("(building reduced graph for external \
|
|
crate) building type %s", final_ident);
|
|
|
|
child_name_bindings.define_type(privacy, def, dummy_sp());
|
|
}
|
|
DefStruct(def_id) => {
|
|
debug!("(building reduced graph for external \
|
|
crate) building type and value for %s",
|
|
final_ident);
|
|
child_name_bindings.define_type(privacy, def, dummy_sp());
|
|
if get_struct_fields(self.session.cstore, def_id).len() == 0 {
|
|
child_name_bindings.define_value(privacy, def, dummy_sp());
|
|
}
|
|
self.structs.insert(def_id);
|
|
}
|
|
DefMethod(*) => {
|
|
// Ignored; handled elsewhere.
|
|
}
|
|
DefSelf(*) | DefArg(*) | DefLocal(*) |
|
|
DefPrimTy(*) | DefTyParam(*) | DefBinding(*) |
|
|
DefUse(*) | DefUpvar(*) | DefRegion(*) |
|
|
DefTyParamBinder(*) | DefLabel(*) | DefSelfTy(*) => {
|
|
fail!("didn't expect `%?`", def);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Builds the reduced graph for a single item in an external crate.
|
|
fn build_reduced_graph_for_external_crate_def(@mut self,
|
|
root: @mut Module,
|
|
def_like: DefLike,
|
|
ident: Ident) {
|
|
match def_like {
|
|
DlDef(def) => {
|
|
// Add the new child item, if necessary.
|
|
match def {
|
|
DefForeignMod(def_id) => {
|
|
// Foreign modules have no names. Recur and populate
|
|
// eagerly.
|
|
do csearch::each_child_of_item(self.session.cstore,
|
|
def_id)
|
|
|def_like, child_ident| {
|
|
self.build_reduced_graph_for_external_crate_def(
|
|
root,
|
|
def_like,
|
|
child_ident)
|
|
}
|
|
}
|
|
_ => {
|
|
let (child_name_bindings, new_parent) =
|
|
self.add_child(ident,
|
|
ModuleReducedGraphParent(root),
|
|
OverwriteDuplicates,
|
|
dummy_sp());
|
|
|
|
self.handle_external_def(def,
|
|
public,
|
|
child_name_bindings,
|
|
self.session.str_of(ident),
|
|
ident,
|
|
new_parent);
|
|
}
|
|
}
|
|
}
|
|
DlImpl(def) => {
|
|
// We only process static methods of impls here.
|
|
match get_type_name_if_impl(self.session.cstore, def) {
|
|
None => {}
|
|
Some(final_ident) => {
|
|
let static_methods_opt =
|
|
get_static_methods_if_impl(self.session.cstore,
|
|
def);
|
|
match static_methods_opt {
|
|
Some(ref static_methods) if
|
|
static_methods.len() >= 1 => {
|
|
debug!("(building reduced graph for \
|
|
external crate) processing \
|
|
static methods for type name %s",
|
|
self.session.str_of(
|
|
final_ident));
|
|
|
|
let (child_name_bindings, new_parent) =
|
|
self.add_child(
|
|
final_ident,
|
|
ModuleReducedGraphParent(root),
|
|
OverwriteDuplicates,
|
|
dummy_sp());
|
|
|
|
// Process the static methods. First,
|
|
// create the module.
|
|
let type_module;
|
|
match child_name_bindings.type_def {
|
|
Some(TypeNsDef {
|
|
module_def: Some(module_def),
|
|
_
|
|
}) => {
|
|
// We already have a module. This
|
|
// is OK.
|
|
type_module = module_def;
|
|
|
|
// Mark it as an impl module if
|
|
// necessary.
|
|
type_module.kind = ImplModuleKind;
|
|
}
|
|
Some(_) | None => {
|
|
let parent_link =
|
|
self.get_parent_link(new_parent,
|
|
final_ident);
|
|
child_name_bindings.define_module(
|
|
Public,
|
|
parent_link,
|
|
Some(def),
|
|
ImplModuleKind,
|
|
true,
|
|
dummy_sp());
|
|
type_module =
|
|
child_name_bindings.
|
|
get_module();
|
|
}
|
|
}
|
|
|
|
// Add each static method to the module.
|
|
let new_parent =
|
|
ModuleReducedGraphParent(type_module);
|
|
for static_method_info in
|
|
static_methods.iter() {
|
|
let ident = static_method_info.ident;
|
|
debug!("(building reduced graph for \
|
|
external crate) creating \
|
|
static method '%s'",
|
|
self.session.str_of(ident));
|
|
|
|
let (method_name_bindings, _) =
|
|
self.add_child(ident,
|
|
new_parent,
|
|
OverwriteDuplicates,
|
|
dummy_sp());
|
|
let def = DefFn(
|
|
static_method_info.def_id,
|
|
static_method_info.purity);
|
|
method_name_bindings.define_value(
|
|
Public,
|
|
def,
|
|
dummy_sp());
|
|
}
|
|
}
|
|
|
|
// Otherwise, do nothing.
|
|
Some(_) | None => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DlField => {
|
|
debug!("(building reduced graph for external crate) \
|
|
ignoring field");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Builds the reduced graph rooted at the given external module.
|
|
fn populate_external_module(@mut self, module: @mut Module) {
|
|
debug!("(populating external module) attempting to populate %s",
|
|
self.module_to_str(module));
|
|
|
|
let def_id = match module.def_id {
|
|
None => {
|
|
debug!("(populating external module) ... no def ID!");
|
|
return
|
|
}
|
|
Some(def_id) => def_id,
|
|
};
|
|
|
|
do csearch::each_child_of_item(self.session.cstore, def_id)
|
|
|def_like, child_ident| {
|
|
debug!("(populating external module) ... found ident: %s",
|
|
token::ident_to_str(&child_ident));
|
|
self.build_reduced_graph_for_external_crate_def(module,
|
|
def_like,
|
|
child_ident)
|
|
}
|
|
module.populated = true
|
|
}
|
|
|
|
/// Ensures that the reduced graph rooted at the given external module
|
|
/// is built, building it if it is not.
|
|
fn populate_module_if_necessary(@mut self, module: @mut Module) {
|
|
if !module.populated {
|
|
self.populate_external_module(module)
|
|
}
|
|
assert!(module.populated)
|
|
}
|
|
|
|
/// Builds the reduced graph rooted at the 'use' directive for an external
|
|
/// crate.
|
|
pub fn build_reduced_graph_for_external_crate(@mut self,
|
|
root: @mut Module) {
|
|
do csearch::each_top_level_item_of_crate(self.session.cstore,
|
|
root.def_id.unwrap().crate)
|
|
|def_like, ident| {
|
|
self.build_reduced_graph_for_external_crate_def(root,
|
|
def_like,
|
|
ident)
|
|
}
|
|
}
|
|
|
|
/// Creates and adds an import directive to the given module.
|
|
pub fn build_import_directive(@mut self,
|
|
privacy: Privacy,
|
|
module_: @mut Module,
|
|
module_path: ~[Ident],
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: Span,
|
|
id: NodeId) {
|
|
let directive = @ImportDirective::new(privacy, module_path,
|
|
subclass, span, id);
|
|
module_.imports.push(directive);
|
|
|
|
// Bump the reference count on the name. Or, if this is a glob, set
|
|
// the appropriate flag.
|
|
|
|
match *subclass {
|
|
SingleImport(target, _) => {
|
|
debug!("(building import directive) building import \
|
|
directive: privacy %? %s::%s",
|
|
privacy,
|
|
self.idents_to_str(directive.module_path),
|
|
self.session.str_of(target));
|
|
|
|
match module_.import_resolutions.find(&target.name) {
|
|
Some(&resolution) => {
|
|
debug!("(building import directive) bumping \
|
|
reference");
|
|
resolution.outstanding_references += 1;
|
|
|
|
// the source of this name is different now
|
|
resolution.privacy = privacy;
|
|
resolution.type_id = id;
|
|
resolution.value_id = id;
|
|
}
|
|
None => {
|
|
debug!("(building import directive) creating new");
|
|
let resolution = @mut ImportResolution::new(privacy, id);
|
|
resolution.outstanding_references = 1;
|
|
module_.import_resolutions.insert(target.name, resolution);
|
|
}
|
|
}
|
|
}
|
|
GlobImport => {
|
|
// Set the glob flag. This tells us that we don't know the
|
|
// module's exports ahead of time.
|
|
|
|
module_.glob_count += 1;
|
|
}
|
|
}
|
|
|
|
self.unresolved_imports += 1;
|
|
}
|
|
|
|
// Import resolution
|
|
//
|
|
// This is a fixed-point algorithm. We resolve imports until our efforts
|
|
// are stymied by an unresolved import; then we bail out of the current
|
|
// module and continue. We terminate successfully once no more imports
|
|
// remain or unsuccessfully when no forward progress in resolving imports
|
|
// is made.
|
|
|
|
/// Resolves all imports for the crate. This method performs the fixed-
|
|
/// point iteration.
|
|
pub fn resolve_imports(@mut self) {
|
|
let mut i = 0;
|
|
let mut prev_unresolved_imports = 0;
|
|
loop {
|
|
debug!("(resolving imports) iteration %u, %u imports left",
|
|
i, self.unresolved_imports);
|
|
|
|
let module_root = self.graph_root.get_module();
|
|
self.resolve_imports_for_module_subtree(module_root);
|
|
|
|
if self.unresolved_imports == 0 {
|
|
debug!("(resolving imports) success");
|
|
break;
|
|
}
|
|
|
|
if self.unresolved_imports == prev_unresolved_imports {
|
|
self.report_unresolved_imports(module_root);
|
|
break;
|
|
}
|
|
|
|
i += 1;
|
|
prev_unresolved_imports = self.unresolved_imports;
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve imports for the given module and all of its
|
|
/// submodules.
|
|
pub fn resolve_imports_for_module_subtree(@mut self,
|
|
module_: @mut Module) {
|
|
debug!("(resolving imports for module subtree) resolving %s",
|
|
self.module_to_str(module_));
|
|
self.resolve_imports_for_module(module_);
|
|
|
|
self.populate_module_if_necessary(module_);
|
|
for (_, &child_node) in module_.children.iter() {
|
|
match child_node.get_module_if_available() {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(child_module) => {
|
|
self.resolve_imports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (_, &child_module) in module_.anonymous_children.iter() {
|
|
self.resolve_imports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve imports for the given module only.
|
|
pub fn resolve_imports_for_module(@mut self, module: @mut Module) {
|
|
if module.all_imports_resolved() {
|
|
debug!("(resolving imports for module) all imports resolved for \
|
|
%s",
|
|
self.module_to_str(module));
|
|
return;
|
|
}
|
|
|
|
let imports = &mut *module.imports;
|
|
let import_count = imports.len();
|
|
while module.resolved_import_count < import_count {
|
|
let import_index = module.resolved_import_count;
|
|
let import_directive = imports[import_index];
|
|
match self.resolve_import_for_module(module, import_directive) {
|
|
Failed => {
|
|
// We presumably emitted an error. Continue.
|
|
let msg = fmt!("failed to resolve import `%s`",
|
|
self.import_path_to_str(
|
|
import_directive.module_path,
|
|
*import_directive.subclass));
|
|
self.resolve_error(import_directive.span, msg);
|
|
}
|
|
Indeterminate => {
|
|
// Bail out. We'll come around next time.
|
|
break;
|
|
}
|
|
Success(()) => {
|
|
// Good. Continue.
|
|
}
|
|
}
|
|
|
|
module.resolved_import_count += 1;
|
|
}
|
|
}
|
|
|
|
pub fn idents_to_str(@mut self, idents: &[Ident]) -> ~str {
|
|
let mut first = true;
|
|
let mut result = ~"";
|
|
for ident in idents.iter() {
|
|
if first {
|
|
first = false
|
|
} else {
|
|
result.push_str("::")
|
|
}
|
|
result.push_str(self.session.str_of(*ident));
|
|
};
|
|
return result;
|
|
}
|
|
|
|
fn path_idents_to_str(@mut self, path: &Path) -> ~str {
|
|
let identifiers: ~[ast::Ident] = path.segments
|
|
.iter()
|
|
.map(|seg| seg.identifier)
|
|
.collect();
|
|
self.idents_to_str(identifiers)
|
|
}
|
|
|
|
pub fn import_directive_subclass_to_str(@mut self,
|
|
subclass: ImportDirectiveSubclass)
|
|
-> @str {
|
|
match subclass {
|
|
SingleImport(_target, source) => self.session.str_of(source),
|
|
GlobImport => @"*"
|
|
}
|
|
}
|
|
|
|
pub fn import_path_to_str(@mut self,
|
|
idents: &[Ident],
|
|
subclass: ImportDirectiveSubclass)
|
|
-> @str {
|
|
if idents.is_empty() {
|
|
self.import_directive_subclass_to_str(subclass)
|
|
} else {
|
|
(fmt!("%s::%s",
|
|
self.idents_to_str(idents),
|
|
self.import_directive_subclass_to_str(subclass))).to_managed()
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve the given import. The return value indicates
|
|
/// failure if we're certain the name does not exist, indeterminate if we
|
|
/// don't know whether the name exists at the moment due to other
|
|
/// currently-unresolved imports, or success if we know the name exists.
|
|
/// If successful, the resolved bindings are written into the module.
|
|
pub fn resolve_import_for_module(@mut self,
|
|
module_: @mut Module,
|
|
import_directive: @ImportDirective)
|
|
-> ResolveResult<()> {
|
|
let mut resolution_result = Failed;
|
|
let module_path = &import_directive.module_path;
|
|
|
|
debug!("(resolving import for module) resolving import `%s::...` in \
|
|
`%s`",
|
|
self.idents_to_str(*module_path),
|
|
self.module_to_str(module_));
|
|
|
|
// First, resolve the module path for the directive, if necessary.
|
|
let containing_module = if module_path.len() == 0 {
|
|
// Use the crate root.
|
|
Some(self.graph_root.get_module())
|
|
} else {
|
|
match self.resolve_module_path(module_,
|
|
*module_path,
|
|
DontUseLexicalScope,
|
|
import_directive.span,
|
|
ImportSearch) {
|
|
|
|
Failed => None,
|
|
Indeterminate => {
|
|
resolution_result = Indeterminate;
|
|
None
|
|
}
|
|
Success(containing_module) => Some(containing_module),
|
|
}
|
|
};
|
|
|
|
match containing_module {
|
|
None => {}
|
|
Some(containing_module) => {
|
|
// We found the module that the target is contained
|
|
// within. Attempt to resolve the import within it.
|
|
|
|
match *import_directive.subclass {
|
|
SingleImport(target, source) => {
|
|
resolution_result =
|
|
self.resolve_single_import(module_,
|
|
containing_module,
|
|
target,
|
|
source,
|
|
import_directive);
|
|
}
|
|
GlobImport => {
|
|
let privacy = import_directive.privacy;
|
|
resolution_result =
|
|
self.resolve_glob_import(privacy,
|
|
module_,
|
|
containing_module,
|
|
import_directive.id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved imports.
|
|
match resolution_result {
|
|
Success(()) => {
|
|
assert!(self.unresolved_imports >= 1);
|
|
self.unresolved_imports -= 1;
|
|
}
|
|
_ => {
|
|
// Nothing to do here; just return the error.
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved globs if necessary. But only if
|
|
// the resolution result is indeterminate -- otherwise we'll stop
|
|
// processing imports here. (See the loop in
|
|
// resolve_imports_for_module.)
|
|
|
|
if !resolution_result.indeterminate() {
|
|
match *import_directive.subclass {
|
|
GlobImport => {
|
|
assert!(module_.glob_count >= 1);
|
|
module_.glob_count -= 1;
|
|
}
|
|
SingleImport(*) => {
|
|
// Ignore.
|
|
}
|
|
}
|
|
}
|
|
|
|
return resolution_result;
|
|
}
|
|
|
|
pub fn create_name_bindings_from_module(module: @mut Module)
|
|
-> NameBindings {
|
|
NameBindings {
|
|
type_def: Some(TypeNsDef {
|
|
privacy: Public,
|
|
module_def: Some(module),
|
|
type_def: None,
|
|
type_span: None
|
|
}),
|
|
value_def: None,
|
|
}
|
|
}
|
|
|
|
pub fn resolve_single_import(@mut self,
|
|
module_: @mut Module,
|
|
containing_module: @mut Module,
|
|
target: Ident,
|
|
source: Ident,
|
|
directive: &ImportDirective)
|
|
-> ResolveResult<()> {
|
|
debug!("(resolving single import) resolving `%s` = `%s::%s` from \
|
|
`%s`",
|
|
self.session.str_of(target),
|
|
self.module_to_str(containing_module),
|
|
self.session.str_of(source),
|
|
self.module_to_str(module_));
|
|
|
|
// We need to resolve both namespaces for this to succeed.
|
|
//
|
|
|
|
let mut value_result = UnknownResult;
|
|
let mut type_result = UnknownResult;
|
|
|
|
// Search for direct children of the containing module.
|
|
self.populate_module_if_necessary(containing_module);
|
|
match containing_module.children.find(&source.name) {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(child_name_bindings) => {
|
|
if child_name_bindings.defined_in_namespace(ValueNS) {
|
|
value_result = BoundResult(containing_module,
|
|
*child_name_bindings);
|
|
}
|
|
if child_name_bindings.defined_in_namespace(TypeNS) {
|
|
type_result = BoundResult(containing_module,
|
|
*child_name_bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unless we managed to find a result in both namespaces (unlikely),
|
|
// search imports as well.
|
|
match (value_result, type_result) {
|
|
(BoundResult(*), BoundResult(*)) => {} // Continue.
|
|
_ => {
|
|
// If there is an unresolved glob at this point in the
|
|
// containing module, bail out. We don't know enough to be
|
|
// able to resolve this import.
|
|
|
|
if containing_module.glob_count > 0 {
|
|
debug!("(resolving single import) unresolved glob; \
|
|
bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
// Now search the exported imports within the containing
|
|
// module.
|
|
|
|
match containing_module.import_resolutions.find(&source.name) {
|
|
None => {
|
|
// The containing module definitely doesn't have an
|
|
// exported import with the name in question. We can
|
|
// therefore accurately report that the names are
|
|
// unbound.
|
|
|
|
if value_result.is_unknown() {
|
|
value_result = UnboundResult;
|
|
}
|
|
if type_result.is_unknown() {
|
|
type_result = UnboundResult;
|
|
}
|
|
}
|
|
Some(import_resolution)
|
|
if import_resolution.outstanding_references
|
|
== 0 => {
|
|
|
|
fn get_binding(this: @mut Resolver,
|
|
import_resolution:
|
|
@mut ImportResolution,
|
|
namespace: Namespace)
|
|
-> NamespaceResult {
|
|
|
|
// Import resolutions must be declared with "pub"
|
|
// in order to be exported.
|
|
if import_resolution.privacy == Private {
|
|
return UnboundResult;
|
|
}
|
|
|
|
match (*import_resolution).
|
|
target_for_namespace(namespace) {
|
|
None => {
|
|
return UnboundResult;
|
|
}
|
|
Some(target) => {
|
|
let id = import_resolution.id(namespace);
|
|
this.used_imports.insert(id);
|
|
return BoundResult(target.target_module,
|
|
target.bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The name is an import which has been fully
|
|
// resolved. We can, therefore, just follow it.
|
|
if value_result.is_unknown() {
|
|
value_result = get_binding(self, *import_resolution,
|
|
ValueNS);
|
|
}
|
|
if type_result.is_unknown() {
|
|
type_result = get_binding(self, *import_resolution,
|
|
TypeNS);
|
|
}
|
|
}
|
|
Some(_) => {
|
|
// The import is unresolved. Bail out.
|
|
debug!("(resolving single import) unresolved import; \
|
|
bailing out");
|
|
return Indeterminate;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't find a result in the type namespace, search the
|
|
// external modules.
|
|
match type_result {
|
|
BoundResult(*) => {}
|
|
_ => {
|
|
match containing_module.external_module_children
|
|
.find(&source.name) {
|
|
None => {} // Continue.
|
|
Some(module) => {
|
|
let name_bindings =
|
|
@mut Resolver::create_name_bindings_from_module(
|
|
*module);
|
|
type_result = BoundResult(containing_module,
|
|
name_bindings);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've successfully resolved the import. Write the results in.
|
|
assert!(module_.import_resolutions.contains_key(&target.name));
|
|
let import_resolution = module_.import_resolutions.get(&target.name);
|
|
|
|
match value_result {
|
|
BoundResult(target_module, name_bindings) => {
|
|
debug!("(resolving single import) found value target");
|
|
import_resolution.value_target =
|
|
Some(Target::new(target_module, name_bindings));
|
|
import_resolution.value_id = directive.id;
|
|
}
|
|
UnboundResult => { /* Continue. */ }
|
|
UnknownResult => {
|
|
fail!("value result should be known at this point");
|
|
}
|
|
}
|
|
match type_result {
|
|
BoundResult(target_module, name_bindings) => {
|
|
debug!("(resolving single import) found type target: %?",
|
|
name_bindings.type_def.unwrap().type_def);
|
|
import_resolution.type_target =
|
|
Some(Target::new(target_module, name_bindings));
|
|
import_resolution.type_id = directive.id;
|
|
}
|
|
UnboundResult => { /* Continue. */ }
|
|
UnknownResult => {
|
|
fail!("type result should be known at this point");
|
|
}
|
|
}
|
|
|
|
let i = import_resolution;
|
|
let mut resolve_fail = false;
|
|
let mut priv_fail = false;
|
|
match (i.value_target, i.type_target) {
|
|
// If this name wasn't found in either namespace, it's definitely
|
|
// unresolved.
|
|
(None, None) => { resolve_fail = true; }
|
|
// If it's private, it's also unresolved.
|
|
(Some(t), None) | (None, Some(t)) => {
|
|
let bindings = &mut *t.bindings;
|
|
match bindings.type_def {
|
|
Some(ref type_def) => {
|
|
if type_def.privacy == Private {
|
|
priv_fail = true;
|
|
}
|
|
}
|
|
_ => ()
|
|
}
|
|
match bindings.value_def {
|
|
Some(ref value_def) => {
|
|
if value_def.privacy == Private {
|
|
priv_fail = true;
|
|
}
|
|
}
|
|
_ => ()
|
|
}
|
|
}
|
|
// It's also an error if there's both a type and a value with this
|
|
// name, but both are private
|
|
(Some(val), Some(ty)) => {
|
|
match (val.bindings.value_def, ty.bindings.value_def) {
|
|
(Some(ref value_def), Some(ref type_def)) =>
|
|
if value_def.privacy == Private
|
|
&& type_def.privacy == Private {
|
|
priv_fail = true;
|
|
},
|
|
_ => ()
|
|
}
|
|
}
|
|
}
|
|
|
|
let span = directive.span;
|
|
if resolve_fail {
|
|
self.resolve_error(span, fmt!("unresolved import: there is no `%s` in `%s`",
|
|
self.session.str_of(source),
|
|
self.module_to_str(containing_module)));
|
|
return Failed;
|
|
} else if priv_fail {
|
|
self.resolve_error(span, fmt!("unresolved import: found `%s` in `%s` but it is \
|
|
private", self.session.str_of(source),
|
|
self.module_to_str(containing_module)));
|
|
return Failed;
|
|
}
|
|
|
|
assert!(import_resolution.outstanding_references >= 1);
|
|
import_resolution.outstanding_references -= 1;
|
|
|
|
debug!("(resolving single import) successfully resolved import");
|
|
return Success(());
|
|
}
|
|
|
|
// Resolves a glob import. Note that this function cannot fail; it either
|
|
// succeeds or bails out (as importing * from an empty module or a module
|
|
// that exports nothing is valid).
|
|
pub fn resolve_glob_import(@mut self,
|
|
privacy: Privacy,
|
|
module_: @mut Module,
|
|
containing_module: @mut Module,
|
|
id: NodeId)
|
|
-> ResolveResult<()> {
|
|
// This function works in a highly imperative manner; it eagerly adds
|
|
// everything it can to the list of import resolutions of the module
|
|
// node.
|
|
debug!("(resolving glob import) resolving %? glob import", privacy);
|
|
|
|
// We must bail out if the node has unresolved imports of any kind
|
|
// (including globs).
|
|
if !(*containing_module).all_imports_resolved() {
|
|
debug!("(resolving glob import) target module has unresolved \
|
|
imports; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
assert_eq!(containing_module.glob_count, 0);
|
|
|
|
// Add all resolved imports from the containing module.
|
|
for (ident, target_import_resolution) in containing_module.import_resolutions.iter() {
|
|
|
|
debug!("(resolving glob import) writing module resolution \
|
|
%? into `%s`",
|
|
target_import_resolution.type_target.is_none(),
|
|
self.module_to_str(module_));
|
|
|
|
// Here we merge two import resolutions.
|
|
match module_.import_resolutions.find(ident) {
|
|
None if target_import_resolution.privacy == Public => {
|
|
// Simple: just copy the old import resolution.
|
|
let new_import_resolution =
|
|
@mut ImportResolution::new(privacy, id);
|
|
new_import_resolution.value_target =
|
|
target_import_resolution.value_target;
|
|
new_import_resolution.type_target =
|
|
target_import_resolution.type_target;
|
|
|
|
module_.import_resolutions.insert
|
|
(*ident, new_import_resolution);
|
|
}
|
|
None => { /* continue ... */ }
|
|
Some(&dest_import_resolution) => {
|
|
// Merge the two import resolutions at a finer-grained
|
|
// level.
|
|
|
|
match target_import_resolution.value_target {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(value_target) => {
|
|
dest_import_resolution.value_target =
|
|
Some(value_target);
|
|
}
|
|
}
|
|
match target_import_resolution.type_target {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(type_target) => {
|
|
dest_import_resolution.type_target =
|
|
Some(type_target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let merge_import_resolution = |name,
|
|
name_bindings: @mut NameBindings| {
|
|
let dest_import_resolution;
|
|
match module_.import_resolutions.find(&name) {
|
|
None => {
|
|
// Create a new import resolution from this child.
|
|
dest_import_resolution = @mut ImportResolution::new(privacy, id);
|
|
module_.import_resolutions.insert
|
|
(name, dest_import_resolution);
|
|
}
|
|
Some(&existing_import_resolution) => {
|
|
dest_import_resolution = existing_import_resolution;
|
|
}
|
|
}
|
|
|
|
debug!("(resolving glob import) writing resolution `%s` in `%s` \
|
|
to `%s`, privacy=%?",
|
|
interner_get(name),
|
|
self.module_to_str(containing_module),
|
|
self.module_to_str(module_),
|
|
dest_import_resolution.privacy);
|
|
|
|
// Merge the child item into the import resolution.
|
|
if name_bindings.defined_in_public_namespace(ValueNS) {
|
|
debug!("(resolving glob import) ... for value target");
|
|
dest_import_resolution.value_target =
|
|
Some(Target::new(containing_module, name_bindings));
|
|
dest_import_resolution.value_id = id;
|
|
}
|
|
if name_bindings.defined_in_public_namespace(TypeNS) {
|
|
debug!("(resolving glob import) ... for type target");
|
|
dest_import_resolution.type_target =
|
|
Some(Target::new(containing_module, name_bindings));
|
|
dest_import_resolution.type_id = id;
|
|
}
|
|
};
|
|
|
|
// Add all children from the containing module.
|
|
self.populate_module_if_necessary(containing_module);
|
|
for (&name, name_bindings) in containing_module.children.iter() {
|
|
merge_import_resolution(name, *name_bindings);
|
|
}
|
|
|
|
// Add external module children from the containing module.
|
|
for (&name, module) in containing_module.external_module_children.iter() {
|
|
let name_bindings =
|
|
@mut Resolver::create_name_bindings_from_module(*module);
|
|
merge_import_resolution(name, name_bindings);
|
|
}
|
|
|
|
debug!("(resolving glob import) successfully resolved import");
|
|
return Success(());
|
|
}
|
|
|
|
/// Resolves the given module path from the given root `module_`.
|
|
pub fn resolve_module_path_from_root(@mut self,
|
|
module_: @mut Module,
|
|
module_path: &[Ident],
|
|
index: uint,
|
|
span: Span,
|
|
mut name_search_type: NameSearchType)
|
|
-> ResolveResult<@mut Module> {
|
|
let mut search_module = module_;
|
|
let mut index = index;
|
|
let module_path_len = module_path.len();
|
|
|
|
// Resolve the module part of the path. This does not involve looking
|
|
// upward though scope chains; we simply resolve names directly in
|
|
// modules as we go.
|
|
while index < module_path_len {
|
|
let name = module_path[index];
|
|
match self.resolve_name_in_module(search_module,
|
|
name,
|
|
TypeNS,
|
|
name_search_type) {
|
|
Failed => {
|
|
let segment_name = self.session.str_of(name);
|
|
let module_name = self.module_to_str(search_module);
|
|
if "???" == module_name {
|
|
let span = Span {
|
|
lo: span.lo,
|
|
hi: span.lo + BytePos(segment_name.len()),
|
|
expn_info: span.expn_info,
|
|
};
|
|
self.resolve_error(span,
|
|
fmt!("unresolved import. maybe \
|
|
a missing `extern mod \
|
|
%s`?",
|
|
segment_name));
|
|
return Failed;
|
|
}
|
|
self.resolve_error(span, fmt!("unresolved import: could not find `%s` in \
|
|
`%s`.", segment_name, module_name));
|
|
return Failed;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) module \
|
|
resolution is indeterminate: %s",
|
|
self.session.str_of(name));
|
|
return Indeterminate;
|
|
}
|
|
Success(target) => {
|
|
// Check to see whether there are type bindings, and, if
|
|
// so, whether there is a module within.
|
|
match target.bindings.type_def {
|
|
Some(type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
// Not a module.
|
|
self.resolve_error(span,
|
|
fmt!("not a \
|
|
module `%s`",
|
|
self.session.
|
|
str_of(
|
|
name)));
|
|
return Failed;
|
|
}
|
|
Some(module_def) => {
|
|
// If we're doing the search for an
|
|
// import, do not allow traits and impls
|
|
// to be selected.
|
|
match (name_search_type,
|
|
module_def.kind) {
|
|
(ImportSearch, TraitModuleKind) |
|
|
(ImportSearch, ImplModuleKind) => {
|
|
self.resolve_error(
|
|
span,
|
|
"cannot import from a trait \
|
|
or type implementation");
|
|
return Failed;
|
|
}
|
|
(_, _) => search_module = module_def,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// There are no type bindings at all.
|
|
self.resolve_error(span,
|
|
fmt!("not a module `%s`",
|
|
self.session.str_of(
|
|
name)));
|
|
return Failed;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
index += 1;
|
|
|
|
// After the first element of the path, allow searching only
|
|
// through public identifiers.
|
|
//
|
|
// XXX: Rip this out and move it to the privacy checker.
|
|
if name_search_type == PathPublicOrPrivateSearch {
|
|
name_search_type = PathPublicOnlySearch
|
|
}
|
|
}
|
|
|
|
return Success(search_module);
|
|
}
|
|
|
|
/// Attempts to resolve the module part of an import directive or path
|
|
/// rooted at the given module.
|
|
pub fn resolve_module_path(@mut self,
|
|
module_: @mut Module,
|
|
module_path: &[Ident],
|
|
use_lexical_scope: UseLexicalScopeFlag,
|
|
span: Span,
|
|
name_search_type: NameSearchType)
|
|
-> ResolveResult<@mut Module> {
|
|
let module_path_len = module_path.len();
|
|
assert!(module_path_len > 0);
|
|
|
|
debug!("(resolving module path for import) processing `%s` rooted at \
|
|
`%s`",
|
|
self.idents_to_str(module_path),
|
|
self.module_to_str(module_));
|
|
|
|
// Resolve the module prefix, if any.
|
|
let module_prefix_result = self.resolve_module_prefix(module_,
|
|
module_path);
|
|
|
|
let search_module;
|
|
let start_index;
|
|
match module_prefix_result {
|
|
Failed => {
|
|
let mpath = self.idents_to_str(module_path);
|
|
match mpath.rfind(':') {
|
|
Some(idx) => {
|
|
self.resolve_error(span, fmt!("unresolved import: could not find `%s` \
|
|
in `%s`",
|
|
// idx +- 1 to account for the colons
|
|
// on either side
|
|
mpath.slice_from(idx + 1),
|
|
mpath.slice_to(idx - 1)));
|
|
},
|
|
None => (),
|
|
};
|
|
return Failed;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(NoPrefixFound) => {
|
|
// There was no prefix, so we're considering the first element
|
|
// of the path. How we handle this depends on whether we were
|
|
// instructed to use lexical scope or not.
|
|
match use_lexical_scope {
|
|
DontUseLexicalScope => {
|
|
// This is a crate-relative path. We will start the
|
|
// resolution process at index zero.
|
|
search_module = self.graph_root.get_module();
|
|
start_index = 0;
|
|
}
|
|
UseLexicalScope => {
|
|
// This is not a crate-relative path. We resolve the
|
|
// first component of the path in the current lexical
|
|
// scope and then proceed to resolve below that.
|
|
let result = self.resolve_module_in_lexical_scope(
|
|
module_,
|
|
module_path[0]);
|
|
match result {
|
|
Failed => {
|
|
self.resolve_error(span, "unresolved name");
|
|
return Failed;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) \
|
|
indeterminate; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(containing_module) => {
|
|
search_module = containing_module;
|
|
start_index = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Success(PrefixFound(containing_module, index)) => {
|
|
search_module = containing_module;
|
|
start_index = index;
|
|
}
|
|
}
|
|
|
|
self.resolve_module_path_from_root(search_module,
|
|
module_path,
|
|
start_index,
|
|
span,
|
|
name_search_type)
|
|
}
|
|
|
|
/// Invariant: This must only be called during main resolution, not during
|
|
/// import resolution.
|
|
pub fn resolve_item_in_lexical_scope(@mut self,
|
|
module_: @mut Module,
|
|
name: Ident,
|
|
namespace: Namespace,
|
|
search_through_modules:
|
|
SearchThroughModulesFlag)
|
|
-> ResolveResult<Target> {
|
|
debug!("(resolving item in lexical scope) resolving `%s` in \
|
|
namespace %? in `%s`",
|
|
self.session.str_of(name),
|
|
namespace,
|
|
self.module_to_str(module_));
|
|
|
|
// The current module node is handled specially. First, check for
|
|
// its immediate children.
|
|
self.populate_module_if_necessary(module_);
|
|
match module_.children.find(&name.name) {
|
|
Some(name_bindings)
|
|
if name_bindings.defined_in_namespace(namespace) => {
|
|
return Success(Target::new(module_, *name_bindings));
|
|
}
|
|
Some(_) | None => { /* Not found; continue. */ }
|
|
}
|
|
|
|
// Now check for its import directives. We don't have to have resolved
|
|
// all its imports in the usual way; this is because chains of
|
|
// adjacent import statements are processed as though they mutated the
|
|
// current scope.
|
|
match module_.import_resolutions.find(&name.name) {
|
|
None => {
|
|
// Not found; continue.
|
|
}
|
|
Some(import_resolution) => {
|
|
match (*import_resolution).target_for_namespace(namespace) {
|
|
None => {
|
|
// Not found; continue.
|
|
debug!("(resolving item in lexical scope) found \
|
|
import resolution, but not in namespace %?",
|
|
namespace);
|
|
}
|
|
Some(target) => {
|
|
debug!("(resolving item in lexical scope) using \
|
|
import resolution");
|
|
self.used_imports.insert(import_resolution.id(namespace));
|
|
return Success(target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search for external modules.
|
|
if namespace == TypeNS {
|
|
match module_.external_module_children.find(&name.name) {
|
|
None => {}
|
|
Some(module) => {
|
|
let name_bindings =
|
|
@mut Resolver::create_name_bindings_from_module(
|
|
*module);
|
|
return Success(Target::new(module_, name_bindings));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, proceed up the scope chain looking for parent modules.
|
|
let mut search_module = module_;
|
|
loop {
|
|
// Go to the next parent.
|
|
match search_module.parent_link {
|
|
NoParentLink => {
|
|
// No more parents. This module was unresolved.
|
|
debug!("(resolving item in lexical scope) unresolved \
|
|
module");
|
|
return Failed;
|
|
}
|
|
ModuleParentLink(parent_module_node, _) => {
|
|
match search_through_modules {
|
|
DontSearchThroughModules => {
|
|
match search_module.kind {
|
|
NormalModuleKind => {
|
|
// We stop the search here.
|
|
debug!("(resolving item in lexical \
|
|
scope) unresolved module: not \
|
|
searching through module \
|
|
parents");
|
|
return Failed;
|
|
}
|
|
ExternModuleKind |
|
|
TraitModuleKind |
|
|
ImplModuleKind |
|
|
AnonymousModuleKind => {
|
|
search_module = parent_module_node;
|
|
}
|
|
}
|
|
}
|
|
SearchThroughModules => {
|
|
search_module = parent_module_node;
|
|
}
|
|
}
|
|
}
|
|
BlockParentLink(parent_module_node, _) => {
|
|
search_module = parent_module_node;
|
|
}
|
|
}
|
|
|
|
// Resolve the name in the parent module.
|
|
match self.resolve_name_in_module(search_module,
|
|
name,
|
|
namespace,
|
|
PathPublicOrPrivateSearch) {
|
|
Failed => {
|
|
// Continue up the search chain.
|
|
}
|
|
Indeterminate => {
|
|
// We couldn't see through the higher scope because of an
|
|
// unresolved import higher up. Bail.
|
|
|
|
debug!("(resolving item in lexical scope) indeterminate \
|
|
higher scope; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(target) => {
|
|
// We found the module.
|
|
return Success(target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves a module name in the current lexical scope.
|
|
pub fn resolve_module_in_lexical_scope(@mut self,
|
|
module_: @mut Module,
|
|
name: Ident)
|
|
-> ResolveResult<@mut Module> {
|
|
// If this module is an anonymous module, resolve the item in the
|
|
// lexical scope. Otherwise, resolve the item from the crate root.
|
|
let resolve_result = self.resolve_item_in_lexical_scope(
|
|
module_, name, TypeNS, DontSearchThroughModules);
|
|
match resolve_result {
|
|
Success(target) => {
|
|
let bindings = &mut *target.bindings;
|
|
match bindings.type_def {
|
|
Some(ref type_def) => {
|
|
match (*type_def).module_def {
|
|
None => {
|
|
error!("!!! (resolving module in lexical \
|
|
scope) module wasn't actually a \
|
|
module!");
|
|
return Failed;
|
|
}
|
|
Some(module_def) => {
|
|
return Success(module_def);
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
error!("!!! (resolving module in lexical scope) module
|
|
wasn't actually a module!");
|
|
return Failed;
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module in lexical scope) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Failed => {
|
|
debug!("(resolving module in lexical scope) failed to \
|
|
resolve");
|
|
return Failed;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the nearest normal module parent of the given module.
|
|
pub fn get_nearest_normal_module_parent(@mut self, module_: @mut Module)
|
|
-> Option<@mut Module> {
|
|
let mut module_ = module_;
|
|
loop {
|
|
match module_.parent_link {
|
|
NoParentLink => return None,
|
|
ModuleParentLink(new_module, _) |
|
|
BlockParentLink(new_module, _) => {
|
|
match new_module.kind {
|
|
NormalModuleKind => return Some(new_module),
|
|
ExternModuleKind |
|
|
TraitModuleKind |
|
|
ImplModuleKind |
|
|
AnonymousModuleKind => module_ = new_module,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the nearest normal module parent of the given module, or the
|
|
/// module itself if it is a normal module.
|
|
pub fn get_nearest_normal_module_parent_or_self(@mut self,
|
|
module_: @mut Module)
|
|
-> @mut Module {
|
|
match module_.kind {
|
|
NormalModuleKind => return module_,
|
|
ExternModuleKind |
|
|
TraitModuleKind |
|
|
ImplModuleKind |
|
|
AnonymousModuleKind => {
|
|
match self.get_nearest_normal_module_parent(module_) {
|
|
None => module_,
|
|
Some(new_module) => new_module
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves a "module prefix". A module prefix is one or both of (a) `self::`;
|
|
/// (b) some chain of `super::`.
|
|
/// grammar: (SELF MOD_SEP ) ? (SUPER MOD_SEP) *
|
|
pub fn resolve_module_prefix(@mut self,
|
|
module_: @mut Module,
|
|
module_path: &[Ident])
|
|
-> ResolveResult<ModulePrefixResult> {
|
|
// Start at the current module if we see `self` or `super`, or at the
|
|
// top of the crate otherwise.
|
|
let mut containing_module;
|
|
let mut i;
|
|
if "self" == token::ident_to_str(&module_path[0]) {
|
|
containing_module =
|
|
self.get_nearest_normal_module_parent_or_self(module_);
|
|
i = 1;
|
|
} else if "super" == token::ident_to_str(&module_path[0]) {
|
|
containing_module =
|
|
self.get_nearest_normal_module_parent_or_self(module_);
|
|
i = 0; // We'll handle `super` below.
|
|
} else {
|
|
return Success(NoPrefixFound);
|
|
}
|
|
|
|
// Now loop through all the `super`s we find.
|
|
while i < module_path.len() &&
|
|
"super" == token::ident_to_str(&module_path[i]) {
|
|
debug!("(resolving module prefix) resolving `super` at %s",
|
|
self.module_to_str(containing_module));
|
|
match self.get_nearest_normal_module_parent(containing_module) {
|
|
None => return Failed,
|
|
Some(new_module) => {
|
|
containing_module = new_module;
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!("(resolving module prefix) finished resolving prefix at %s",
|
|
self.module_to_str(containing_module));
|
|
|
|
return Success(PrefixFound(containing_module, i));
|
|
}
|
|
|
|
/// Attempts to resolve the supplied name in the given module for the
|
|
/// given namespace. If successful, returns the target corresponding to
|
|
/// the name.
|
|
pub fn resolve_name_in_module(@mut self,
|
|
module_: @mut Module,
|
|
name: Ident,
|
|
namespace: Namespace,
|
|
name_search_type: NameSearchType)
|
|
-> ResolveResult<Target> {
|
|
debug!("(resolving name in module) resolving `%s` in `%s`",
|
|
self.session.str_of(name),
|
|
self.module_to_str(module_));
|
|
|
|
// First, check the direct children of the module.
|
|
self.populate_module_if_necessary(module_);
|
|
match module_.children.find(&name.name) {
|
|
Some(name_bindings)
|
|
if name_bindings.defined_in_namespace(namespace) => {
|
|
debug!("(resolving name in module) found node as child");
|
|
return Success(Target::new(module_, *name_bindings));
|
|
}
|
|
Some(_) | None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, check the module's imports if necessary.
|
|
|
|
// If this is a search of all imports, we should be done with glob
|
|
// resolution at this point.
|
|
if name_search_type == PathPublicOrPrivateSearch ||
|
|
name_search_type == PathPublicOnlySearch {
|
|
assert_eq!(module_.glob_count, 0);
|
|
}
|
|
|
|
// Check the list of resolved imports.
|
|
match module_.import_resolutions.find(&name.name) {
|
|
Some(import_resolution) => {
|
|
if import_resolution.privacy == Public &&
|
|
import_resolution.outstanding_references != 0 {
|
|
debug!("(resolving name in module) import \
|
|
unresolved; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
match import_resolution.target_for_namespace(namespace) {
|
|
None => {
|
|
debug!("(resolving name in module) name found, \
|
|
but not in namespace %?",
|
|
namespace);
|
|
}
|
|
Some(target)
|
|
if name_search_type ==
|
|
PathPublicOrPrivateSearch ||
|
|
import_resolution.privacy == Public => {
|
|
debug!("(resolving name in module) resolved to \
|
|
import");
|
|
self.used_imports.insert(import_resolution.id(namespace));
|
|
return Success(target);
|
|
}
|
|
Some(_) => {
|
|
debug!("(resolving name in module) name found, \
|
|
but not public");
|
|
}
|
|
}
|
|
}
|
|
None => {} // Continue.
|
|
}
|
|
|
|
// Finally, search through external children.
|
|
if namespace == TypeNS {
|
|
match module_.external_module_children.find(&name.name) {
|
|
None => {}
|
|
Some(module) => {
|
|
let name_bindings =
|
|
@mut Resolver::create_name_bindings_from_module(
|
|
*module);
|
|
return Success(Target::new(module_, name_bindings));
|
|
}
|
|
}
|
|
}
|
|
|
|
// We're out of luck.
|
|
debug!("(resolving name in module) failed to resolve `%s`",
|
|
self.session.str_of(name));
|
|
return Failed;
|
|
}
|
|
|
|
pub fn report_unresolved_imports(@mut self, module_: @mut Module) {
|
|
let index = module_.resolved_import_count;
|
|
let imports: &mut ~[@ImportDirective] = &mut *module_.imports;
|
|
let import_count = imports.len();
|
|
if index != import_count {
|
|
let sn = self.session.codemap.span_to_snippet(imports[index].span).unwrap();
|
|
if sn.contains("::") {
|
|
self.resolve_error(imports[index].span, "unresolved import");
|
|
} else {
|
|
let err = fmt!("unresolved import (maybe you meant `%s::*`?)",
|
|
sn.slice(0, sn.len()));
|
|
self.resolve_error(imports[index].span, err);
|
|
}
|
|
}
|
|
|
|
// Descend into children and anonymous children.
|
|
self.populate_module_if_necessary(module_);
|
|
for (_, &child_node) in module_.children.iter() {
|
|
match child_node.get_module_if_available() {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(child_module) => {
|
|
self.report_unresolved_imports(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (_, &module_) in module_.anonymous_children.iter() {
|
|
self.report_unresolved_imports(module_);
|
|
}
|
|
}
|
|
|
|
// Export recording
|
|
//
|
|
// This pass simply determines what all "export" keywords refer to and
|
|
// writes the results into the export map.
|
|
//
|
|
// FIXME #4953 This pass will be removed once exports change to per-item.
|
|
// Then this operation can simply be performed as part of item (or import)
|
|
// processing.
|
|
|
|
pub fn record_exports(@mut self) {
|
|
let root_module = self.graph_root.get_module();
|
|
self.record_exports_for_module_subtree(root_module);
|
|
}
|
|
|
|
pub fn record_exports_for_module_subtree(@mut self,
|
|
module_: @mut Module) {
|
|
// If this isn't a local crate, then bail out. We don't need to record
|
|
// exports for nonlocal crates.
|
|
|
|
match module_.def_id {
|
|
Some(def_id) if def_id.crate == LOCAL_CRATE => {
|
|
// OK. Continue.
|
|
debug!("(recording exports for module subtree) recording \
|
|
exports for local module `%s`",
|
|
self.module_to_str(module_));
|
|
}
|
|
None => {
|
|
// Record exports for the root module.
|
|
debug!("(recording exports for module subtree) recording \
|
|
exports for root module `%s`",
|
|
self.module_to_str(module_));
|
|
}
|
|
Some(_) => {
|
|
// Bail out.
|
|
debug!("(recording exports for module subtree) not recording \
|
|
exports for `%s`",
|
|
self.module_to_str(module_));
|
|
return;
|
|
}
|
|
}
|
|
|
|
self.record_exports_for_module(module_);
|
|
self.populate_module_if_necessary(module_);
|
|
|
|
for (_, &child_name_bindings) in module_.children.iter() {
|
|
match child_name_bindings.get_module_if_available() {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(child_module) => {
|
|
self.record_exports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (_, &child_module) in module_.anonymous_children.iter() {
|
|
self.record_exports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
pub fn record_exports_for_module(@mut self, module_: @mut Module) {
|
|
let mut exports2 = ~[];
|
|
|
|
self.add_exports_for_module(&mut exports2, module_);
|
|
match module_.def_id {
|
|
Some(def_id) => {
|
|
self.export_map2.insert(def_id.node, exports2);
|
|
debug!("(computing exports) writing exports for %d (some)",
|
|
def_id.node);
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
pub fn add_exports_of_namebindings(@mut self,
|
|
exports2: &mut ~[Export2],
|
|
name: Name,
|
|
namebindings: @mut NameBindings,
|
|
ns: Namespace,
|
|
reexport: bool) {
|
|
match (namebindings.def_for_namespace(ns),
|
|
namebindings.privacy_for_namespace(ns)) {
|
|
(Some(d), Some(Public)) => {
|
|
debug!("(computing exports) YES: %s '%s' => %?",
|
|
if reexport { ~"reexport" } else { ~"export"},
|
|
interner_get(name),
|
|
def_id_of_def(d));
|
|
exports2.push(Export2 {
|
|
reexport: reexport,
|
|
name: interner_get(name),
|
|
def_id: def_id_of_def(d)
|
|
});
|
|
}
|
|
(Some(_), Some(privacy)) => {
|
|
debug!("(computing reexports) NO: privacy %?", privacy);
|
|
}
|
|
(d_opt, p_opt) => {
|
|
debug!("(computing reexports) NO: %?, %?", d_opt, p_opt);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn add_exports_for_module(@mut self,
|
|
exports2: &mut ~[Export2],
|
|
module_: @mut Module) {
|
|
for (name, importresolution) in module_.import_resolutions.iter() {
|
|
if importresolution.privacy != Public {
|
|
debug!("(computing exports) not reexporting private `%s`",
|
|
interner_get(*name));
|
|
loop;
|
|
}
|
|
let xs = [TypeNS, ValueNS];
|
|
for ns in xs.iter() {
|
|
match importresolution.target_for_namespace(*ns) {
|
|
Some(target) => {
|
|
debug!("(computing exports) maybe reexport '%s'",
|
|
interner_get(*name));
|
|
self.add_exports_of_namebindings(&mut *exports2,
|
|
*name,
|
|
target.bindings,
|
|
*ns,
|
|
true)
|
|
}
|
|
_ => ()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// AST resolution
|
|
//
|
|
// We maintain a list of value ribs and type ribs.
|
|
//
|
|
// Simultaneously, we keep track of the current position in the module
|
|
// graph in the `current_module` pointer. When we go to resolve a name in
|
|
// the value or type namespaces, we first look through all the ribs and
|
|
// then query the module graph. When we resolve a name in the module
|
|
// namespace, we can skip all the ribs (since nested modules are not
|
|
// allowed within blocks in Rust) and jump straight to the current module
|
|
// graph node.
|
|
//
|
|
// Named implementations are handled separately. When we find a method
|
|
// call, we consult the module node to find all of the implementations in
|
|
// scope. This information is lazily cached in the module node. We then
|
|
// generate a fake "implementation scope" containing all the
|
|
// implementations thus found, for compatibility with old resolve pass.
|
|
|
|
pub fn with_scope(@mut self, name: Option<Ident>, f: &fn()) {
|
|
let orig_module = self.current_module;
|
|
|
|
// Move down in the graph.
|
|
match name {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(name) => {
|
|
self.populate_module_if_necessary(orig_module);
|
|
match orig_module.children.find(&name.name) {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find `%s` in `%s`",
|
|
self.session.str_of(name),
|
|
self.module_to_str(orig_module));
|
|
}
|
|
Some(name_bindings) => {
|
|
match (*name_bindings).get_module_if_available() {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find module \
|
|
for `%s` in `%s`",
|
|
self.session.str_of(name),
|
|
self.module_to_str(orig_module));
|
|
}
|
|
Some(module_) => {
|
|
self.current_module = module_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
f();
|
|
|
|
self.current_module = orig_module;
|
|
}
|
|
|
|
/// Wraps the given definition in the appropriate number of `def_upvar`
|
|
/// wrappers.
|
|
pub fn upvarify(@mut self,
|
|
ribs: &mut ~[@Rib],
|
|
rib_index: uint,
|
|
def_like: DefLike,
|
|
span: Span,
|
|
allow_capturing_self: AllowCapturingSelfFlag)
|
|
-> Option<DefLike> {
|
|
let mut def;
|
|
let is_ty_param;
|
|
|
|
match def_like {
|
|
DlDef(d @ DefLocal(*)) | DlDef(d @ DefUpvar(*)) |
|
|
DlDef(d @ DefArg(*)) | DlDef(d @ DefBinding(*)) => {
|
|
def = d;
|
|
is_ty_param = false;
|
|
}
|
|
DlDef(d @ DefTyParam(*)) => {
|
|
def = d;
|
|
is_ty_param = true;
|
|
}
|
|
DlDef(d @ DefSelf(*))
|
|
if allow_capturing_self == DontAllowCapturingSelf => {
|
|
def = d;
|
|
is_ty_param = false;
|
|
}
|
|
_ => {
|
|
return Some(def_like);
|
|
}
|
|
}
|
|
|
|
let mut rib_index = rib_index + 1;
|
|
while rib_index < ribs.len() {
|
|
match ribs[rib_index].kind {
|
|
NormalRibKind => {
|
|
// Nothing to do. Continue.
|
|
}
|
|
FunctionRibKind(function_id, body_id) => {
|
|
if !is_ty_param {
|
|
def = DefUpvar(def_id_of_def(def).node,
|
|
@def,
|
|
function_id,
|
|
body_id);
|
|
}
|
|
}
|
|
MethodRibKind(item_id, _) => {
|
|
// If the def is a ty param, and came from the parent
|
|
// item, it's ok
|
|
match def {
|
|
DefTyParam(did, _)
|
|
if self.def_map.find(&did.node).map_move(|x| *x)
|
|
== Some(DefTyParamBinder(item_id)) => {
|
|
// ok
|
|
}
|
|
_ => {
|
|
if !is_ty_param {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.resolve_error(
|
|
span,
|
|
"can't capture dynamic environment in a fn item; \
|
|
use the || { ... } closure form instead");
|
|
} else {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.resolve_error(span,
|
|
"attempt to use a type \
|
|
argument out of scope");
|
|
}
|
|
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
OpaqueFunctionRibKind => {
|
|
if !is_ty_param {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.resolve_error(
|
|
span,
|
|
"can't capture dynamic environment in a fn item; \
|
|
use the || { ... } closure form instead");
|
|
} else {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.resolve_error(span,
|
|
"attempt to use a type \
|
|
argument out of scope");
|
|
}
|
|
|
|
return None;
|
|
}
|
|
ConstantItemRibKind => {
|
|
// Still doesn't deal with upvars
|
|
self.resolve_error(span,
|
|
"attempt to use a non-constant \
|
|
value in a constant");
|
|
|
|
}
|
|
}
|
|
|
|
rib_index += 1;
|
|
}
|
|
|
|
return Some(DlDef(def));
|
|
}
|
|
|
|
pub fn search_ribs(@mut self,
|
|
ribs: &mut ~[@Rib],
|
|
name: Name,
|
|
span: Span,
|
|
allow_capturing_self: AllowCapturingSelfFlag)
|
|
-> Option<DefLike> {
|
|
// FIXME #4950: This should not use a while loop.
|
|
// FIXME #4950: Try caching?
|
|
|
|
let mut i = ribs.len();
|
|
while i != 0 {
|
|
i -= 1;
|
|
match ribs[i].bindings.find(&name) {
|
|
Some(&def_like) => {
|
|
return self.upvarify(ribs, i, def_like, span,
|
|
allow_capturing_self);
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
pub fn resolve_crate(@mut self) {
|
|
debug!("(resolving crate) starting");
|
|
|
|
let mut visitor = ResolveVisitor{ resolver: self };
|
|
visit::walk_crate(&mut visitor, self.crate, ());
|
|
}
|
|
|
|
pub fn resolve_item(@mut self, item: @item, visitor: &mut ResolveVisitor) {
|
|
debug!("(resolving item) resolving %s",
|
|
self.session.str_of(item.ident));
|
|
|
|
// Items with the !resolve_unexported attribute are X-ray contexts.
|
|
// This is used to allow the test runner to run unexported tests.
|
|
let orig_xray_flag = self.xray_context;
|
|
if attr::contains_name(item.attrs, "!resolve_unexported") {
|
|
self.xray_context = Xray;
|
|
}
|
|
|
|
match item.node {
|
|
|
|
// enum item: resolve all the variants' discrs,
|
|
// then resolve the ty params
|
|
item_enum(ref enum_def, ref generics) => {
|
|
for variant in (*enum_def).variants.iter() {
|
|
for dis_expr in variant.node.disr_expr.iter() {
|
|
// resolve the discriminator expr
|
|
// as a constant
|
|
self.with_constant_rib(|| {
|
|
self.resolve_expr(*dis_expr, visitor);
|
|
});
|
|
}
|
|
}
|
|
|
|
// n.b. the discr expr gets visted twice.
|
|
// but maybe it's okay since the first time will signal an
|
|
// error if there is one? -- tjc
|
|
do self.with_type_parameter_rib(
|
|
HasTypeParameters(
|
|
generics, item.id, 0, NormalRibKind)) {
|
|
visit::walk_item(visitor, item, ());
|
|
}
|
|
}
|
|
|
|
item_ty(_, ref generics) => {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(generics, item.id, 0,
|
|
NormalRibKind))
|
|
|| {
|
|
|
|
visit::walk_item(visitor, item, ());
|
|
}
|
|
}
|
|
|
|
item_impl(ref generics,
|
|
ref implemented_traits,
|
|
ref self_type,
|
|
ref methods) => {
|
|
self.resolve_implementation(item.id,
|
|
generics,
|
|
implemented_traits,
|
|
self_type,
|
|
*methods,
|
|
visitor);
|
|
}
|
|
|
|
item_trait(ref generics, ref traits, ref methods) => {
|
|
// Create a new rib for the self type.
|
|
let self_type_rib = @Rib::new(NormalRibKind);
|
|
self.type_ribs.push(self_type_rib);
|
|
// plain insert (no renaming)
|
|
let name = self.type_self_ident.name;
|
|
self_type_rib.bindings.insert(name,
|
|
DlDef(DefSelfTy(item.id)));
|
|
|
|
// Create a new rib for the trait-wide type parameters.
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(generics, item.id, 0,
|
|
NormalRibKind)) {
|
|
|
|
self.resolve_type_parameters(&generics.ty_params,
|
|
visitor);
|
|
|
|
// Resolve derived traits.
|
|
for trt in traits.iter() {
|
|
self.resolve_trait_reference(item.id, trt, visitor, TraitDerivation);
|
|
}
|
|
|
|
for method in (*methods).iter() {
|
|
// Create a new rib for the method-specific type
|
|
// parameters.
|
|
//
|
|
// FIXME #4951: Do we need a node ID here?
|
|
|
|
match *method {
|
|
required(ref ty_m) => {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&ty_m.generics,
|
|
item.id,
|
|
generics.ty_params.len(),
|
|
MethodRibKind(item.id, Required))) {
|
|
|
|
// Resolve the method-specific type
|
|
// parameters.
|
|
self.resolve_type_parameters(
|
|
&ty_m.generics.ty_params,
|
|
visitor);
|
|
|
|
for argument in ty_m.decl.inputs.iter() {
|
|
self.resolve_type(&argument.ty, visitor);
|
|
}
|
|
|
|
self.resolve_type(&ty_m.decl.output, visitor);
|
|
}
|
|
}
|
|
provided(m) => {
|
|
self.resolve_method(MethodRibKind(item.id,
|
|
Provided(m.id)),
|
|
m,
|
|
generics.ty_params.len(),
|
|
visitor)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
self.type_ribs.pop();
|
|
}
|
|
|
|
item_struct(ref struct_def, ref generics) => {
|
|
self.resolve_struct(item.id,
|
|
generics,
|
|
struct_def.fields,
|
|
visitor);
|
|
}
|
|
|
|
item_mod(ref module_) => {
|
|
do self.with_scope(Some(item.ident)) {
|
|
self.resolve_module(module_, item.span, item.ident,
|
|
item.id, visitor);
|
|
}
|
|
}
|
|
|
|
item_foreign_mod(ref foreign_module) => {
|
|
do self.with_scope(Some(item.ident)) {
|
|
for foreign_item in foreign_module.items.iter() {
|
|
match foreign_item.node {
|
|
foreign_item_fn(_, ref generics) => {
|
|
self.with_type_parameter_rib(
|
|
HasTypeParameters(
|
|
generics, foreign_item.id, 0,
|
|
NormalRibKind),
|
|
|| visit::walk_foreign_item(visitor,
|
|
*foreign_item,
|
|
()));
|
|
}
|
|
foreign_item_static(*) => {
|
|
visit::walk_foreign_item(visitor,
|
|
*foreign_item,
|
|
());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
item_fn(ref fn_decl, _, _, ref generics, ref block) => {
|
|
self.resolve_function(OpaqueFunctionRibKind,
|
|
Some(fn_decl),
|
|
HasTypeParameters
|
|
(generics,
|
|
item.id,
|
|
0,
|
|
OpaqueFunctionRibKind),
|
|
block,
|
|
NoSelfBinding,
|
|
visitor);
|
|
}
|
|
|
|
item_static(*) => {
|
|
self.with_constant_rib(|| {
|
|
visit::walk_item(visitor, item, ());
|
|
});
|
|
}
|
|
|
|
item_mac(*) => {
|
|
fail!("item macros unimplemented")
|
|
}
|
|
}
|
|
|
|
self.xray_context = orig_xray_flag;
|
|
}
|
|
|
|
pub fn with_type_parameter_rib(@mut self,
|
|
type_parameters: TypeParameters,
|
|
f: &fn()) {
|
|
match type_parameters {
|
|
HasTypeParameters(generics, node_id, initial_index,
|
|
rib_kind) => {
|
|
|
|
let function_type_rib = @Rib::new(rib_kind);
|
|
self.type_ribs.push(function_type_rib);
|
|
|
|
for (index, type_parameter) in generics.ty_params.iter().enumerate() {
|
|
let ident = type_parameter.ident;
|
|
debug!("with_type_parameter_rib: %d %d", node_id,
|
|
type_parameter.id);
|
|
let def_like = DlDef(DefTyParam
|
|
(local_def(type_parameter.id),
|
|
index + initial_index));
|
|
// Associate this type parameter with
|
|
// the item that bound it
|
|
self.record_def(type_parameter.id,
|
|
DefTyParamBinder(node_id));
|
|
// plain insert (no renaming)
|
|
function_type_rib.bindings.insert(ident.name, def_like);
|
|
}
|
|
}
|
|
|
|
NoTypeParameters => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
f();
|
|
|
|
match type_parameters {
|
|
HasTypeParameters(*) => {
|
|
self.type_ribs.pop();
|
|
}
|
|
|
|
NoTypeParameters => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn with_label_rib(@mut self, f: &fn()) {
|
|
self.label_ribs.push(@Rib::new(NormalRibKind));
|
|
f();
|
|
self.label_ribs.pop();
|
|
}
|
|
|
|
pub fn with_constant_rib(@mut self, f: &fn()) {
|
|
self.value_ribs.push(@Rib::new(ConstantItemRibKind));
|
|
f();
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
pub fn resolve_function(@mut self,
|
|
rib_kind: RibKind,
|
|
optional_declaration: Option<&fn_decl>,
|
|
type_parameters: TypeParameters,
|
|
block: &Block,
|
|
self_binding: SelfBinding,
|
|
visitor: &mut ResolveVisitor) {
|
|
// Create a value rib for the function.
|
|
let function_value_rib = @Rib::new(rib_kind);
|
|
self.value_ribs.push(function_value_rib);
|
|
|
|
// Create a label rib for the function.
|
|
let function_label_rib = @Rib::new(rib_kind);
|
|
self.label_ribs.push(function_label_rib);
|
|
|
|
// If this function has type parameters, add them now.
|
|
do self.with_type_parameter_rib(type_parameters) {
|
|
// Resolve the type parameters.
|
|
match type_parameters {
|
|
NoTypeParameters => {
|
|
// Continue.
|
|
}
|
|
HasTypeParameters(ref generics, _, _, _) => {
|
|
self.resolve_type_parameters(&generics.ty_params,
|
|
visitor);
|
|
}
|
|
}
|
|
|
|
// Add self to the rib, if necessary.
|
|
match self_binding {
|
|
NoSelfBinding => {
|
|
// Nothing to do.
|
|
}
|
|
HasSelfBinding(self_node_id) => {
|
|
let def_like = DlDef(DefSelf(self_node_id));
|
|
*function_value_rib.self_binding = Some(def_like);
|
|
}
|
|
}
|
|
|
|
// Add each argument to the rib.
|
|
match optional_declaration {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(declaration) => {
|
|
for argument in declaration.inputs.iter() {
|
|
let binding_mode = ArgumentIrrefutableMode;
|
|
let mutability =
|
|
if argument.is_mutbl {Mutable} else {Immutable};
|
|
self.resolve_pattern(argument.pat,
|
|
binding_mode,
|
|
mutability,
|
|
None,
|
|
visitor);
|
|
|
|
self.resolve_type(&argument.ty, visitor);
|
|
|
|
debug!("(resolving function) recorded argument");
|
|
}
|
|
|
|
self.resolve_type(&declaration.output, visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the function body.
|
|
self.resolve_block(block, visitor);
|
|
|
|
debug!("(resolving function) leaving function");
|
|
}
|
|
|
|
self.label_ribs.pop();
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
pub fn resolve_type_parameters(@mut self,
|
|
type_parameters: &OptVec<TyParam>,
|
|
visitor: &mut ResolveVisitor) {
|
|
for type_parameter in type_parameters.iter() {
|
|
for bound in type_parameter.bounds.iter() {
|
|
self.resolve_type_parameter_bound(type_parameter.id, bound, visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_type_parameter_bound(@mut self,
|
|
id: NodeId,
|
|
type_parameter_bound: &TyParamBound,
|
|
visitor: &mut ResolveVisitor) {
|
|
match *type_parameter_bound {
|
|
TraitTyParamBound(ref tref) => {
|
|
self.resolve_trait_reference(id, tref, visitor, TraitBoundingTypeParameter)
|
|
}
|
|
RegionTyParamBound => {}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_trait_reference(@mut self,
|
|
id: NodeId,
|
|
trait_reference: &trait_ref,
|
|
visitor: &mut ResolveVisitor,
|
|
reference_type: TraitReferenceType) {
|
|
match self.resolve_path(id, &trait_reference.path, TypeNS, true, visitor) {
|
|
None => {
|
|
let path_str = self.path_idents_to_str(&trait_reference.path);
|
|
let usage_str = match reference_type {
|
|
TraitBoundingTypeParameter => "bound type parameter with",
|
|
TraitImplementation => "implement",
|
|
TraitDerivation => "derive"
|
|
};
|
|
|
|
let msg = fmt!("attempt to %s a nonexistent trait `%s`", usage_str, path_str);
|
|
self.resolve_error(trait_reference.path.span, msg);
|
|
}
|
|
Some(def) => {
|
|
debug!("(resolving trait) found trait def: %?", def);
|
|
self.record_def(trait_reference.ref_id, def);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_struct(@mut self,
|
|
id: NodeId,
|
|
generics: &Generics,
|
|
fields: &[@struct_field],
|
|
visitor: &mut ResolveVisitor) {
|
|
let mut ident_map: HashMap<ast::Ident,@struct_field> = HashMap::new();
|
|
for &field in fields.iter() {
|
|
match field.node.kind {
|
|
named_field(ident, _) => {
|
|
match ident_map.find(&ident) {
|
|
Some(&prev_field) => {
|
|
let ident_str = self.session.str_of(ident);
|
|
self.resolve_error(field.span,
|
|
fmt!("field `%s` is already declared", ident_str));
|
|
self.session.span_note(prev_field.span,
|
|
"Previously declared here");
|
|
},
|
|
None => {
|
|
ident_map.insert(ident, field);
|
|
}
|
|
}
|
|
}
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
// If applicable, create a rib for the type parameters.
|
|
do self.with_type_parameter_rib(HasTypeParameters
|
|
(generics, id, 0,
|
|
OpaqueFunctionRibKind)) {
|
|
|
|
// Resolve the type parameters.
|
|
self.resolve_type_parameters(&generics.ty_params, visitor);
|
|
|
|
// Resolve fields.
|
|
for field in fields.iter() {
|
|
self.resolve_type(&field.node.ty, visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Does this really need to take a RibKind or is it always going
|
|
// to be NormalRibKind?
|
|
pub fn resolve_method(@mut self,
|
|
rib_kind: RibKind,
|
|
method: @method,
|
|
outer_type_parameter_count: uint,
|
|
visitor: &mut ResolveVisitor) {
|
|
let method_generics = &method.generics;
|
|
let type_parameters =
|
|
HasTypeParameters(method_generics,
|
|
method.id,
|
|
outer_type_parameter_count,
|
|
rib_kind);
|
|
// we only have self ty if it is a non static method
|
|
let self_binding = match method.explicit_self.node {
|
|
sty_static => { NoSelfBinding }
|
|
_ => { HasSelfBinding(method.self_id) }
|
|
};
|
|
|
|
self.resolve_function(rib_kind,
|
|
Some(&method.decl),
|
|
type_parameters,
|
|
&method.body,
|
|
self_binding,
|
|
visitor);
|
|
}
|
|
|
|
pub fn resolve_implementation(@mut self,
|
|
id: NodeId,
|
|
generics: &Generics,
|
|
opt_trait_reference: &Option<trait_ref>,
|
|
self_type: &Ty,
|
|
methods: &[@method],
|
|
visitor: &mut ResolveVisitor) {
|
|
// If applicable, create a rib for the type parameters.
|
|
let outer_type_parameter_count = generics.ty_params.len();
|
|
do self.with_type_parameter_rib(HasTypeParameters
|
|
(generics, id, 0,
|
|
NormalRibKind)) {
|
|
// Resolve the type parameters.
|
|
self.resolve_type_parameters(&generics.ty_params,
|
|
visitor);
|
|
|
|
// Resolve the trait reference, if necessary.
|
|
let original_trait_refs;
|
|
match opt_trait_reference {
|
|
&Some(ref trait_reference) => {
|
|
self.resolve_trait_reference(id, trait_reference, visitor,
|
|
TraitImplementation);
|
|
|
|
// Record the current set of trait references.
|
|
let mut new_trait_refs = ~[];
|
|
{
|
|
let r = self.def_map.find(&trait_reference.ref_id);
|
|
for &def in r.iter() {
|
|
new_trait_refs.push(def_id_of_def(*def));
|
|
}
|
|
}
|
|
original_trait_refs = Some(util::replace(
|
|
&mut self.current_trait_refs,
|
|
Some(new_trait_refs)));
|
|
}
|
|
&None => {
|
|
original_trait_refs = None;
|
|
}
|
|
}
|
|
|
|
// Resolve the self type.
|
|
self.resolve_type(self_type, visitor);
|
|
|
|
for method in methods.iter() {
|
|
// We also need a new scope for the method-specific
|
|
// type parameters.
|
|
self.resolve_method(MethodRibKind(
|
|
id,
|
|
Provided(method.id)),
|
|
*method,
|
|
outer_type_parameter_count,
|
|
visitor);
|
|
/*
|
|
let borrowed_type_parameters = &method.tps;
|
|
self.resolve_function(MethodRibKind(
|
|
id,
|
|
Provided(method.id)),
|
|
Some(@method.decl),
|
|
HasTypeParameters
|
|
(borrowed_type_parameters,
|
|
method.id,
|
|
outer_type_parameter_count,
|
|
NormalRibKind),
|
|
method.body,
|
|
HasSelfBinding(method.self_id),
|
|
visitor);
|
|
*/
|
|
}
|
|
|
|
// Restore the original trait references.
|
|
match original_trait_refs {
|
|
Some(r) => { self.current_trait_refs = r; }
|
|
None => ()
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_module(@mut self,
|
|
module_: &_mod,
|
|
_span: Span,
|
|
_name: Ident,
|
|
id: NodeId,
|
|
visitor: &mut ResolveVisitor) {
|
|
// Write the implementations in scope into the module metadata.
|
|
debug!("(resolving module) resolving module ID %d", id);
|
|
visit::walk_mod(visitor, module_, ());
|
|
}
|
|
|
|
pub fn resolve_local(@mut self, local: @Local, visitor: &mut ResolveVisitor) {
|
|
let mutability = if local.is_mutbl {Mutable} else {Immutable};
|
|
|
|
// Resolve the type.
|
|
self.resolve_type(&local.ty, visitor);
|
|
|
|
// Resolve the initializer, if necessary.
|
|
match local.init {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(initializer) => {
|
|
self.resolve_expr(initializer, visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the pattern.
|
|
self.resolve_pattern(local.pat, LocalIrrefutableMode, mutability,
|
|
None, visitor);
|
|
}
|
|
|
|
// build a map from pattern identifiers to binding-info's.
|
|
// this is done hygienically. This could arise for a macro
|
|
// that expands into an or-pattern where one 'x' was from the
|
|
// user and one 'x' came from the macro.
|
|
pub fn binding_mode_map(@mut self, pat: @Pat) -> BindingMap {
|
|
let mut result = HashMap::new();
|
|
do pat_bindings(self.def_map, pat) |binding_mode, _id, sp, path| {
|
|
let name = mtwt_resolve(path_to_ident(path));
|
|
result.insert(name,
|
|
binding_info {span: sp,
|
|
binding_mode: binding_mode});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// check that all of the arms in an or-pattern have exactly the
|
|
// same set of bindings, with the same binding modes for each.
|
|
pub fn check_consistent_bindings(@mut self, arm: &Arm) {
|
|
if arm.pats.len() == 0 { return; }
|
|
let map_0 = self.binding_mode_map(arm.pats[0]);
|
|
for (i, p) in arm.pats.iter().enumerate() {
|
|
let map_i = self.binding_mode_map(*p);
|
|
|
|
for (&key, &binding_0) in map_0.iter() {
|
|
match map_i.find(&key) {
|
|
None => {
|
|
self.resolve_error(
|
|
p.span,
|
|
fmt!("variable `%s` from pattern #1 is \
|
|
not bound in pattern #%u",
|
|
interner_get(key), i + 1));
|
|
}
|
|
Some(binding_i) => {
|
|
if binding_0.binding_mode != binding_i.binding_mode {
|
|
self.resolve_error(
|
|
binding_i.span,
|
|
fmt!("variable `%s` is bound with different \
|
|
mode in pattern #%u than in pattern #1",
|
|
interner_get(key), i + 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (&key, &binding) in map_i.iter() {
|
|
if !map_0.contains_key(&key) {
|
|
self.resolve_error(
|
|
binding.span,
|
|
fmt!("variable `%s` from pattern #%u is \
|
|
not bound in pattern #1",
|
|
interner_get(key), i + 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_arm(@mut self, arm: &Arm, visitor: &mut ResolveVisitor) {
|
|
self.value_ribs.push(@Rib::new(NormalRibKind));
|
|
|
|
let bindings_list = @mut HashMap::new();
|
|
for pattern in arm.pats.iter() {
|
|
self.resolve_pattern(*pattern, RefutableMode, Immutable,
|
|
Some(bindings_list), visitor);
|
|
}
|
|
|
|
// This has to happen *after* we determine which
|
|
// pat_idents are variants
|
|
self.check_consistent_bindings(arm);
|
|
|
|
visit::walk_expr_opt(visitor, arm.guard, ());
|
|
self.resolve_block(&arm.body, visitor);
|
|
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
pub fn resolve_block(@mut self, block: &Block, visitor: &mut ResolveVisitor) {
|
|
debug!("(resolving block) entering block");
|
|
self.value_ribs.push(@Rib::new(NormalRibKind));
|
|
|
|
// Move down in the graph, if there's an anonymous module rooted here.
|
|
let orig_module = self.current_module;
|
|
match self.current_module.anonymous_children.find(&block.id) {
|
|
None => { /* Nothing to do. */ }
|
|
Some(&anonymous_module) => {
|
|
debug!("(resolving block) found anonymous module, moving \
|
|
down");
|
|
self.current_module = anonymous_module;
|
|
}
|
|
}
|
|
|
|
// Descend into the block.
|
|
visit::walk_block(visitor, block, ());
|
|
|
|
// Move back up.
|
|
self.current_module = orig_module;
|
|
|
|
self.value_ribs.pop();
|
|
debug!("(resolving block) leaving block");
|
|
}
|
|
|
|
pub fn resolve_type(@mut self, ty: &Ty, visitor: &mut ResolveVisitor) {
|
|
match ty.node {
|
|
// Like path expressions, the interpretation of path types depends
|
|
// on whether the path has multiple elements in it or not.
|
|
|
|
ty_path(ref path, ref bounds, path_id) => {
|
|
// This is a path in the type namespace. Walk through scopes
|
|
// scopes looking for it.
|
|
let mut result_def = None;
|
|
|
|
// First, check to see whether the name is a primitive type.
|
|
if path.segments.len() == 1 {
|
|
let id = path.segments.last().identifier;
|
|
|
|
match self.primitive_type_table
|
|
.primitive_types
|
|
.find(&id.name) {
|
|
|
|
Some(&primitive_type) => {
|
|
result_def =
|
|
Some(DefPrimTy(primitive_type));
|
|
|
|
if path.segments
|
|
.iter()
|
|
.any(|s| s.lifetime.is_some()) {
|
|
self.session.span_err(path.span,
|
|
"lifetime parameters \
|
|
are not allowed on \
|
|
this type")
|
|
} else if path.segments
|
|
.iter()
|
|
.any(|s| s.types.len() > 0) {
|
|
self.session.span_err(path.span,
|
|
"type parameters are \
|
|
not allowed on this \
|
|
type")
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
match result_def {
|
|
None => {
|
|
match self.resolve_path(ty.id,
|
|
path,
|
|
TypeNS,
|
|
true,
|
|
visitor) {
|
|
Some(def) => {
|
|
debug!("(resolving type) resolved `%s` to \
|
|
type %?",
|
|
self.session.str_of(path.segments
|
|
.last()
|
|
.identifier),
|
|
def);
|
|
result_def = Some(def);
|
|
}
|
|
None => {
|
|
result_def = None;
|
|
}
|
|
}
|
|
}
|
|
Some(_) => {} // Continue.
|
|
}
|
|
|
|
match result_def {
|
|
Some(def) => {
|
|
// Write the result into the def map.
|
|
debug!("(resolving type) writing resolution for `%s` \
|
|
(id %d)",
|
|
self.path_idents_to_str(path),
|
|
path_id);
|
|
self.record_def(path_id, def);
|
|
}
|
|
None => {
|
|
self.resolve_error
|
|
(ty.span,
|
|
fmt!("use of undeclared type name `%s`",
|
|
self.path_idents_to_str(path)))
|
|
}
|
|
}
|
|
|
|
do bounds.map |bound_vec| {
|
|
for bound in bound_vec.iter() {
|
|
self.resolve_type_parameter_bound(ty.id, bound, visitor);
|
|
}
|
|
};
|
|
}
|
|
|
|
ty_closure(c) => {
|
|
do c.bounds.map |bounds| {
|
|
for bound in bounds.iter() {
|
|
self.resolve_type_parameter_bound(ty.id, bound, visitor);
|
|
}
|
|
};
|
|
visit::walk_ty(visitor, ty, ());
|
|
}
|
|
|
|
_ => {
|
|
// Just resolve embedded types.
|
|
visit::walk_ty(visitor, ty, ());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_pattern(@mut self,
|
|
pattern: @Pat,
|
|
mode: PatternBindingMode,
|
|
mutability: Mutability,
|
|
// Maps idents to the node ID for the (outermost)
|
|
// pattern that binds them
|
|
bindings_list: Option<@mut HashMap<Name,NodeId>>,
|
|
visitor: &mut ResolveVisitor) {
|
|
let pat_id = pattern.id;
|
|
do walk_pat(pattern) |pattern| {
|
|
match pattern.node {
|
|
PatIdent(binding_mode, ref path, _)
|
|
if !path.global && path.segments.len() == 1 => {
|
|
|
|
// The meaning of pat_ident with no type parameters
|
|
// depends on whether an enum variant or unit-like struct
|
|
// with that name is in scope. The probing lookup has to
|
|
// be careful not to emit spurious errors. Only matching
|
|
// patterns (match) can match nullary variants or
|
|
// unit-like structs. For binding patterns (let), matching
|
|
// such a value is simply disallowed (since it's rarely
|
|
// what you want).
|
|
|
|
let ident = path.segments[0].identifier;
|
|
let renamed = mtwt_resolve(ident);
|
|
|
|
match self.resolve_bare_identifier_pattern(ident) {
|
|
FoundStructOrEnumVariant(def)
|
|
if mode == RefutableMode => {
|
|
debug!("(resolving pattern) resolving `%s` to \
|
|
struct or enum variant",
|
|
interner_get(renamed));
|
|
|
|
self.enforce_default_binding_mode(
|
|
pattern,
|
|
binding_mode,
|
|
"an enum variant");
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
FoundStructOrEnumVariant(_) => {
|
|
self.resolve_error(pattern.span,
|
|
fmt!("declaration of `%s` \
|
|
shadows an enum \
|
|
variant or unit-like \
|
|
struct in scope",
|
|
interner_get(renamed)));
|
|
}
|
|
FoundConst(def) if mode == RefutableMode => {
|
|
debug!("(resolving pattern) resolving `%s` to \
|
|
constant",
|
|
interner_get(renamed));
|
|
|
|
self.enforce_default_binding_mode(
|
|
pattern,
|
|
binding_mode,
|
|
"a constant");
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
FoundConst(_) => {
|
|
self.resolve_error(pattern.span,
|
|
"only refutable patterns \
|
|
allowed here");
|
|
}
|
|
BareIdentifierPatternUnresolved => {
|
|
debug!("(resolving pattern) binding `%s`",
|
|
interner_get(renamed));
|
|
|
|
let is_mutable = mutability == Mutable;
|
|
|
|
let def = match mode {
|
|
RefutableMode => {
|
|
// For pattern arms, we must use
|
|
// `def_binding` definitions.
|
|
|
|
DefBinding(pattern.id, binding_mode)
|
|
}
|
|
LocalIrrefutableMode => {
|
|
// But for locals, we use `def_local`.
|
|
DefLocal(pattern.id, is_mutable)
|
|
}
|
|
ArgumentIrrefutableMode => {
|
|
// And for function arguments, `def_arg`.
|
|
DefArg(pattern.id, is_mutable)
|
|
}
|
|
};
|
|
|
|
// Record the definition so that later passes
|
|
// will be able to distinguish variants from
|
|
// locals in patterns.
|
|
|
|
self.record_def(pattern.id, def);
|
|
|
|
// Add the binding to the local ribs, if it
|
|
// doesn't already exist in the bindings list. (We
|
|
// must not add it if it's in the bindings list
|
|
// because that breaks the assumptions later
|
|
// passes make about or-patterns.)
|
|
|
|
match bindings_list {
|
|
Some(bindings_list)
|
|
if !bindings_list.contains_key(&renamed) => {
|
|
let this = &mut *self;
|
|
let last_rib = this.value_ribs[
|
|
this.value_ribs.len() - 1];
|
|
last_rib.bindings.insert(renamed,
|
|
DlDef(def));
|
|
bindings_list.insert(renamed, pat_id);
|
|
}
|
|
Some(b) => {
|
|
if b.find(&renamed) == Some(&pat_id) {
|
|
// Then this is a duplicate variable
|
|
// in the same disjunct, which is an
|
|
// error
|
|
self.resolve_error(pattern.span,
|
|
fmt!("Identifier `%s` is bound more \
|
|
than once in the same pattern",
|
|
path_to_str(path, self.session
|
|
.intr())));
|
|
}
|
|
// Not bound in the same pattern: do nothing
|
|
}
|
|
None => {
|
|
let this = &mut *self;
|
|
let last_rib = this.value_ribs[
|
|
this.value_ribs.len() - 1];
|
|
last_rib.bindings.insert(renamed,
|
|
DlDef(def));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for ty in path.segments
|
|
.iter()
|
|
.flat_map(|seg| seg.types.iter()) {
|
|
self.resolve_type(ty, visitor);
|
|
}
|
|
}
|
|
|
|
PatIdent(binding_mode, ref path, _) => {
|
|
// This must be an enum variant, struct, or constant.
|
|
match self.resolve_path(pat_id, path, ValueNS, false, visitor) {
|
|
Some(def @ DefVariant(*)) |
|
|
Some(def @ DefStruct(*)) => {
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
Some(def @ DefStatic(*)) => {
|
|
self.enforce_default_binding_mode(
|
|
pattern,
|
|
binding_mode,
|
|
"a constant");
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
Some(_) => {
|
|
self.resolve_error(
|
|
path.span,
|
|
fmt!("`%s` is not an enum variant or constant",
|
|
self.session.str_of(
|
|
path.segments.last().identifier)))
|
|
}
|
|
None => {
|
|
self.resolve_error(path.span,
|
|
"unresolved enum variant");
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for ty in path.segments
|
|
.iter()
|
|
.flat_map(|s| s.types.iter()) {
|
|
self.resolve_type(ty, visitor);
|
|
}
|
|
}
|
|
|
|
PatEnum(ref path, _) => {
|
|
// This must be an enum variant, struct or const.
|
|
match self.resolve_path(pat_id, path, ValueNS, false, visitor) {
|
|
Some(def @ DefFn(*)) |
|
|
Some(def @ DefVariant(*)) |
|
|
Some(def @ DefStruct(*)) |
|
|
Some(def @ DefStatic(*)) => {
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
Some(_) => {
|
|
self.resolve_error(
|
|
path.span,
|
|
fmt!("`%s` is not an enum variant, struct or const",
|
|
self.session
|
|
.str_of(path.segments
|
|
.last()
|
|
.identifier)));
|
|
}
|
|
None => {
|
|
self.resolve_error(path.span,
|
|
fmt!("unresolved enum variant, \
|
|
struct or const `%s`",
|
|
self.session
|
|
.str_of(path.segments
|
|
.last()
|
|
.identifier)));
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for ty in path.segments
|
|
.iter()
|
|
.flat_map(|s| s.types.iter()) {
|
|
self.resolve_type(ty, visitor);
|
|
}
|
|
}
|
|
|
|
PatLit(expr) => {
|
|
self.resolve_expr(expr, visitor);
|
|
}
|
|
|
|
PatRange(first_expr, last_expr) => {
|
|
self.resolve_expr(first_expr, visitor);
|
|
self.resolve_expr(last_expr, visitor);
|
|
}
|
|
|
|
PatStruct(ref path, _, _) => {
|
|
match self.resolve_path(pat_id, path, TypeNS, false, visitor) {
|
|
Some(DefTy(class_id))
|
|
if self.structs.contains(&class_id) => {
|
|
let class_def = DefStruct(class_id);
|
|
self.record_def(pattern.id, class_def);
|
|
}
|
|
Some(definition @ DefStruct(class_id)) => {
|
|
assert!(self.structs.contains(&class_id));
|
|
self.record_def(pattern.id, definition);
|
|
}
|
|
Some(definition @ DefVariant(_, variant_id, _))
|
|
if self.structs.contains(&variant_id) => {
|
|
self.record_def(pattern.id, definition);
|
|
}
|
|
result => {
|
|
debug!("(resolving pattern) didn't find struct \
|
|
def: %?", result);
|
|
self.resolve_error(
|
|
path.span,
|
|
fmt!("`%s` does not name a structure",
|
|
self.path_idents_to_str(path)));
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
true
|
|
};
|
|
}
|
|
|
|
pub fn resolve_bare_identifier_pattern(@mut self, name: Ident)
|
|
->
|
|
BareIdentifierPatternResolution {
|
|
match self.resolve_item_in_lexical_scope(self.current_module,
|
|
name,
|
|
ValueNS,
|
|
SearchThroughModules) {
|
|
Success(target) => {
|
|
match target.bindings.value_def {
|
|
None => {
|
|
fail!("resolved name in the value namespace to a \
|
|
set of name bindings with no def?!");
|
|
}
|
|
Some(def) => {
|
|
match def.def {
|
|
def @ DefVariant(*) | def @ DefStruct(*) => {
|
|
return FoundStructOrEnumVariant(def);
|
|
}
|
|
def @ DefStatic(_, false) => {
|
|
return FoundConst(def);
|
|
}
|
|
_ => {
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Indeterminate => {
|
|
fail!("unexpected indeterminate result");
|
|
}
|
|
|
|
Failed => {
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If `check_ribs` is true, checks the local definitions first; i.e.
|
|
/// doesn't skip straight to the containing module.
|
|
pub fn resolve_path(@mut self,
|
|
id: NodeId,
|
|
path: &Path,
|
|
namespace: Namespace,
|
|
check_ribs: bool,
|
|
visitor: &mut ResolveVisitor)
|
|
-> Option<Def> {
|
|
// First, resolve the types.
|
|
for ty in path.segments.iter().flat_map(|s| s.types.iter()) {
|
|
self.resolve_type(ty, visitor);
|
|
}
|
|
|
|
if path.global {
|
|
return self.resolve_crate_relative_path(path,
|
|
self.xray_context,
|
|
namespace);
|
|
}
|
|
|
|
let unqualified_def = self.resolve_identifier(path.segments
|
|
.last()
|
|
.identifier,
|
|
namespace,
|
|
check_ribs,
|
|
path.span);
|
|
|
|
if path.segments.len() > 1 {
|
|
let def = self.resolve_module_relative_path(path,
|
|
self.xray_context,
|
|
namespace);
|
|
match (def, unqualified_def) {
|
|
(Some(d), Some(ud)) if d == ud => {
|
|
self.session.add_lint(unnecessary_qualification,
|
|
id,
|
|
path.span,
|
|
~"unnecessary qualification");
|
|
}
|
|
_ => ()
|
|
}
|
|
|
|
return def;
|
|
}
|
|
|
|
return unqualified_def;
|
|
}
|
|
|
|
// resolve a single identifier (used as a varref)
|
|
pub fn resolve_identifier(@mut self,
|
|
identifier: Ident,
|
|
namespace: Namespace,
|
|
check_ribs: bool,
|
|
span: Span)
|
|
-> Option<Def> {
|
|
if check_ribs {
|
|
match self.resolve_identifier_in_local_ribs(identifier,
|
|
namespace,
|
|
span) {
|
|
Some(def) => {
|
|
return Some(def);
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
return self.resolve_item_by_identifier_in_lexical_scope(identifier,
|
|
namespace);
|
|
}
|
|
|
|
// FIXME #4952: Merge me with resolve_name_in_module?
|
|
pub fn resolve_definition_of_name_in_module(@mut self,
|
|
containing_module: @mut Module,
|
|
name: Ident,
|
|
namespace: Namespace,
|
|
xray: XrayFlag)
|
|
-> NameDefinition {
|
|
// First, search children.
|
|
self.populate_module_if_necessary(containing_module);
|
|
match containing_module.children.find(&name.name) {
|
|
Some(child_name_bindings) => {
|
|
match (child_name_bindings.def_for_namespace(namespace),
|
|
child_name_bindings.privacy_for_namespace(namespace)) {
|
|
(Some(def), Some(Public)) => {
|
|
// Found it. Stop the search here.
|
|
return ChildNameDefinition(def);
|
|
}
|
|
(Some(def), _) if xray == Xray => {
|
|
// Found it. Stop the search here.
|
|
return ChildNameDefinition(def);
|
|
}
|
|
(Some(_), _) | (None, _) => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, search import resolutions.
|
|
match containing_module.import_resolutions.find(&name.name) {
|
|
Some(import_resolution) if import_resolution.privacy == Public ||
|
|
xray == Xray => {
|
|
match (*import_resolution).target_for_namespace(namespace) {
|
|
Some(target) => {
|
|
match (target.bindings.def_for_namespace(namespace),
|
|
target.bindings.privacy_for_namespace(
|
|
namespace)) {
|
|
(Some(def), Some(Public)) => {
|
|
// Found it.
|
|
let id = import_resolution.id(namespace);
|
|
self.used_imports.insert(id);
|
|
return ImportNameDefinition(def);
|
|
}
|
|
(Some(_), _) | (None, _) => {
|
|
// This can happen with external impls, due to
|
|
// the imperfect way we read the metadata.
|
|
}
|
|
}
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
Some(_) | None => {} // Continue.
|
|
}
|
|
|
|
// Finally, search through external children.
|
|
if namespace == TypeNS {
|
|
match containing_module.external_module_children.find(&name.name) {
|
|
None => {}
|
|
Some(module) => {
|
|
match module.def_id {
|
|
None => {} // Continue.
|
|
Some(def_id) => {
|
|
return ChildNameDefinition(DefMod(def_id));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NoNameDefinition;
|
|
}
|
|
|
|
// resolve a "module-relative" path, e.g. a::b::c
|
|
pub fn resolve_module_relative_path(@mut self,
|
|
path: &Path,
|
|
xray: XrayFlag,
|
|
namespace: Namespace)
|
|
-> Option<Def> {
|
|
let module_path_idents = path.segments.init().map(|ps| ps.identifier);
|
|
|
|
let containing_module;
|
|
match self.resolve_module_path(self.current_module,
|
|
module_path_idents,
|
|
UseLexicalScope,
|
|
path.span,
|
|
PathPublicOnlySearch) {
|
|
Failed => {
|
|
self.resolve_error(path.span,
|
|
fmt!("use of undeclared module `%s`",
|
|
self.idents_to_str(
|
|
module_path_idents)));
|
|
return None;
|
|
}
|
|
|
|
Indeterminate => {
|
|
fail!("indeterminate unexpected");
|
|
}
|
|
|
|
Success(resulting_module) => {
|
|
containing_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
let ident = path.segments.last().identifier;
|
|
let def = match self.resolve_definition_of_name_in_module(containing_module,
|
|
ident,
|
|
namespace,
|
|
xray) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def) | ImportNameDefinition(def) => {
|
|
def
|
|
}
|
|
};
|
|
match containing_module.kind {
|
|
TraitModuleKind | ImplModuleKind => {
|
|
match self.method_map.find(&ident.name) {
|
|
Some(s) => {
|
|
match containing_module.def_id {
|
|
Some(def_id) if s.contains(&def_id) => {
|
|
debug!("containing module was a trait or impl \
|
|
and name was a method -> not resolved");
|
|
return None;
|
|
},
|
|
_ => (),
|
|
}
|
|
},
|
|
None => (),
|
|
}
|
|
},
|
|
_ => (),
|
|
};
|
|
return Some(def);
|
|
}
|
|
|
|
/// Invariant: This must be called only during main resolution, not during
|
|
/// import resolution.
|
|
pub fn resolve_crate_relative_path(@mut self,
|
|
path: &Path,
|
|
xray: XrayFlag,
|
|
namespace: Namespace)
|
|
-> Option<Def> {
|
|
let module_path_idents = path.segments.init().map(|ps| ps.identifier);
|
|
|
|
let root_module = self.graph_root.get_module();
|
|
|
|
let containing_module;
|
|
match self.resolve_module_path_from_root(root_module,
|
|
module_path_idents,
|
|
0,
|
|
path.span,
|
|
PathPublicOrPrivateSearch) {
|
|
Failed => {
|
|
self.resolve_error(path.span,
|
|
fmt!("use of undeclared module `::%s`",
|
|
self.idents_to_str(
|
|
module_path_idents)));
|
|
return None;
|
|
}
|
|
|
|
Indeterminate => {
|
|
fail!("indeterminate unexpected");
|
|
}
|
|
|
|
Success(resulting_module) => {
|
|
containing_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
let name = path.segments.last().identifier;
|
|
match self.resolve_definition_of_name_in_module(containing_module,
|
|
name,
|
|
namespace,
|
|
xray) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def) | ImportNameDefinition(def) => {
|
|
return Some(def);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_identifier_in_local_ribs(@mut self,
|
|
ident: Ident,
|
|
namespace: Namespace,
|
|
span: Span)
|
|
-> Option<Def> {
|
|
// Check the local set of ribs.
|
|
let search_result;
|
|
match namespace {
|
|
ValueNS => {
|
|
let renamed = mtwt_resolve(ident);
|
|
search_result = self.search_ribs(self.value_ribs, renamed,
|
|
span,
|
|
DontAllowCapturingSelf);
|
|
}
|
|
TypeNS => {
|
|
let name = ident.name;
|
|
search_result = self.search_ribs(self.type_ribs, name,
|
|
span, AllowCapturingSelf);
|
|
}
|
|
}
|
|
|
|
match search_result {
|
|
Some(DlDef(def)) => {
|
|
debug!("(resolving path in local ribs) resolved `%s` to \
|
|
local: %?",
|
|
self.session.str_of(ident),
|
|
def);
|
|
return Some(def);
|
|
}
|
|
Some(DlField) | Some(DlImpl(_)) | None => {
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_self_value_in_local_ribs(@mut self, span: Span)
|
|
-> Option<Def> {
|
|
// FIXME #4950: This should not use a while loop.
|
|
let ribs = &mut self.value_ribs;
|
|
let mut i = ribs.len();
|
|
while i != 0 {
|
|
i -= 1;
|
|
match *ribs[i].self_binding {
|
|
Some(def_like) => {
|
|
match self.upvarify(*ribs,
|
|
i,
|
|
def_like,
|
|
span,
|
|
DontAllowCapturingSelf) {
|
|
Some(DlDef(def)) => return Some(def),
|
|
_ => {
|
|
if self.session.has_errors() {
|
|
// May happen inside a nested fn item, cf #6642.
|
|
return None;
|
|
} else {
|
|
self.session.span_bug(span,
|
|
"self wasn't mapped to a def?!")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
pub fn resolve_item_by_identifier_in_lexical_scope(@mut self,
|
|
ident: Ident,
|
|
namespace: Namespace)
|
|
-> Option<Def> {
|
|
// Check the items.
|
|
match self.resolve_item_in_lexical_scope(self.current_module,
|
|
ident,
|
|
namespace,
|
|
DontSearchThroughModules) {
|
|
Success(target) => {
|
|
match (*target.bindings).def_for_namespace(namespace) {
|
|
None => {
|
|
// This can happen if we were looking for a type and
|
|
// found a module instead. Modules don't have defs.
|
|
return None;
|
|
}
|
|
Some(def) => {
|
|
debug!("(resolving item path in lexical scope) \
|
|
resolved `%s` to item",
|
|
self.session.str_of(ident));
|
|
return Some(def);
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
fail!("unexpected indeterminate result");
|
|
}
|
|
Failed => {
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_no_errors<T>(@mut self, f: &fn() -> T) -> T {
|
|
self.emit_errors = false;
|
|
let rs = f();
|
|
self.emit_errors = true;
|
|
rs
|
|
}
|
|
|
|
fn resolve_error(@mut self, span: Span, s: &str) {
|
|
if self.emit_errors {
|
|
self.session.span_err(span, s);
|
|
}
|
|
}
|
|
|
|
pub fn find_best_match_for_name(@mut self,
|
|
name: &str,
|
|
max_distance: uint)
|
|
-> Option<@str> {
|
|
let this = &mut *self;
|
|
|
|
let mut maybes: ~[@str] = ~[];
|
|
let mut values: ~[uint] = ~[];
|
|
|
|
let mut j = this.value_ribs.len();
|
|
while j != 0 {
|
|
j -= 1;
|
|
for (&k, _) in this.value_ribs[j].bindings.iter() {
|
|
maybes.push(interner_get(k));
|
|
values.push(uint::max_value);
|
|
}
|
|
}
|
|
|
|
let mut smallest = 0;
|
|
for (i, &other) in maybes.iter().enumerate() {
|
|
values[i] = name.lev_distance(other);
|
|
|
|
if values[i] <= values[smallest] {
|
|
smallest = i;
|
|
}
|
|
}
|
|
|
|
if values.len() > 0 &&
|
|
values[smallest] != uint::max_value &&
|
|
values[smallest] < name.len() + 2 &&
|
|
values[smallest] <= max_distance &&
|
|
name != maybes[smallest] {
|
|
|
|
Some(maybes.swap_remove(smallest))
|
|
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn name_exists_in_scope_struct(@mut self, name: &str) -> bool {
|
|
let this = &mut *self;
|
|
|
|
let mut i = this.type_ribs.len();
|
|
while i != 0 {
|
|
i -= 1;
|
|
match this.type_ribs[i].kind {
|
|
MethodRibKind(node_id, _) =>
|
|
for item in this.crate.module.items.iter() {
|
|
if item.id == node_id {
|
|
match item.node {
|
|
item_struct(class_def, _) => {
|
|
for field in class_def.fields.iter() {
|
|
match field.node.kind {
|
|
unnamed_field => {},
|
|
named_field(ident, _) => {
|
|
if str::eq_slice(this.session.str_of(ident),
|
|
name) {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
},
|
|
_ => {}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
pub fn resolve_expr(@mut self, expr: @Expr, visitor: &mut ResolveVisitor) {
|
|
// First, record candidate traits for this expression if it could
|
|
// result in the invocation of a method call.
|
|
|
|
self.record_candidate_traits_for_expr_if_necessary(expr);
|
|
|
|
// Next, resolve the node.
|
|
match expr.node {
|
|
// The interpretation of paths depends on whether the path has
|
|
// multiple elements in it or not.
|
|
|
|
ExprPath(ref path) => {
|
|
// This is a local path in the value namespace. Walk through
|
|
// scopes looking for it.
|
|
|
|
match self.resolve_path(expr.id, path, ValueNS, true, visitor) {
|
|
Some(def) => {
|
|
// Write the result into the def map.
|
|
debug!("(resolving expr) resolved `%s`",
|
|
self.path_idents_to_str(path));
|
|
|
|
// First-class methods are not supported yet; error
|
|
// out here.
|
|
match def {
|
|
DefMethod(*) => {
|
|
self.resolve_error(expr.span,
|
|
"first-class methods \
|
|
are not supported");
|
|
self.session.span_note(expr.span,
|
|
"call the method \
|
|
using the `.` \
|
|
syntax");
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
self.record_def(expr.id, def);
|
|
}
|
|
None => {
|
|
let wrong_name = self.path_idents_to_str(path);
|
|
if self.name_exists_in_scope_struct(wrong_name) {
|
|
self.resolve_error(expr.span,
|
|
fmt!("unresolved name `%s`. \
|
|
Did you mean `self.%s`?",
|
|
wrong_name,
|
|
wrong_name));
|
|
}
|
|
else {
|
|
// Be helpful if the name refers to a struct
|
|
// (The pattern matching def_tys where the id is in self.structs
|
|
// matches on regular structs while excluding tuple- and enum-like
|
|
// structs, which wouldn't result in this error.)
|
|
match self.with_no_errors(||
|
|
self.resolve_path(expr.id, path, TypeNS, false, visitor)) {
|
|
Some(DefTy(struct_id))
|
|
if self.structs.contains(&struct_id) => {
|
|
self.resolve_error(expr.span,
|
|
fmt!("`%s` is a structure name, but this expression \
|
|
uses it like a function name", wrong_name));
|
|
|
|
self.session.span_note(expr.span, fmt!("Did you mean to write: \
|
|
`%s { /* fields */ }`?", wrong_name));
|
|
|
|
}
|
|
_ =>
|
|
// limit search to 5 to reduce the number
|
|
// of stupid suggestions
|
|
match self.find_best_match_for_name(wrong_name, 5) {
|
|
Some(m) => {
|
|
self.resolve_error(expr.span,
|
|
fmt!("unresolved name `%s`. \
|
|
Did you mean `%s`?",
|
|
wrong_name, m));
|
|
}
|
|
None => {
|
|
self.resolve_error(expr.span,
|
|
fmt!("unresolved name `%s`.",
|
|
wrong_name));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
visit::walk_expr(visitor, expr, ());
|
|
}
|
|
|
|
ExprFnBlock(ref fn_decl, ref block) => {
|
|
self.resolve_function(FunctionRibKind(expr.id, block.id),
|
|
Some(fn_decl),
|
|
NoTypeParameters,
|
|
block,
|
|
NoSelfBinding,
|
|
visitor);
|
|
}
|
|
|
|
ExprStruct(ref path, _, _) => {
|
|
// Resolve the path to the structure it goes to.
|
|
match self.resolve_path(expr.id, path, TypeNS, false, visitor) {
|
|
Some(DefTy(class_id)) | Some(DefStruct(class_id))
|
|
if self.structs.contains(&class_id) => {
|
|
let class_def = DefStruct(class_id);
|
|
self.record_def(expr.id, class_def);
|
|
}
|
|
Some(definition @ DefVariant(_, class_id, _))
|
|
if self.structs.contains(&class_id) => {
|
|
self.record_def(expr.id, definition);
|
|
}
|
|
result => {
|
|
debug!("(resolving expression) didn't find struct \
|
|
def: %?", result);
|
|
self.resolve_error(
|
|
path.span,
|
|
fmt!("`%s` does not name a structure",
|
|
self.path_idents_to_str(path)));
|
|
}
|
|
}
|
|
|
|
visit::walk_expr(visitor, expr, ());
|
|
}
|
|
|
|
ExprLoop(_, Some(label)) => {
|
|
do self.with_label_rib {
|
|
{
|
|
let this = &mut *self;
|
|
let def_like = DlDef(DefLabel(expr.id));
|
|
let rib = this.label_ribs[this.label_ribs.len() - 1];
|
|
// plain insert (no renaming)
|
|
rib.bindings.insert(label.name, def_like);
|
|
}
|
|
|
|
visit::walk_expr(visitor, expr, ());
|
|
}
|
|
}
|
|
|
|
ExprForLoop(*) => fail!("non-desugared expr_for_loop"),
|
|
|
|
ExprBreak(Some(label)) | ExprAgain(Some(label)) => {
|
|
match self.search_ribs(self.label_ribs, label, expr.span,
|
|
DontAllowCapturingSelf) {
|
|
None =>
|
|
self.resolve_error(expr.span,
|
|
fmt!("use of undeclared label \
|
|
`%s`",
|
|
interner_get(label))),
|
|
Some(DlDef(def @ DefLabel(_))) => {
|
|
self.record_def(expr.id, def)
|
|
}
|
|
Some(_) => {
|
|
self.session.span_bug(expr.span,
|
|
"label wasn't mapped to a \
|
|
label def!")
|
|
}
|
|
}
|
|
}
|
|
|
|
ExprSelf => {
|
|
match self.resolve_self_value_in_local_ribs(expr.span) {
|
|
None => {
|
|
self.resolve_error(expr.span,
|
|
"`self` is not allowed in \
|
|
this context")
|
|
}
|
|
Some(def) => self.record_def(expr.id, def),
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
visit::walk_expr(visitor, expr, ());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn record_candidate_traits_for_expr_if_necessary(@mut self,
|
|
expr: @Expr) {
|
|
match expr.node {
|
|
ExprField(_, ident, _) => {
|
|
// FIXME(#6890): Even though you can't treat a method like a
|
|
// field, we need to add any trait methods we find that match
|
|
// the field name so that we can do some nice error reporting
|
|
// later on in typeck.
|
|
let traits = self.search_for_traits_containing_method(ident);
|
|
self.trait_map.insert(expr.id, @mut traits);
|
|
}
|
|
ExprMethodCall(_, _, ident, _, _, _) => {
|
|
debug!("(recording candidate traits for expr) recording \
|
|
traits for %d",
|
|
expr.id);
|
|
let traits = self.search_for_traits_containing_method(ident);
|
|
self.trait_map.insert(expr.id, @mut traits);
|
|
}
|
|
ExprBinary(_, BiAdd, _, _) | ExprAssignOp(_, BiAdd, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.add_trait());
|
|
}
|
|
ExprBinary(_, BiSub, _, _) | ExprAssignOp(_, BiSub, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.sub_trait());
|
|
}
|
|
ExprBinary(_, BiMul, _, _) | ExprAssignOp(_, BiMul, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.mul_trait());
|
|
}
|
|
ExprBinary(_, BiDiv, _, _) | ExprAssignOp(_, BiDiv, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.div_trait());
|
|
}
|
|
ExprBinary(_, BiRem, _, _) | ExprAssignOp(_, BiRem, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.rem_trait());
|
|
}
|
|
ExprBinary(_, BiBitXor, _, _) | ExprAssignOp(_, BiBitXor, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.bitxor_trait());
|
|
}
|
|
ExprBinary(_, BiBitAnd, _, _) | ExprAssignOp(_, BiBitAnd, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.bitand_trait());
|
|
}
|
|
ExprBinary(_, BiBitOr, _, _) | ExprAssignOp(_, BiBitOr, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.bitor_trait());
|
|
}
|
|
ExprBinary(_, BiShl, _, _) | ExprAssignOp(_, BiShl, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.shl_trait());
|
|
}
|
|
ExprBinary(_, BiShr, _, _) | ExprAssignOp(_, BiShr, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.shr_trait());
|
|
}
|
|
ExprBinary(_, BiLt, _, _) | ExprBinary(_, BiLe, _, _) |
|
|
ExprBinary(_, BiGe, _, _) | ExprBinary(_, BiGt, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.ord_trait());
|
|
}
|
|
ExprBinary(_, BiEq, _, _) | ExprBinary(_, BiNe, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.eq_trait());
|
|
}
|
|
ExprUnary(_, UnNeg, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.neg_trait());
|
|
}
|
|
ExprUnary(_, UnNot, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.not_trait());
|
|
}
|
|
ExprIndex(*) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.index_trait());
|
|
}
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn search_for_traits_containing_method(@mut self, name: Ident)
|
|
-> ~[DefId] {
|
|
debug!("(searching for traits containing method) looking for '%s'",
|
|
self.session.str_of(name));
|
|
|
|
let mut found_traits = ~[];
|
|
let mut search_module = self.current_module;
|
|
match self.method_map.find(&name.name) {
|
|
Some(candidate_traits) => loop {
|
|
// Look for the current trait.
|
|
match self.current_trait_refs {
|
|
Some(ref trait_def_ids) => {
|
|
for trait_def_id in trait_def_ids.iter() {
|
|
if candidate_traits.contains(trait_def_id) {
|
|
self.add_trait_info(&mut found_traits,
|
|
*trait_def_id,
|
|
name);
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
// Look for trait children.
|
|
self.populate_module_if_necessary(search_module);
|
|
for (_, &child_name_bindings) in
|
|
search_module.children.iter() {
|
|
match child_name_bindings.def_for_namespace(TypeNS) {
|
|
Some(def) => {
|
|
match def {
|
|
DefTrait(trait_def_id) => {
|
|
if candidate_traits.contains(&trait_def_id) {
|
|
self.add_trait_info(
|
|
&mut found_traits,
|
|
trait_def_id, name);
|
|
}
|
|
}
|
|
_ => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for imports.
|
|
for (_, &import_resolution) in search_module.import_resolutions.iter() {
|
|
match import_resolution.target_for_namespace(TypeNS) {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(target) => {
|
|
match target.bindings.def_for_namespace(TypeNS) {
|
|
Some(def) => {
|
|
match def {
|
|
DefTrait(trait_def_id) => {
|
|
if candidate_traits.contains(&trait_def_id) {
|
|
self.add_trait_info(
|
|
&mut found_traits,
|
|
trait_def_id, name);
|
|
self.used_imports.insert(
|
|
import_resolution.type_id);
|
|
}
|
|
}
|
|
_ => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move to the next parent.
|
|
match search_module.parent_link {
|
|
NoParentLink => {
|
|
// Done.
|
|
break;
|
|
}
|
|
ModuleParentLink(parent_module, _) |
|
|
BlockParentLink(parent_module, _) => {
|
|
search_module = parent_module;
|
|
}
|
|
}
|
|
},
|
|
_ => ()
|
|
}
|
|
|
|
return found_traits;
|
|
}
|
|
|
|
pub fn add_trait_info(&self,
|
|
found_traits: &mut ~[DefId],
|
|
trait_def_id: DefId,
|
|
name: Ident) {
|
|
debug!("(adding trait info) found trait %d:%d for method '%s'",
|
|
trait_def_id.crate,
|
|
trait_def_id.node,
|
|
self.session.str_of(name));
|
|
found_traits.push(trait_def_id);
|
|
}
|
|
|
|
pub fn add_fixed_trait_for_expr(@mut self,
|
|
expr_id: NodeId,
|
|
trait_id: Option<DefId>) {
|
|
match trait_id {
|
|
Some(trait_id) => {
|
|
self.trait_map.insert(expr_id, @mut ~[trait_id]);
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
pub fn record_def(@mut self, node_id: NodeId, def: Def) {
|
|
debug!("(recording def) recording %? for %?", def, node_id);
|
|
do self.def_map.insert_or_update_with(node_id, def) |_, old_value| {
|
|
// Resolve appears to "resolve" the same ID multiple
|
|
// times, so here is a sanity check it at least comes to
|
|
// the same conclusion! - nmatsakis
|
|
if def != *old_value {
|
|
self.session.bug(fmt!("node_id %? resolved first to %? \
|
|
and then %?", node_id, *old_value, def));
|
|
}
|
|
};
|
|
}
|
|
|
|
pub fn enforce_default_binding_mode(@mut self,
|
|
pat: @Pat,
|
|
pat_binding_mode: BindingMode,
|
|
descr: &str) {
|
|
match pat_binding_mode {
|
|
BindInfer => {}
|
|
BindByRef(*) => {
|
|
self.resolve_error(
|
|
pat.span,
|
|
fmt!("cannot use `ref` binding mode with %s",
|
|
descr));
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Unused import checking
|
|
//
|
|
// Although this is a lint pass, it lives in here because it depends on
|
|
// resolve data structures.
|
|
//
|
|
|
|
pub fn check_for_unused_imports(@mut self) {
|
|
let mut visitor = UnusedImportCheckVisitor{ resolver: self };
|
|
visit::walk_crate(&mut visitor, self.crate, ());
|
|
}
|
|
|
|
pub fn check_for_item_unused_imports(&mut self, vi: &view_item) {
|
|
// Ignore public import statements because there's no way to be sure
|
|
// whether they're used or not. Also ignore imports with a dummy span
|
|
// because this means that they were generated in some fashion by the
|
|
// compiler and we don't need to consider them.
|
|
if vi.vis == public { return }
|
|
if vi.span == dummy_sp() { return }
|
|
|
|
match vi.node {
|
|
view_item_extern_mod(*) => {} // ignore
|
|
view_item_use(ref path) => {
|
|
for p in path.iter() {
|
|
match p.node {
|
|
view_path_simple(_, _, id) | view_path_glob(_, id) => {
|
|
if !self.used_imports.contains(&id) {
|
|
self.session.add_lint(unused_imports,
|
|
id, p.span,
|
|
~"unused import");
|
|
}
|
|
}
|
|
|
|
view_path_list(_, ref list, _) => {
|
|
for i in list.iter() {
|
|
if !self.used_imports.contains(&i.node.id) {
|
|
self.session.add_lint(unused_imports,
|
|
i.node.id, i.span,
|
|
~"unused import");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Diagnostics
|
|
//
|
|
// Diagnostics are not particularly efficient, because they're rarely
|
|
// hit.
|
|
//
|
|
|
|
/// A somewhat inefficient routine to obtain the name of a module.
|
|
pub fn module_to_str(@mut self, module_: @mut Module) -> ~str {
|
|
let mut idents = ~[];
|
|
let mut current_module = module_;
|
|
loop {
|
|
match current_module.parent_link {
|
|
NoParentLink => {
|
|
break;
|
|
}
|
|
ModuleParentLink(module_, name) => {
|
|
idents.push(name);
|
|
current_module = module_;
|
|
}
|
|
BlockParentLink(module_, _) => {
|
|
idents.push(special_idents::opaque);
|
|
current_module = module_;
|
|
}
|
|
}
|
|
}
|
|
|
|
if idents.len() == 0 {
|
|
return ~"???";
|
|
}
|
|
return self.idents_to_str(idents.move_rev_iter().collect::<~[ast::Ident]>());
|
|
}
|
|
|
|
pub fn dump_module(@mut self, module_: @mut Module) {
|
|
debug!("Dump of module `%s`:", self.module_to_str(module_));
|
|
|
|
debug!("Children:");
|
|
self.populate_module_if_necessary(module_);
|
|
for (&name, _) in module_.children.iter() {
|
|
debug!("* %s", interner_get(name));
|
|
}
|
|
|
|
debug!("Import resolutions:");
|
|
for (name, import_resolution) in module_.import_resolutions.iter() {
|
|
let value_repr;
|
|
match import_resolution.target_for_namespace(ValueNS) {
|
|
None => { value_repr = ~""; }
|
|
Some(_) => {
|
|
value_repr = ~" value:?";
|
|
// FIXME #4954
|
|
}
|
|
}
|
|
|
|
let type_repr;
|
|
match import_resolution.target_for_namespace(TypeNS) {
|
|
None => { type_repr = ~""; }
|
|
Some(_) => {
|
|
type_repr = ~" type:?";
|
|
// FIXME #4954
|
|
}
|
|
}
|
|
|
|
debug!("* %s:%s%s", interner_get(*name),
|
|
value_repr, type_repr);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct CrateMap {
|
|
def_map: DefMap,
|
|
exp_map2: ExportMap2,
|
|
trait_map: TraitMap
|
|
}
|
|
|
|
/// Entry point to crate resolution.
|
|
pub fn resolve_crate(session: Session,
|
|
lang_items: LanguageItems,
|
|
crate: @Crate)
|
|
-> CrateMap {
|
|
let resolver = @mut Resolver(session, lang_items, crate);
|
|
resolver.resolve();
|
|
CrateMap {
|
|
def_map: resolver.def_map,
|
|
exp_map2: resolver.export_map2,
|
|
trait_map: resolver.trait_map.clone(),
|
|
}
|
|
}
|
|
|