rust/compiler/rustc_data_structures/src/profiling.rs

848 lines
33 KiB
Rust

//! # Rust Compiler Self-Profiling
//!
//! This module implements the basic framework for the compiler's self-
//! profiling support. It provides the `SelfProfiler` type which enables
//! recording "events". An event is something that starts and ends at a given
//! point in time and has an ID and a kind attached to it. This allows for
//! tracing the compiler's activity.
//!
//! Internally this module uses the custom tailored [measureme][mm] crate for
//! efficiently recording events to disk in a compact format that can be
//! post-processed and analyzed by the suite of tools in the `measureme`
//! project. The highest priority for the tracing framework is on incurring as
//! little overhead as possible.
//!
//!
//! ## Event Overview
//!
//! Events have a few properties:
//!
//! - The `event_kind` designates the broad category of an event (e.g. does it
//! correspond to the execution of a query provider or to loading something
//! from the incr. comp. on-disk cache, etc).
//! - The `event_id` designates the query invocation or function call it
//! corresponds to, possibly including the query key or function arguments.
//! - Each event stores the ID of the thread it was recorded on.
//! - The timestamp stores beginning and end of the event, or the single point
//! in time it occurred at for "instant" events.
//!
//!
//! ## Event Filtering
//!
//! Event generation can be filtered by event kind. Recording all possible
//! events generates a lot of data, much of which is not needed for most kinds
//! of analysis. So, in order to keep overhead as low as possible for a given
//! use case, the `SelfProfiler` will only record the kinds of events that
//! pass the filter specified as a command line argument to the compiler.
//!
//!
//! ## `event_id` Assignment
//!
//! As far as `measureme` is concerned, `event_id`s are just strings. However,
//! it would incur too much overhead to generate and persist each `event_id`
//! string at the point where the event is recorded. In order to make this more
//! efficient `measureme` has two features:
//!
//! - Strings can share their content, so that re-occurring parts don't have to
//! be copied over and over again. One allocates a string in `measureme` and
//! gets back a `StringId`. This `StringId` is then used to refer to that
//! string. `measureme` strings are actually DAGs of string components so that
//! arbitrary sharing of substrings can be done efficiently. This is useful
//! because `event_id`s contain lots of redundant text like query names or
//! def-path components.
//!
//! - `StringId`s can be "virtual" which means that the client picks a numeric
//! ID according to some application-specific scheme and can later make that
//! ID be mapped to an actual string. This is used to cheaply generate
//! `event_id`s while the events actually occur, causing little timing
//! distortion, and then later map those `StringId`s, in bulk, to actual
//! `event_id` strings. This way the largest part of the tracing overhead is
//! localized to one contiguous chunk of time.
//!
//! How are these `event_id`s generated in the compiler? For things that occur
//! infrequently (e.g. "generic activities"), we just allocate the string the
//! first time it is used and then keep the `StringId` in a hash table. This
//! is implemented in `SelfProfiler::get_or_alloc_cached_string()`.
//!
//! For queries it gets more interesting: First we need a unique numeric ID for
//! each query invocation (the `QueryInvocationId`). This ID is used as the
//! virtual `StringId` we use as `event_id` for a given event. This ID has to
//! be available both when the query is executed and later, together with the
//! query key, when we allocate the actual `event_id` strings in bulk.
//!
//! We could make the compiler generate and keep track of such an ID for each
//! query invocation but luckily we already have something that fits all the
//! the requirements: the query's `DepNodeIndex`. So we use the numeric value
//! of the `DepNodeIndex` as `event_id` when recording the event and then,
//! just before the query context is dropped, we walk the entire query cache
//! (which stores the `DepNodeIndex` along with the query key for each
//! invocation) and allocate the corresponding strings together with a mapping
//! for `DepNodeIndex as StringId`.
//!
//! [mm]: https://github.com/rust-lang/measureme/
use crate::cold_path;
use crate::fx::FxHashMap;
use std::borrow::Borrow;
use std::collections::hash_map::Entry;
use std::error::Error;
use std::fs;
use std::intrinsics::unlikely;
use std::path::Path;
use std::process;
use std::sync::Arc;
use std::time::{Duration, Instant};
pub use measureme::EventId;
use measureme::{EventIdBuilder, Profiler, SerializableString, StringId};
use parking_lot::RwLock;
use smallvec::SmallVec;
bitflags::bitflags! {
struct EventFilter: u32 {
const GENERIC_ACTIVITIES = 1 << 0;
const QUERY_PROVIDERS = 1 << 1;
const QUERY_CACHE_HITS = 1 << 2;
const QUERY_BLOCKED = 1 << 3;
const INCR_CACHE_LOADS = 1 << 4;
const QUERY_KEYS = 1 << 5;
const FUNCTION_ARGS = 1 << 6;
const LLVM = 1 << 7;
const INCR_RESULT_HASHING = 1 << 8;
const ARTIFACT_SIZES = 1 << 9;
const DEFAULT = Self::GENERIC_ACTIVITIES.bits |
Self::QUERY_PROVIDERS.bits |
Self::QUERY_BLOCKED.bits |
Self::INCR_CACHE_LOADS.bits |
Self::INCR_RESULT_HASHING.bits |
Self::ARTIFACT_SIZES.bits;
const ARGS = Self::QUERY_KEYS.bits | Self::FUNCTION_ARGS.bits;
}
}
// keep this in sync with the `-Z self-profile-events` help message in rustc_session/options.rs
const EVENT_FILTERS_BY_NAME: &[(&str, EventFilter)] = &[
("none", EventFilter::empty()),
("all", EventFilter::all()),
("default", EventFilter::DEFAULT),
("generic-activity", EventFilter::GENERIC_ACTIVITIES),
("query-provider", EventFilter::QUERY_PROVIDERS),
("query-cache-hit", EventFilter::QUERY_CACHE_HITS),
("query-blocked", EventFilter::QUERY_BLOCKED),
("incr-cache-load", EventFilter::INCR_CACHE_LOADS),
("query-keys", EventFilter::QUERY_KEYS),
("function-args", EventFilter::FUNCTION_ARGS),
("args", EventFilter::ARGS),
("llvm", EventFilter::LLVM),
("incr-result-hashing", EventFilter::INCR_RESULT_HASHING),
("artifact-sizes", EventFilter::ARTIFACT_SIZES),
];
/// Something that uniquely identifies a query invocation.
pub struct QueryInvocationId(pub u32);
/// A reference to the SelfProfiler. It can be cloned and sent across thread
/// boundaries at will.
#[derive(Clone)]
pub struct SelfProfilerRef {
// This field is `None` if self-profiling is disabled for the current
// compilation session.
profiler: Option<Arc<SelfProfiler>>,
// We store the filter mask directly in the reference because that doesn't
// cost anything and allows for filtering with checking if the profiler is
// actually enabled.
event_filter_mask: EventFilter,
// Print verbose generic activities to stderr?
print_verbose_generic_activities: bool,
}
impl SelfProfilerRef {
pub fn new(
profiler: Option<Arc<SelfProfiler>>,
print_verbose_generic_activities: bool,
) -> SelfProfilerRef {
// If there is no SelfProfiler then the filter mask is set to NONE,
// ensuring that nothing ever tries to actually access it.
let event_filter_mask =
profiler.as_ref().map_or(EventFilter::empty(), |p| p.event_filter_mask);
SelfProfilerRef { profiler, event_filter_mask, print_verbose_generic_activities }
}
/// This shim makes sure that calls only get executed if the filter mask
/// lets them pass. It also contains some trickery to make sure that
/// code is optimized for non-profiling compilation sessions, i.e. anything
/// past the filter check is never inlined so it doesn't clutter the fast
/// path.
#[inline(always)]
fn exec<F>(&self, event_filter: EventFilter, f: F) -> TimingGuard<'_>
where
F: for<'a> FnOnce(&'a SelfProfiler) -> TimingGuard<'a>,
{
#[inline(never)]
#[cold]
fn cold_call<F>(profiler_ref: &SelfProfilerRef, f: F) -> TimingGuard<'_>
where
F: for<'a> FnOnce(&'a SelfProfiler) -> TimingGuard<'a>,
{
let profiler = profiler_ref.profiler.as_ref().unwrap();
f(profiler)
}
if self.event_filter_mask.contains(event_filter) {
cold_call(self, f)
} else {
TimingGuard::none()
}
}
/// Start profiling a verbose generic activity. Profiling continues until the
/// VerboseTimingGuard returned from this call is dropped. In addition to recording
/// a measureme event, "verbose" generic activities also print a timing entry to
/// stderr if the compiler is invoked with -Ztime-passes.
pub fn verbose_generic_activity(&self, event_label: &'static str) -> VerboseTimingGuard<'_> {
let message = self.print_verbose_generic_activities.then(|| event_label.to_owned());
VerboseTimingGuard::start(message, self.generic_activity(event_label))
}
/// Like `verbose_generic_activity`, but with an extra arg.
pub fn verbose_generic_activity_with_arg<A>(
&self,
event_label: &'static str,
event_arg: A,
) -> VerboseTimingGuard<'_>
where
A: Borrow<str> + Into<String>,
{
let message = self
.print_verbose_generic_activities
.then(|| format!("{}({})", event_label, event_arg.borrow()));
VerboseTimingGuard::start(message, self.generic_activity_with_arg(event_label, event_arg))
}
/// Start profiling a generic activity. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn generic_activity(&self, event_label: &'static str) -> TimingGuard<'_> {
self.exec(EventFilter::GENERIC_ACTIVITIES, |profiler| {
let event_label = profiler.get_or_alloc_cached_string(event_label);
let event_id = EventId::from_label(event_label);
TimingGuard::start(profiler, profiler.generic_activity_event_kind, event_id)
})
}
/// Start profiling with some event filter for a given event. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn generic_activity_with_event_id(&self, event_id: EventId) -> TimingGuard<'_> {
self.exec(EventFilter::GENERIC_ACTIVITIES, |profiler| {
TimingGuard::start(profiler, profiler.generic_activity_event_kind, event_id)
})
}
/// Start profiling a generic activity. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn generic_activity_with_arg<A>(
&self,
event_label: &'static str,
event_arg: A,
) -> TimingGuard<'_>
where
A: Borrow<str> + Into<String>,
{
self.exec(EventFilter::GENERIC_ACTIVITIES, |profiler| {
let builder = EventIdBuilder::new(&profiler.profiler);
let event_label = profiler.get_or_alloc_cached_string(event_label);
let event_id = if profiler.event_filter_mask.contains(EventFilter::FUNCTION_ARGS) {
let event_arg = profiler.get_or_alloc_cached_string(event_arg);
builder.from_label_and_arg(event_label, event_arg)
} else {
builder.from_label(event_label)
};
TimingGuard::start(profiler, profiler.generic_activity_event_kind, event_id)
})
}
/// Start profiling a generic activity, allowing costly arguments to be recorded. Profiling
/// continues until the `TimingGuard` returned from this call is dropped.
///
/// If the arguments to a generic activity are cheap to create, use `generic_activity_with_arg`
/// or `generic_activity_with_args` for their simpler API. However, if they are costly or
/// require allocation in sufficiently hot contexts, then this allows for a closure to be called
/// only when arguments were asked to be recorded via `-Z self-profile-events=args`.
///
/// In this case, the closure will be passed a `&mut EventArgRecorder`, to help with recording
/// one or many arguments within the generic activity being profiled, by calling its
/// `record_arg` method for example.
///
/// This `EventArgRecorder` may implement more specific traits from other rustc crates, e.g. for
/// richer handling of rustc-specific argument types, while keeping this single entry-point API
/// for recording arguments.
///
/// Note: recording at least one argument is *required* for the self-profiler to create the
/// `TimingGuard`. A panic will be triggered if that doesn't happen. This function exists
/// explicitly to record arguments, so it fails loudly when there are none to record.
///
#[inline(always)]
pub fn generic_activity_with_arg_recorder<F>(
&self,
event_label: &'static str,
mut f: F,
) -> TimingGuard<'_>
where
F: FnMut(&mut EventArgRecorder<'_>),
{
// Ensure this event will only be recorded when self-profiling is turned on.
self.exec(EventFilter::GENERIC_ACTIVITIES, |profiler| {
let builder = EventIdBuilder::new(&profiler.profiler);
let event_label = profiler.get_or_alloc_cached_string(event_label);
// Ensure the closure to create event arguments will only be called when argument
// recording is turned on.
let event_id = if profiler.event_filter_mask.contains(EventFilter::FUNCTION_ARGS) {
// Set up the builder and call the user-provided closure to record potentially
// costly event arguments.
let mut recorder = EventArgRecorder { profiler, args: SmallVec::new() };
f(&mut recorder);
// It is expected that the closure will record at least one argument. If that
// doesn't happen, it's a bug: we've been explicitly called in order to record
// arguments, so we fail loudly when there are none to record.
if recorder.args.is_empty() {
panic!(
"The closure passed to `generic_activity_with_arg_recorder` needs to \
record at least one argument"
);
}
builder.from_label_and_args(event_label, &recorder.args)
} else {
builder.from_label(event_label)
};
TimingGuard::start(profiler, profiler.generic_activity_event_kind, event_id)
})
}
/// Record the size of an artifact that the compiler produces
///
/// `artifact_kind` is the class of artifact (e.g., query_cache, object_file, etc.)
/// `artifact_name` is an identifier to the specific artifact being stored (usually a filename)
#[inline(always)]
pub fn artifact_size<A>(&self, artifact_kind: &str, artifact_name: A, size: u64)
where
A: Borrow<str> + Into<String>,
{
drop(self.exec(EventFilter::ARTIFACT_SIZES, |profiler| {
let builder = EventIdBuilder::new(&profiler.profiler);
let event_label = profiler.get_or_alloc_cached_string(artifact_kind);
let event_arg = profiler.get_or_alloc_cached_string(artifact_name);
let event_id = builder.from_label_and_arg(event_label, event_arg);
let thread_id = get_thread_id();
profiler.profiler.record_integer_event(
profiler.artifact_size_event_kind,
event_id,
thread_id,
size,
);
TimingGuard::none()
}))
}
#[inline(always)]
pub fn generic_activity_with_args(
&self,
event_label: &'static str,
event_args: &[String],
) -> TimingGuard<'_> {
self.exec(EventFilter::GENERIC_ACTIVITIES, |profiler| {
let builder = EventIdBuilder::new(&profiler.profiler);
let event_label = profiler.get_or_alloc_cached_string(event_label);
let event_id = if profiler.event_filter_mask.contains(EventFilter::FUNCTION_ARGS) {
let event_args: Vec<_> = event_args
.iter()
.map(|s| profiler.get_or_alloc_cached_string(&s[..]))
.collect();
builder.from_label_and_args(event_label, &event_args)
} else {
builder.from_label(event_label)
};
TimingGuard::start(profiler, profiler.generic_activity_event_kind, event_id)
})
}
/// Start profiling a query provider. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn query_provider(&self) -> TimingGuard<'_> {
self.exec(EventFilter::QUERY_PROVIDERS, |profiler| {
TimingGuard::start(profiler, profiler.query_event_kind, EventId::INVALID)
})
}
/// Record a query in-memory cache hit.
#[inline(always)]
pub fn query_cache_hit(&self, query_invocation_id: QueryInvocationId) {
#[inline(never)]
#[cold]
fn cold_call(profiler_ref: &SelfProfilerRef, query_invocation_id: QueryInvocationId) {
profiler_ref.instant_query_event(
|profiler| profiler.query_cache_hit_event_kind,
query_invocation_id,
);
}
if unlikely(self.event_filter_mask.contains(EventFilter::QUERY_CACHE_HITS)) {
cold_call(self, query_invocation_id);
}
}
/// Start profiling a query being blocked on a concurrent execution.
/// Profiling continues until the TimingGuard returned from this call is
/// dropped.
#[inline(always)]
pub fn query_blocked(&self) -> TimingGuard<'_> {
self.exec(EventFilter::QUERY_BLOCKED, |profiler| {
TimingGuard::start(profiler, profiler.query_blocked_event_kind, EventId::INVALID)
})
}
/// Start profiling how long it takes to load a query result from the
/// incremental compilation on-disk cache. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn incr_cache_loading(&self) -> TimingGuard<'_> {
self.exec(EventFilter::INCR_CACHE_LOADS, |profiler| {
TimingGuard::start(
profiler,
profiler.incremental_load_result_event_kind,
EventId::INVALID,
)
})
}
/// Start profiling how long it takes to hash query results for incremental compilation.
/// Profiling continues until the TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn incr_result_hashing(&self) -> TimingGuard<'_> {
self.exec(EventFilter::INCR_RESULT_HASHING, |profiler| {
TimingGuard::start(
profiler,
profiler.incremental_result_hashing_event_kind,
EventId::INVALID,
)
})
}
#[inline(always)]
fn instant_query_event(
&self,
event_kind: fn(&SelfProfiler) -> StringId,
query_invocation_id: QueryInvocationId,
) {
let event_id = StringId::new_virtual(query_invocation_id.0);
let thread_id = get_thread_id();
let profiler = self.profiler.as_ref().unwrap();
profiler.profiler.record_instant_event(
event_kind(profiler),
EventId::from_virtual(event_id),
thread_id,
);
}
pub fn with_profiler(&self, f: impl FnOnce(&SelfProfiler)) {
if let Some(profiler) = &self.profiler {
f(profiler)
}
}
/// Gets a `StringId` for the given string. This method makes sure that
/// any strings going through it will only be allocated once in the
/// profiling data.
/// Returns `None` if the self-profiling is not enabled.
pub fn get_or_alloc_cached_string(&self, s: &str) -> Option<StringId> {
self.profiler.as_ref().map(|p| p.get_or_alloc_cached_string(s))
}
#[inline]
pub fn enabled(&self) -> bool {
self.profiler.is_some()
}
#[inline]
pub fn llvm_recording_enabled(&self) -> bool {
self.event_filter_mask.contains(EventFilter::LLVM)
}
#[inline]
pub fn get_self_profiler(&self) -> Option<Arc<SelfProfiler>> {
self.profiler.clone()
}
}
/// A helper for recording costly arguments to self-profiling events. Used with
/// `SelfProfilerRef::generic_activity_with_arg_recorder`.
pub struct EventArgRecorder<'p> {
/// The `SelfProfiler` used to intern the event arguments that users will ask to record.
profiler: &'p SelfProfiler,
/// The interned event arguments to be recorded in the generic activity event.
///
/// The most common case, when actually recording event arguments, is to have one argument. Then
/// followed by recording two, in a couple places.
args: SmallVec<[StringId; 2]>,
}
impl EventArgRecorder<'_> {
/// Records a single argument within the current generic activity being profiled.
///
/// Note: when self-profiling with costly event arguments, at least one argument
/// needs to be recorded. A panic will be triggered if that doesn't happen.
pub fn record_arg<A>(&mut self, event_arg: A)
where
A: Borrow<str> + Into<String>,
{
let event_arg = self.profiler.get_or_alloc_cached_string(event_arg);
self.args.push(event_arg);
}
}
pub struct SelfProfiler {
profiler: Profiler,
event_filter_mask: EventFilter,
string_cache: RwLock<FxHashMap<String, StringId>>,
query_event_kind: StringId,
generic_activity_event_kind: StringId,
incremental_load_result_event_kind: StringId,
incremental_result_hashing_event_kind: StringId,
query_blocked_event_kind: StringId,
query_cache_hit_event_kind: StringId,
artifact_size_event_kind: StringId,
}
impl SelfProfiler {
pub fn new(
output_directory: &Path,
crate_name: Option<&str>,
event_filters: Option<&[String]>,
counter_name: &str,
) -> Result<SelfProfiler, Box<dyn Error + Send + Sync>> {
fs::create_dir_all(output_directory)?;
let crate_name = crate_name.unwrap_or("unknown-crate");
// HACK(eddyb) we need to pad the PID, strange as it may seem, as its
// length can behave as a source of entropy for heap addresses, when
// ASLR is disabled and the heap is otherwise determinic.
let pid: u32 = process::id();
let filename = format!("{crate_name}-{pid:07}.rustc_profile");
let path = output_directory.join(&filename);
let profiler =
Profiler::with_counter(&path, measureme::counters::Counter::by_name(counter_name)?)?;
let query_event_kind = profiler.alloc_string("Query");
let generic_activity_event_kind = profiler.alloc_string("GenericActivity");
let incremental_load_result_event_kind = profiler.alloc_string("IncrementalLoadResult");
let incremental_result_hashing_event_kind =
profiler.alloc_string("IncrementalResultHashing");
let query_blocked_event_kind = profiler.alloc_string("QueryBlocked");
let query_cache_hit_event_kind = profiler.alloc_string("QueryCacheHit");
let artifact_size_event_kind = profiler.alloc_string("ArtifactSize");
let mut event_filter_mask = EventFilter::empty();
if let Some(event_filters) = event_filters {
let mut unknown_events = vec![];
for item in event_filters {
if let Some(&(_, mask)) =
EVENT_FILTERS_BY_NAME.iter().find(|&(name, _)| name == item)
{
event_filter_mask |= mask;
} else {
unknown_events.push(item.clone());
}
}
// Warn about any unknown event names
if !unknown_events.is_empty() {
unknown_events.sort();
unknown_events.dedup();
warn!(
"Unknown self-profiler events specified: {}. Available options are: {}.",
unknown_events.join(", "),
EVENT_FILTERS_BY_NAME
.iter()
.map(|&(name, _)| name.to_string())
.collect::<Vec<_>>()
.join(", ")
);
}
} else {
event_filter_mask = EventFilter::DEFAULT;
}
Ok(SelfProfiler {
profiler,
event_filter_mask,
string_cache: RwLock::new(FxHashMap::default()),
query_event_kind,
generic_activity_event_kind,
incremental_load_result_event_kind,
incremental_result_hashing_event_kind,
query_blocked_event_kind,
query_cache_hit_event_kind,
artifact_size_event_kind,
})
}
/// Allocates a new string in the profiling data. Does not do any caching
/// or deduplication.
pub fn alloc_string<STR: SerializableString + ?Sized>(&self, s: &STR) -> StringId {
self.profiler.alloc_string(s)
}
/// Gets a `StringId` for the given string. This method makes sure that
/// any strings going through it will only be allocated once in the
/// profiling data.
pub fn get_or_alloc_cached_string<A>(&self, s: A) -> StringId
where
A: Borrow<str> + Into<String>,
{
// Only acquire a read-lock first since we assume that the string is
// already present in the common case.
{
let string_cache = self.string_cache.read();
if let Some(&id) = string_cache.get(s.borrow()) {
return id;
}
}
let mut string_cache = self.string_cache.write();
// Check if the string has already been added in the small time window
// between dropping the read lock and acquiring the write lock.
match string_cache.entry(s.into()) {
Entry::Occupied(e) => *e.get(),
Entry::Vacant(e) => {
let string_id = self.profiler.alloc_string(&e.key()[..]);
*e.insert(string_id)
}
}
}
pub fn map_query_invocation_id_to_string(&self, from: QueryInvocationId, to: StringId) {
let from = StringId::new_virtual(from.0);
self.profiler.map_virtual_to_concrete_string(from, to);
}
pub fn bulk_map_query_invocation_id_to_single_string<I>(&self, from: I, to: StringId)
where
I: Iterator<Item = QueryInvocationId> + ExactSizeIterator,
{
let from = from.map(|qid| StringId::new_virtual(qid.0));
self.profiler.bulk_map_virtual_to_single_concrete_string(from, to);
}
pub fn query_key_recording_enabled(&self) -> bool {
self.event_filter_mask.contains(EventFilter::QUERY_KEYS)
}
pub fn event_id_builder(&self) -> EventIdBuilder<'_> {
EventIdBuilder::new(&self.profiler)
}
}
#[must_use]
pub struct TimingGuard<'a>(Option<measureme::TimingGuard<'a>>);
impl<'a> TimingGuard<'a> {
#[inline]
pub fn start(
profiler: &'a SelfProfiler,
event_kind: StringId,
event_id: EventId,
) -> TimingGuard<'a> {
let thread_id = get_thread_id();
let raw_profiler = &profiler.profiler;
let timing_guard =
raw_profiler.start_recording_interval_event(event_kind, event_id, thread_id);
TimingGuard(Some(timing_guard))
}
#[inline]
pub fn finish_with_query_invocation_id(self, query_invocation_id: QueryInvocationId) {
if let Some(guard) = self.0 {
cold_path(|| {
let event_id = StringId::new_virtual(query_invocation_id.0);
let event_id = EventId::from_virtual(event_id);
guard.finish_with_override_event_id(event_id);
});
}
}
#[inline]
pub fn none() -> TimingGuard<'a> {
TimingGuard(None)
}
#[inline(always)]
pub fn run<R>(self, f: impl FnOnce() -> R) -> R {
let _timer = self;
f()
}
}
#[must_use]
pub struct VerboseTimingGuard<'a> {
start_and_message: Option<(Instant, Option<usize>, String)>,
_guard: TimingGuard<'a>,
}
impl<'a> VerboseTimingGuard<'a> {
pub fn start(message: Option<String>, _guard: TimingGuard<'a>) -> Self {
VerboseTimingGuard {
_guard,
start_and_message: message.map(|msg| (Instant::now(), get_resident_set_size(), msg)),
}
}
#[inline(always)]
pub fn run<R>(self, f: impl FnOnce() -> R) -> R {
let _timer = self;
f()
}
}
impl Drop for VerboseTimingGuard<'_> {
fn drop(&mut self) {
if let Some((start_time, start_rss, ref message)) = self.start_and_message {
let end_rss = get_resident_set_size();
let dur = start_time.elapsed();
print_time_passes_entry(message, dur, start_rss, end_rss);
}
}
}
pub fn print_time_passes_entry(
what: &str,
dur: Duration,
start_rss: Option<usize>,
end_rss: Option<usize>,
) {
// Print the pass if its duration is greater than 5 ms, or it changed the
// measured RSS.
let is_notable = || {
if dur.as_millis() > 5 {
return true;
}
if let (Some(start_rss), Some(end_rss)) = (start_rss, end_rss) {
let change_rss = end_rss.abs_diff(start_rss);
if change_rss > 0 {
return true;
}
}
false
};
if !is_notable() {
return;
}
let rss_to_mb = |rss| (rss as f64 / 1_000_000.0).round() as usize;
let rss_change_to_mb = |rss| (rss as f64 / 1_000_000.0).round() as i128;
let mem_string = match (start_rss, end_rss) {
(Some(start_rss), Some(end_rss)) => {
let change_rss = end_rss as i128 - start_rss as i128;
format!(
"; rss: {:>4}MB -> {:>4}MB ({:>+5}MB)",
rss_to_mb(start_rss),
rss_to_mb(end_rss),
rss_change_to_mb(change_rss),
)
}
(Some(start_rss), None) => format!("; rss start: {:>4}MB", rss_to_mb(start_rss)),
(None, Some(end_rss)) => format!("; rss end: {:>4}MB", rss_to_mb(end_rss)),
(None, None) => String::new(),
};
eprintln!("time: {:>7}{}\t{}", duration_to_secs_str(dur), mem_string, what);
}
// Hack up our own formatting for the duration to make it easier for scripts
// to parse (always use the same number of decimal places and the same unit).
pub fn duration_to_secs_str(dur: std::time::Duration) -> String {
format!("{:.3}", dur.as_secs_f64())
}
fn get_thread_id() -> u32 {
std::thread::current().id().as_u64().get() as u32
}
// Memory reporting
cfg_if! {
if #[cfg(windows)] {
pub fn get_resident_set_size() -> Option<usize> {
use std::mem::{self, MaybeUninit};
use winapi::shared::minwindef::DWORD;
use winapi::um::processthreadsapi::GetCurrentProcess;
use winapi::um::psapi::{GetProcessMemoryInfo, PROCESS_MEMORY_COUNTERS};
let mut pmc = MaybeUninit::<PROCESS_MEMORY_COUNTERS>::uninit();
match unsafe {
GetProcessMemoryInfo(GetCurrentProcess(), pmc.as_mut_ptr(), mem::size_of_val(&pmc) as DWORD)
} {
0 => None,
_ => {
let pmc = unsafe { pmc.assume_init() };
Some(pmc.WorkingSetSize as usize)
}
}
}
} else if #[cfg(target_os = "macos")] {
pub fn get_resident_set_size() -> Option<usize> {
use libc::{c_int, c_void, getpid, proc_pidinfo, proc_taskinfo, PROC_PIDTASKINFO};
use std::mem;
const PROC_TASKINFO_SIZE: c_int = mem::size_of::<proc_taskinfo>() as c_int;
unsafe {
let mut info: proc_taskinfo = mem::zeroed();
let info_ptr = &mut info as *mut proc_taskinfo as *mut c_void;
let pid = getpid() as c_int;
let ret = proc_pidinfo(pid, PROC_PIDTASKINFO, 0, info_ptr, PROC_TASKINFO_SIZE);
if ret == PROC_TASKINFO_SIZE {
Some(info.pti_resident_size as usize)
} else {
None
}
}
}
} else if #[cfg(unix)] {
pub fn get_resident_set_size() -> Option<usize> {
let field = 1;
let contents = fs::read("/proc/self/statm").ok()?;
let contents = String::from_utf8(contents).ok()?;
let s = contents.split_whitespace().nth(field)?;
let npages = s.parse::<usize>().ok()?;
Some(npages * 4096)
}
} else {
pub fn get_resident_set_size() -> Option<usize> {
None
}
}
}